等差数列前n项和公式说课稿

时间:2019-05-13 00:28:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列前n项和公式说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列前n项和公式说课稿》。

第一篇:等差数列前n项和公式说课稿

大家好!今天我说课的题目是《等差数列的前n项和》,所选用的教材为中等职业教育规划教材。

一、教材分析:

1、教材的地位和作用

《等差数列的前n项和》是第一册第五章第二节的内容,本节内容在日常生活中有着广泛的应用,同时与函数、三角、不等式等内容有着密切的联系。它既是等差数列的概念的延续,又为后续研究等差数列的应用提供理论依据。鉴于这种认识,我认为,本节课对于进一步探索、研究等比数列无论在知识上,还是方法上都有很强的启发与示范作用。

2、学情分析

学生在认知方面基本掌握等差数列的通项公式,初步具备运用所学知识解决问题的能力,但数形结合的意识和思维的深刻性需要进一步加强培养,多数学生有积极的学习态度,能主动参与探究,少数学生的主动性,还需要通过营造一定的学习氛围带动。

3、教学重难点

根据以上对教材的地位与作用,以及学情的分析,结合本节内容的特点,我将本节课的重点确定为:等差数列前n项和公式的理解、推导与应用;

难点确定为:获得等差数列前n项和公式推导的思路及公式的简单应用。

二、教学目标分析

在教学中应以知识与技能为主线,渗透情感态度价值观,并把前两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

1.掌握等差数列求和公式,能较熟练应用等差数列前n项和公式; 2.经历公式的推导,体会数形结合的思想,体验从特殊到一般的研究方法,学会观察、归纳、反思;

3.通过合作交流、主动探究,体会数学的合理性和严谨性,使学生养成积极思考、独立思考的习惯,培养学生团队合作的精神。

三、教学方法分析

学生是学习的主体,教师是学习的组织者,教学的一切活动都必须围绕学生展开。根据这一教学理念,本节课我采用引导发现法、问题驱动教学法,以问题的提出及解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式分析和解决问题,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

在学法方面,主要采用联系学习法,探究式学习法,自主性学习,真正体现学生为主体的教学理念。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:(一)创设情境,提出问题

给出历史上有名的实例,提出问题,学生进行观察分析,进入思考状态。设计意图:以问题的形式创设情境,激发学生探究新知的欲望,为学习新内容做好准备。

(通过这一环节,学生已经产生强烈的求知欲望,此时将学生带入下一个环节。)

(二)探究讨论,发现问题(本节课的重点)

首先给出探索发现1,在教师的启发引导下,学生通过合作交流的方式,逐步明确解决问题的方法和思路。

设计意图:通过这一环节,让学生体会数形结合的数学思想,同时培养学生的探究及归纳能力。

接着给出探索发现2,由学生通过主动探究和合作交流的方式解决问题2,从而归纳整理出求和公式1。

设计意图:学生通过探索1的解决,已经积累了解决此类问题的经验,此时给出探索2,充分发掘学生的兴趣点,同时顺利解决问题。

最后给出探索发现3,此时提出问题3,学生结合前两个问题的解决方法,从而归纳出求和公式一和二。

设计意图:在本环节中采用问题驱动的教学方法,以循序渐进、层层深入的方式,运用特殊到一般的研究方法,降低了知识的梯度,从而突出重点。(通过前面的学习,学生已经基本把握了本节课所学习的内容,此时他们急于展示自我,体验成功,于是我把学生带入第三个阶段。)

(三)公式应用,加深理解

本环节主要是等差数列求和公式的应用,是本节课的难点。解决引入时候设置的问题,处理方法是引导学生从首项、末项及项数出发,使用公式

(一)求和;(2)引导学生从首项、项数及公差出发,使用公式

(二)求和。通过两种方法的比较,提示学生应根据信息选择合适的公式。

设计意图:反馈体验,解决引入时候设置的问题,使得学生体会到等差数列前n项和的实用性,突破本节课的难点。

(五)小结归纳,感知深化

为发挥学生的主体作用,从学习的知识、方法、体验三个方面进行归纳,我设计了三个问题。

设计意图:通过三个问题的处理,让学生从整体上把握课堂结构,从而优化认知结构,充分发挥学生的主体作用。

(六)布置作业,拓展升华

以作业的巩固性和发展性为出发点,设计了A和B两种题目,作业A是对本节课内容的一个反馈,作业B是对本节知识的一个延伸。总的设计意图是反馈教学,巩固提高。

板书设计:这样安排版面,使得本节课内容重难点突出,层次分明。

五、教学评价:

