第一篇:八年级上册数学复习知识点总结:有理数和无理数
八年级上册数学复习知识点总结:有理数和
无理数
无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο??,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
以上就是为大家整理的八年级上册数学复习知识点总结:有理数和无理数,大家还满意吗?希望对大家有所帮助!
第二篇:人教版八年级上册数学复习知识点总结(全)
全等三角形的对应边、对应角相等
2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)推论1 等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合推论3 等边三角形的各角都相等,并且每一个角都等于60°等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1 三个角都相等的三角形是等边三角形推论 2 有一个角等于60°的等腰三角形是等边三角形在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定理 线段垂直平分线上的点和这条线段两个端点的距离相等逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1 关于某条直线对称的两个图形是全等形
定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
38定理 四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理 n边形的内角的和等于(n-2)×180°
41推论 任意多边的外角和等于360°
42平行四边形性质定理1平行四边形的对角相等
43平行四边形性质定理2平行四边形的对边相等
44推论 夹在两条平行线间的平行线段相等
45平行四边形性质定理3平行四边形的对角线互相平分
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
50矩形性质定理1 矩形的四个角都是直角
51矩形性质定理2 矩形的对角线相等
52矩形判定定理1 有三个角是直角的四边形是矩形
53矩形判定定理2 对角线相等的平行四边形是矩形
54菱形性质定理1 菱形的四条边都相等
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1 四边都相等的四边形是菱形
58菱形判定定理2 对角线互相垂直的平行四边形是菱形
59正方形性质定理1 正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
73(1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
74(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
75(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
判定定理3 三边对应成比例,两三角形相似(SSS)
定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
性质定理2 相似三角形周长的比等于相似比
性质定理3 相似三角形面积的比等于相似比的平方
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等
95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
97到已知角的两边距离相等的点的轨迹,是这个角的平分线
98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
99定理 不在同一直线上的三点确定一个圆。
100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
102推论2 圆的两条平行弦所夹的弧相等
103圆是以圆心为对称中心的中心对称图形
104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
106定理 一条弧所对的圆周角等于它所对的圆心角的一半
107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
111①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
113切线的性质定理 圆的切线垂直于经过切点的半径
114推论1 经过圆心且垂直于切线的直线必经过切点
115推论2 经过切点且垂直于切线的直线必经过圆心
116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
117圆的外切四边形的两组对边的和相等
118弦切角定理 弦切角等于它所夹的弧对的圆周角
119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
124如果两个圆相切,那么切点一定在连心线上
125①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r)⑤两圆内含d<R-r(R>r)
126定理 相交两圆的连心线垂直平分两圆的公共弦
127定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
129正n边形的每个内角都等于(n-2)×180°/n
130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
131正n边形的面积Sn=pnrn/2 p表示正n边形的周长
132正三角形面积√3a/4 a表示边长
133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
134弧长计算公式:L=n兀R/180
135扇形面积公式:S扇形=n兀R^2/360=LR/2
136内公切线长= d-(R-r)外公切线长= d-(R+r)
例题:
1、一次函数:若两个变量x,y存在关系为y=kx+b(k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(-,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:
(2)增减性:
k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例
1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
解:∵ y=2y1 y1=3x+2,∴ y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例
2、解答下列题目
(1)(甘肃省中考题)已知直线 与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)
(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
(A)(B)(C)(D)
(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是()。
(A)第一象限(B)第二象限(C)第三象限(D)第四象
限
分析与答案:
(1)直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2)求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。答案D: y=-2x。
(3)由一次函数y=kx+b的图象性质,有以下结论:,题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。
答案:D。
例
3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?
分析:因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图像可以知道x>1500时,y2在y1上方;0 答:(1)每月行驶的路程小于1500千米时,租国营公司的车合算。 [或答:当0≤x<1500(千米)时,租国营公司的车合算]。 (2)每月行驶的路程等于1500千米时,租两家车的费用相同。 (3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。 例 4、(河北省中考题)某工厂有甲、乙两条生产线先后投产。在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。 (1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同; (2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高? 分析:(1)根据给出的条件先列出y与x的函数式,=20x+200,=30x,当 = 时,求出x。 (2)在给出的直角坐标系中画出两个函数的图象,根据点的坐标可以看出第15天和25天结束时,甲、乙两条生产线的总产量的高低。 解:(1)由题意可得: 甲生产线生产时对应的函数关系式是:y=20x+200,乙生产线生产时对应的函数关系式是:y=30x,令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。 (2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和 B(20,600); 乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。 因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。 例5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。 分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例如y=2x,y=2x+3的图象平行。 解:∵ y=kx+b与y=5-4x平行,∴ k=-4,∵ y=kx+b与y=-3(x-6)=-3x+18相交于y轴,∴ b=18,∴ y=-4x+18。 说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。 例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。 解:∵ 点B到x轴的距离为2,∴ 点B的坐标为(0,±2),设直线的解析式为y=kx±2, ∵ 直线过点A(-4,0),∴ 0=-4k±2, 解得:k=± ,∴直线AB的解析式为y= x+2或y=-x-2。 说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。 (1)图象是直线的函数是一次函数; (2)直线与y轴交于B点,则点B(0,yB); (3)点B到x轴距离为2,则|yB|=2; (4)点B的纵坐标等于直线解析式的常数项,即b=yB; (5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB; 下面只需待定k即可。 三、提高与思考 例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3-)xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得n=-1,∴ y1=-3x-1,y2=(3-)x, y2是正比例函数; y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小; y2=(3-)x的图象经过第一、三象限,y2随x的增大而增大。 