这节课的设计体现了以学生为主体,教师为指导的理念,以上几个环节环环相扣,层层深入,充分体现教师与学生的互动,在教师的整体调控下,学生通过动脑思考,对知识的理解逐步深入,使课堂学习效果最优化。

第二篇:等差数列的前n项和公式教案

2.3等差数列的前n项和公式(教案)

一.教学目标:

1.知识与技能目标

了解等差数列前n项和公式,理解等差数列前n项和公式的几何意义,并且能够灵活运用其求和。2.过程与方法目标

学生经历公式的推导过程,体验从特殊到一般的研究方法。

3.情感态度与价值观目标

学生获得发现的成就感,优化思维品质,提高代数的推导能力。

二.教学重难点:

1.重点:等差数列前n项和公式的推导,掌握及灵活运用。2.难点:诱导学生用“倒序相加法”求等差数列前n项和。

三.教法与学法分析:

1.教法分析:采用“诱导启发,自主探究式”学法为主,讲练结合为辅的教学方法。

2.学法分析:采用“自主探究式学习法”和“主动学习法”。

四.课时安排:

1个课时 五.教学过程

(一)导入

我们已经学过等差数列的定义an+1-an=d(n属于正整数),等差数列的通项公式an=a1+(n-1)d,等差数列的等差中项2an=an-1+an+1,还有:若m+n=p+q,则am+an=ap+aq.我们应该怎样求a1+a2+„+an,其中{an}为等差数列,记Sn=a1+a2+„+an

我们知道200多年前高斯的老师给他们出了一道题目,让他们计算1+2+就算出来了„+100=?当时10岁的高斯很快。高斯是怎样做出来的呢?他使用了什么简单高明的方法?

1+2+„+100=(1+100)+(2+99)+„+(50+51)=50*101,所以1+2+„+100=5050,这就是著名的高斯算法,到后来,人们就从高斯算法中得到启发,求出了等差数列1+2+„+n的前n项和的算法

(二)探究新知,发现规律

从高斯算法中,人们怎样求出首项为1,公差为1的等差数列1+2+3+„+n的和? 首先1+2+„+n(1)n+(n-1)+„+1(2)

2Sn=(n+1)+(n+1)+„+(n+1)(n个(n+1))所以 1+2+„+n=n*(n+1)/2 我们把上面的方法称为“倒序相加法”,也就是说高斯当时用的就是“倒序相加法”算出了1+2+„+100的和

然而这个方法可以推广到等差数列的前n项和 定义:一般地,我们把a1+a2+„+an叫做等差数列的前n项和,用Sn表示

即Sn=a1+a2+„+an

从高斯算法中得到的启示,对于一般的等差数列,其中a1是首项,d是公差,我们可以用两种方法来表示

Sn=a1+a2+„+an

=a1+(a1+d)+„++[ a1+(n-1)d](3)Sn=an+ an-1+„+a1

=an+(an-d)+„+[an-(n-1)d](4)两式相加得2Sn=(a1+an)+(a1+an)+„+(a1+an),有n个(a1+an)所以Sn=n(a1+an)/2(5)将an=a1+(n-1)d带入Sn=n(a1+an)/2中即可得到Sn=na1+n(n-1)d/2(6)(5)与(6)区别:第一个公式反映了等差数列的首项与末项之和跟第n项与倒数第n项之和是相等的;第二个公式反映了等差数列的首项与公差d之间的关系,而且是关于n的“二次函数”,可以与二次函数作比较。

联系:将an=a1+(n-1)d带入Sn=n(a1+an)/2中即可得到 Sn=na1+n(n-1)d/2

(三)知识应用,反思,提高强化知识

例1:已知等差数列{an}的通项公式an=2n+3,求Sn 解:因为an=2n+3

所以a1=5, 即Sn=n(a1+an)/2

=n^2+4n 例2:已知等差数列前10项的和是310,前20项的和是1220,求前n项和公式Sn 解:因为S10=10* a1+10*9*d/2=310

S20=20* a1+20*19*d/2=1220 所以Sn=n* a1+n(n-1)d/2

=4n+n(n-1)*6/2 =3n^2+n习题1:设Sn为等差数列{an}的前n项和,若S9=72,求a2+a4+ a9=?

解:因为S9=9a1+8*9*d/2=9a1+36d=9(a1+4d)=72

所以a1+4d=8

又因为a2+a4+a9=a1+d+a1+2d+a1+8d

=3a1+12d =3(a1+4d)=3*8 =24

(四)归纳总结

对Sn=n(a1+an)/2 与 Sn=na1+n(n-1)d/2两个公式的熟练运用:注:已知条件不同时,公式的选择要依据已知条件,有利于很快的解决问题。

(五)作业布置

P45,1,2

第三篇:等差数列前n项和公式教学案例分析

《等差数列前n项和公式》教学案例分析

教学案例:

一、教学设计思想

本堂课的设计是以个性化教学思想为指导进行设计的。

本堂课的教学设计对教材部分内容进行了有意识的选择和改组,为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展。

在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。

二、学生情况与教材分析

1、学生通过上一节的学习,已经了解了等差数列的定义,基本上掌握了通项公式,会运用等差数列的通项公式进行解题,因此只要简单地回顾上一节课的知识就可引入新课;

2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。

3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系。本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。

三、教学目标

1、知识目标

(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和。

2、能力目标

经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。

3、情感目标

通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学心理体验,产生热爱数学的情感,体验在学习中获得成功。

四、教学重点、难点

1、等差数列前n项和公式是重点。

2、获得等差数列前n项和公式推导的思路是难点。

五、教学流程图

六、教学过程

1、引入新课(1)复习

师:上一节课中,我们学习了等差数列的定义及通项公式,知道了“公差d=,通项公式an=”(见黑板)生:(回答黑板上的问题)

(2)故事引入

师:那等差数列的前n项和怎样求?今天,我们主要探讨等差数列的前n项和公式。说起数列求和,我由地想起德国伟大的数学家高斯“神述求和”的故事。高斯在上小学四年级时,老师出了这样一道题“1+2+3、、、、、+99+100”(见课件)高斯稍微想了想就得出了答案。高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。

生:5050 师:看来我们班还是有不少高斯的。继续努力,说不定将来也成了数学家。下面请这位同学说一说是怎样算出来的。

生:(说明如何进行首尾配对进行求和的。)

师:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法。不过,对于以下的题,“例:求等差数列8、5、2、、、、的前20项的和(见课件)”这种方法可就没那么方便了。因此我们非常迫切地需要推导出等差数列的前n项和公式。

2、探究等差数列前n项和公式一

师:下面我们从一个稍稍简单一点的等差数列来推导探讨等差数列的前n项和公式。(学生观察幻灯片上以等差数列逐层排列的一堆钢管。)

师:如何求?

生:利用刚才的方法.(略)师:想一想,除了刚才的首尾配对求和的方法外,还有没有其他的方法呢?

(课件演示:引导学生设想,如果将钢管倒置,能得到什么启示)

生:每一层都和上一层是一样多的。一共有8层,所以为8×(4+11),但一共有两堆,所以为

师:那如果如下图所示共有n层,第一层为a1,第n层为an,请大家来猜想一下这个呈等差数列排列的钢管的总和sn等于多少? 生:

师:这个猜想对不对呢?下面我们用所学过的知识一起来证明一下。

板书:把上式的次序反过来又可以写成

两式相加:

所以

看来,我们的猜想是正确的。下面我们做几道练习来熟悉一下公式。

3、学生合作学习,运用公式一解题,并从练习中探索得到求和公式二。学生练习一:

1、在等差数列{an}中,已知a1=1,a10=8,求s10

2、求正整数列是前1000个数的和; 学生小组合作练习,分组进行交流。

师:看来,大家对公式的掌握还是不错的。下面,我们再来看一道练习。

学生练习二:在等差数列{an}中,已知a1=1,d=-2,求s10;

学生思考,并讨论解答。

学生讲解如何进行求解这题。

师:刚才那道题给出了a1,d和n=10,a10没有给出,但我们一样可以将s10求出,那我们能不能直接由a1,d和n,得到an呢?

学生根据求和公式一和通项公式导出公式二:

学生练习三:求正整数中前500个偶数的和(用多种方法求解)学生讨论解答此题,并请学生上台讲解。

4、总结

师:今天,大家学得不错。下面我们再来回顾一下本堂课的内容。今天我们主要倒序相加的方法推导了等差数列前n项和公式一,并结合等差数列通项公式二推导出等差数列前n项和公式二,希望同学们在今后的解题要灵活运用这两个公式。

【教学反思】:

综观本节课,存在有特点主要有以下几点:

1、合理地对教材进行了个性化处理,挖掘了教材中可探究的因素,促使学生探究、推导。例如:等差数列前n项和的公式一,是通过具体的例子,引到一般的情况,激励学生进行猜想,再进行论证得出;而第二个公式并不象书本上那样直接给出,而是让学生从习题中进行归纳总结得到的。这样处理教材,使学生的思维得到了很大的锻炼。

2、本节课主要采用观察法、归纳法等教学方法,同时采用设计变式题的教学手段进行教学,通过具体问题的引入,使学生体会数学源于生活,创设情境,重在启发引导,使学生由浅到深,由易到难分层次对本节课内容进行掌握。学生在学习的过程中体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。

第四篇:说课—《等差数列前n项和的公式》

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

说课—《等差数列前n项和的公式》

自己收藏的 觉得很有用 故上传到百度 与大家一起分享!

说课-《等差数列前n项和的公式》 教学目标

A、知识目标:

掌握等差数列前n项和公式的推导方法;掌握公式的运用

B、能力目标:

(1)通过公式的探索、发现

在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力

(2)利用以退求进的思维策略 遵循从特殊到一般的认知规律

让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式

培养学生类比思维能力

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(3)通过对公式从不同角度、不同侧面的剖析 培养学生思维的灵活性

提高学生分析问题和解决问题的能力

C、情感目标:(数学文化价值)

(1)公式的发现反映了普遍性寓于特殊性之中 从而使学生受到辩证唯物主义思想的熏陶

(2)通过公式的运用 树立学生“大众教学”的思想意识

(3)通过生动具体的现实问题 令人着迷的数学史 激发学生探究的兴趣和欲望 树立学生求真的勇气和自信心 增强学生学好数学的心理体验 产生热爱数学的情感

教学重点:等差数列前n项和的公式

教学难点:等差数列前n项和的公式的灵活运用

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

教学方法:启发、讨论、引导式

教具:现代教育多媒体技术

教学过程

一、创设情景 导入新课

师:上几节

我们已经掌握了等差数列的概念、通项公式及其有关性质 今天要进一步研究等差数列的前n项和公式 提起数列求和

我们自然会想到德国伟大的数学家高斯“神速求和”的故事 小高斯上小学四年级时

一次教师布置了一道数学习题:“把从1到100的自然数加起来 和是多少?”年仅10岁的小高斯略一思索就得到答案5050 这使教师非常吃惊

那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算

那你们就是二十世纪末的新高斯(教师观察学生的表情反映 然后将此问题缩小十倍)

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

我们来看这样一道一例题

例1 计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外

还有没有其他有趣的解法呢?小组讨论后 让学生自行发言解答

生1:因为1+10=2+9=3+8=4+7=5+6 所以可凑成5个11 得到55

生2:可设S=1+2+3+4+5+6+7+8+9+10 根据加法交换律

又可写成S=10+9+8+7+6+5+4+3+2+1

上面两式相加得2S=11+10+......+11=10×11=110

10个

所以我们得到S=55

即1+2+3+4+5+6+7+8+9+10=55

师:高斯神速计算出1到100所有自然数的各的方法

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

和上述两位同学的方法相类似

理由是:1+100=2+99=3+98=......=50+51=101 有50个101 所以1+2+3+......+100=50×101=5050 请同学们想一下

上面的方法用到等差数列的哪一个性质呢?

生3:数列{an}是等差数列 若m+n=p+q 则am+an=ap+aq.二、教授新课(尝试推导)

师:如果已知等差数列的首项a1 项数为n 第n项an 根据等差数列的性质

如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导 并请一位学生板演

生4:Sn=a1+a2+......an-1+an也可写成 Sn=an+an-1+......a2+a1

两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

n个

=n(a1+an)

所以Sn=(I)

师:好!如果已知等差数列的首项为a1 公差为d 项数为n 则an=a1+(n-1)d代入公式(1)得 Sn=na1+ d(II)

上面(I)、(II)两个式子称为等差数列的前n项和公式 公式(I)是基本的 我们可以发现

它可与梯形面积公式(上底+下底)×高÷2相类比 这里的上底是等差数列的首项a1 下底是第n项an 高是项数n 引导学生总结:这些公式中出现了几个量?(a1 d n an Sn)

它们由哪几个关系联系?[an=a1+(n-1)d Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

要知道其中任意三个就可以求另外两个了 下面我们举例说明公式(I)和(II)的一些应用

三、公式的应用(通过实例演练 形成技能)

1、直接代公式(让学生迅速熟悉公式 即用基本量观点认识公式)例

2、计算:

(1)1+2+3+......+n

(2)1+3+5+......+(2n-1)

(3)2+4+6+......+2n

(4)1-2+3-4+5-6+......+(2n-1)-2n

请同学们先完成(1)-(3)并请一位同学回答

生5:直接利用等差数列求和公式(I)得

(1)1+2+3+......+n=

(2)1+3+5+......+(2n-1)=

(3)2+4+6+......+2n==n(n+1)

师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

那应如何解答?小组讨论后 让学生发言解答

生6:(4)中的数列共有2n项 不是等差数列 但把正项和负项分开 可看成两个等差数列 所以

原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

=n2-n(n+1)=-n

生7:上题虽然不是等差数列 但有一个规律 两项结合都为-1 故可得另一解法:

原式=-1-1-......-1=-n

n个

师:很好!在解题时我们应仔细观察 寻找规律

往往会寻找到好的方法 注意在运用Sn公式时 要看清等差数列的项数 否则会引起错解

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

3、(1)数列{an}是公差d=-2的等差数列 如果a1+a2+a3=12 a8+a9+a10=75 求a1 d S10

生8:(1)由a1+a2+a3=12得3a1+3d=12 即a1+d=4

又∵d=-2 ∴a1=6

∴S12=12 a1+66×(-2)=-60

生9:(2)由a1+a2+a3=12 a1+d=4

a8+a9+a10=75 a1+8d=25

解得a1=1 d=3 ∴S10=10a1+=145

师:通过上面例题我们掌握了等差数列前n项和的公式 在Sn公式有5个变量 已知三个变量

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

可利用构造方程或方程组求另外两个变量(知三求二)请同学们根据例3自己编题 作为本节的课外练习题 以便下节课交流

师:(继续引导学生 将第(2)小题改编)

①数列{an}等差数列 若a1+a2+a3=12 a8+a9+a10=75 且Sn=145 求a1 d n

②若此题不求a1 d而只求S10时 是否一定非来求得a1 d不可呢?引导学生运用等差数列性质 用整体思想考虑求a1+a10的值

2、用整体观点认识Sn公式

精心收集

精心编辑

精致阅读 如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

例4 在等差数列{an}(1)已知a2+a5+a12+a15=36 求S16;(2)已知a6=20 求S11(教师启发学生解)

师:来看第(1)小题

写出的计算公式S16==8(a1+a6)与已知相比较 你发现了什么?

生10:根据等差数列的性质 有a1+a16=a2+a15=a5+a12=18 所以S16=8×18=144

师:对!(简单小结)这个题目根据已知等式是不能直接求出a1 a16和d的

但由等差数列的性质可求a1与an的和 于是这个问题就得到解决 这是整体思想在解数学问题的体现

师:由于时间关系

我们对等差数列前n项和公式Sn的运用一一剖析 引导学生观察当d≠0时

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

Sn是n的二次函数

那么从二次(或一次)的函数的观点如何来认识Sn公式后 这留给同学们课外继续思考

最后请大家课外思考Sn公式(1)的逆命题:

已知数列{an}的前n项和为Sn 若对于所有自然数n 都有Sn= 数列{an}是否为等差数列 并说明理由

四、小结与作业

师:接下来请同学们一起来小结本节课所讲的内容

生11:

1、用倒序相加法推导等差数列前n项和公式

2、用所推导的两个公式解决有关例题 熟悉对Sn公式的运用

生12:

1、运用Sn公式要注意此等差数列的项数n的值

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

2、具体用Sn公式时

要根据已知灵活选择公式(I)或(II)掌握知三求二的解题通法

3、当已知条件不足以求此项a1和公差d时 要认真观察

灵活应用等差数列的有关性质 看能否用整体思想的方法求a1+an的值

师:通过以上几例 说明在解题中灵活应用所学性质

要纠正那种不明理由盲目套用公式的学习方法 同时希望大家在学习中做一个有心人 去发现更多的性质 主动积极地去学习

本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等

数学思想:类比思想、整体思想、方程思想、函数思想等

精心收集

精心编辑

精致阅读

如需请下载!

第五篇:2.3《等差数列的前n项和》说课稿

2.3《等差数列的前n项和》

各位评委 :大家好!我是----号。今天我说课的题目是《等差数列的前n项和》本节内容选自人教版普通高中课程标准实验教科书必修5第2章第3解第1课时,下面我将从教材分析、教法与学法分析、教学过程分析等几个方面进行我的说课

一、教材分析

(一)教材的地位和作用

在此之前,学生已经学习了等差数列的定义、通项公式,这为过渡到本节的学习起着铺垫作用。本节内容是学生学过的等差数列”的延续和拓展。通过本节课的学习有利于深化对等差数列本质的理解,又是后继研究数列的基础。倒序相加法为数列求和提供了一种新的方法。等差数列的和与二次函数有密切的关系。此外等差数列的前n项和在生活中也有广泛的应用(如计算堆放物品的总数、剧场座位总数的计算、分期存款一次取出的储蓄利息的计算),这将有益于培养学生将实际问题数学化和将数学问题生活化的能力,有助于激发学生学习数学的热情.

二、学情分析学生已经学习了

等差数列的定义、通项公式、性质

对高斯算法有所了解。这为倒序相加法的教学提供了基础,同时学生已经有了函数知识,因此在教学中渗透函数思想。高斯算法与一般的等差数列求和还有一定的距离,如何从首位配对引出倒序相加法,这是学生学习的障碍。

三:教学目标分析:新课标指出学生是教学的主体,因此目标的制定和设计必须从学生的角度出发,基于以上对教材的认识。结合课程目标要求,以及数学课程标中的基本理念,考虑到学生已有的认知结构与心里特征,结合我校学生的实际情况。制定如下的教学目标,一、知识与技能

掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.

二、过程与方法

通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

三、情感态度与价值观

通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。四重难点的确定:

重点:等差数列前n项和公式,公式的熟练运用。

难点:倒序相加求和法的思路获得,等差数列前n项和公式推导过程。

第二教法与学法分析

为突出重点,突破难点,使学生达到本节课所设定的教学目标,我再从教法,学法上谈谈设计思路。教法分析: 新教材“改变课程实施过于强调接受学习,死记硬背,机械训练的现状,倡导学生自主参与、乐于探究,勤于动手,培养学生搜集和处理信的能力,获取新知识的能力。分析和解决问题的能力以及交流与合作的能力”。为了突出这一教学思想,基于本节课的内容特点和__学生的年龄特征,我主要采取,探究式教学法为主。练习法为辅的教学方法

学法:结合具体的内容。我采用问题情境-----建立模型----解释应用----拓展的模式,鼓励学生自主探究与合作交流,让学生经历概念(定理)的形成与应用的过程,从而形成对数学知识的理解和有效的学习策略,总之,在教学我贯彻的指导思想是把学习的主动权交给学生,让学生做学习的主人。教学手段教学中使用多媒体来辅助教学,充分发挥快捷、生动、形象的特点,为学生提供直观感性的材料,有助于适当增加课堂容量,提高课堂效率。同时与黑板板书相结合. 第三.最后我再说说教学过程。在分析教材,确定教学目标。合理选择教法与学法的基础上,我预设的教学过程是: 4.1 创设情景,引入新课

印度泰姬陵(Taj Mahal)是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征.陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有多少颗宝石吗?()1+2+3+„+100=?(学生思考),介绍高斯故事及其算法。设计意图:这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段

4.2 合作探究,发现新知问题⑴:高斯的算法妙处在哪里?(学生思考、讨论)

设计意图:学生对高斯的算法处于简单的记忆和模仿阶段并没有真正的理解其本质含义,让学生从计算的形式和数列的性质两个方面分析,同时为下面问题做准备。

问题⑵:由高斯算法的启示计算下面的式子,“1+2+3+„+99”,能用高斯同样的方式解决吗?

设计意图:通过这个简单的变式让学生利用 “化归”的数学思想,将“奇数项”化为“偶数项”,从而充分利用高斯算法的妙处。逐步为学生领会“倒序相加求和法“搭梯子。问题⑶:还有其他更有趣的方法吗?

{(1+2+3+„+99)+(99+98+97+„+1)}÷2=100×99÷2=4950 设计意图:通过老师适当引导(筷子问题),感受数学解题方法的多样性,在此基础上得出—“倒序相加求和法”

问题⑷:由上面的算法启示你能计算1+2+„+n-1+n„的前n项和吗? 设计意图:让学生理解倒序相加求合法并体验由特殊到一般的数学思想方法,为后面的公式推导做铺垫,同时给出前n项和的定义。问题⑸:利用上面我们得出的方法你能推导出以公差为d的等差数列前n项和吗?(老师适当引导)设计意图:利用倒序相加求和法的数学思想推导公式,并掌握公式的推导过程,提高学生的代数推理能力。4.2.2 认识公式

公式还有其他形式吗?公式从什么角度反映了等差数列的性质?(与梯形面积公式联系,PPT展示)

设计意图:充分挖掘公式的内含,将等差数列前n项和的公式同梯形面积结合起来体现数型结合的思想,并帮助学会记忆公式。4.3 变式练习巩固新知

1、根据下列条件,求等差数列{an}的Sn。(1)a1=-4,a8=-18,n=8(考察对公式①的运用)(2)a1=14.5,d=0.7,an=32(考察对公式②的运用)

2、已知数列{an}的前n项和为Sn=n2+n,求数列的通项公式(考察an= Sn-Sn-1)

3、在等差数列{an}中(综合考察对公式的运用)

(1)已知:a2+a5+a12+a15=36 求s16(2)已知a6=20求s11 设计意图:强化对公式的熟练运用,提高解题能力,体验知识点之间的联系。

4.4 归纳小结设计意图:让同学整体感悟本节课的内容,形成知识体系。

下载等差数列前n项和公式说课稿word格式文档
下载等差数列前n项和公式说课稿.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差数列前n项和教案

    等差数列前n项和教案 一、教材分析 1、教材内容:等差数列前n项求和过程以及等差数列前n项和公式。 2.教材所处的地位和作用:本节课的教学内容是等差数列前n项和,与前面学过 的......

    yuanhong 《等差数列的前n项和公式》教学设计

    《等差数列的前n项和》教学设计 教材分析: 《等差数列的前n项和》是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义 、通项公式后,对等差数列知识的进一步学习......

    课时30 等差数列及其前n项和

    提升训练30等差数列及其前n项和 一、选择题 1.等差数列{an}的前n项和为Sn,且S7=7,则a2+a6=. 7911A.2B.C.D. 224 2.等差数列{an}的前n项和为Sn(n=1,2,3,„),若当首项a1和公差d变化时,a5+a......

    等比数列等差数列前n项和习题。(精选)

    一. 选择题 1. 若等比数列an的前n项和Sn3na则a等于 A. 3B. 1C. 0D. 1 2. 等比数列an的首项为1,公比为q,前n项和为S,则数列 A. 1S 1 的前n项之和为na B. SC. Sq n1 D. 1q n1 S3.......

    等差数列的前n项和(推荐五篇)

    1 努力奋斗 等差数列前n项和 一.选择题: 1.已知等差数列{an}中,a1=1,d=1,则该数列前9项和S9等于 A.55B.45C.35D.25 2.已知等差数列{an}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为 A.180B.-18......

    2等差数列及其前n项和(推荐阅读)

    二、 等差数列及其前n项和答案:第23项与第24项:1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通......

    等差数列前n项和教学设计(本站推荐)

    本节内容选自人教版《普通高中课程标准实验教科书·数学·必修5》的〈第二章§2.3 等差数列的前n项和 〉的第一课时:等差数列的前n项和公式的推导及简单应用。它是在学生已经......

    等差数列的前n项和教案(范文大全)

    等差数列的前n项和 (一)教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问......