说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就 是图象与y轴交点纵坐标”来构造方程。 例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。 分析:自画草图如下: 解:设正比例函数y=kx,一次函数y=ax+b,∵ 点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵ =6,∴ AO•|yB|=6,∴ yB=-2,把点B(-2,-2)代入正比例函数y=kx,得k=1,把点A(-6,0)、B(-2,-2)代入y=ax+b,得 解得: ∴ y=x, y=-x-3即所求。 说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示; (2)此例需要把条件(面积)转化为点B的坐标。这个转化实 质含有两步:一是利用面积公式 AO• BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B在第三象限计算出yB=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y=(x+3)。(有答案,自己去看吧)全等三角形的对应边、对应角相等 2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)推论1 等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合推论3 等边三角形的各角都相等,并且每一个角都等于60°等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1 三个角都相等的三角形是等边三角形推论 2 有一个角等于60°的等腰三角形是等边三角形在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定理 线段垂直平分线上的点和这条线段两个端点的距离相等逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形 38定理 四边形的内角和等于360° 39四边形的外角和等于360° 40多边形内角和定理 n边形的内角的和等于(n-2)×180° 41推论 任意多边的外角和等于360° 42平行四边形性质定理1平行四边形的对角相等 43平行四边形性质定理2平行四边形的对边相等 44推论 夹在两条平行线间的平行线段相等 45平行四边形性质定理3平行四边形的对角线互相平分 46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 50矩形性质定理1 矩形的四个角都是直角 51矩形性质定理2 矩形的对角线相等 52矩形判定定理1 有三个角是直角的四边形是矩形 53矩形判定定理2 对角线相等的平行四边形是矩形 54菱形性质定理1 菱形的四条边都相等 55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 56菱形面积=对角线乘积的一半,即S=(a×b)÷2 57菱形判定定理1 四边都相等的四边形是菱形 58菱形判定定理2 对角线互相垂直的平行四边形是菱形 59正方形性质定理1 正方形的四个角都是直角,四条边都相等 60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 65等腰梯形的两条对角线相等 66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 67对角线相等的梯形是等腰梯形 68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 2018年人教版初一上册数学知识点总结:有理 数 人教版七年级数学上册期末总复习 第一章有理数 1.有理数: (1)凡能写成 形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; (2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数 0和正整数;a0 a是正数;a0 a是负数; a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 a+b=0 a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值: (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为: 或;(3);; (4)|a|是重要的非负数,即|a|≥0; 5.有理数比大小: (1)正数永远比0大,负数永远比0小; (2)正数大于一切负数; (3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数;若ab=1 a、b互为倒数;互为负倒数.等于本身的数汇总: 相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0 ab=-1 a、b若平方等于本身的数:0,1 立方等于本身的数:0,1,-1.7.有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.8.有理数加法的运算律: (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac.(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义:(1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0; (4)据规律 底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。 18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。 第二章 整式的加减 1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。 2.单项式的系数与次数:单项式中的数字因数,称单项式的系数; 单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5..6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则: 系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).第三章 一元一次方程 1.等式:用“=”号连接而成的式子叫等式.2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质 去 分母----------同乘(不漏乘)最简公分母 去 括号----------注意符号变化 移 项----------变号(留下靠前) 合并同类项--------合并后符号 系数化为1---------除前面 10.列一元一次方程解应用题: (1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式: (1)行程问题: 距离=速度 时间; (2)工程问题: 工作量=工效 工时; 工程问题常用等量关系: 先做的+后做的=完成量 (3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (4)商品利润问题: 售价=定价,;利润问题常用等量关系: 售价-进价=利润 (5)配套问题: (6)分配问题 第四章 图形初步认识 (一)多姿多彩的图形 立体图形:棱柱、棱锥、圆柱、圆锥、球等 1、几何图形 平面图形:三角形、四边形、圆等..主(正)视图---------从正面看 2、几何体的三视图 侧(左、右)视图-----从左(右)边看 俯视图---------------从上面看 (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段 1、基本概念 图形 直线 射线 线段 端点个数 无 一个 两个 表示法 直线a 直线AB(BA)射线AB 线段a 线段AB(BA) 作法叙述 作直线AB; 作直线a 作射线AB 作线段a; 作线段AB; 连接AB 延长叙述 不能延长 反向延长射线AB 延长线段AB; 反向延长线段BA 2、直线的性质 经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的大小比较方法 (1)度量法 (2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点.图形: A M B 符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质 两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离 连接两点的线段长度叫做两点的距离.8、点与直线的位置关系 (1)点在直线上(2)点在直线外.(三)角 1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种): 3、角的度量单位及换算 4、角的分类 ∠β 锐角 直角 钝角平角 范围 0∠β90° ∠β=90° 90°∠β180° ∠β=180° ∠β=360° 5、角的比较方法 (1)度量法 周角 (2)叠合法 6、角的和、差、倍、分及其近似值 7、画一个角等于已知角 (1)借助三角尺能画出15°的倍数的角,在能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线 0~180°之间共 定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号: 9、互余、互补 (1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角 (1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向 更多中考信息》》》 有理数基础知识 正数和负数 ⒈正数和负数的概念 负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2.具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3.0表示的意义 ⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。如: 有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。 注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。 2.有理数的分类 ⑴按有理数的意义分类 ⑵按正、负来分 正整数 正整数 整数 0 正有理数 负整数 正分数 有理数 有理数 0 (0不能忽视) 正分数 负整数 分数 负有理数 负分数 负分数 总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数 数轴 ⒈数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。 2.数轴上的点与有理数的关系 ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数) 3.利用数轴表示两数大小 ⑴在数轴上数的大小比较,右边的数总比左边的数大; ⑵正数都大于0,负数都小于0,正数大于负数; ⑶两个负数比较,距离原点远的数比距离原点近的数小。 4.数轴上特殊的最大(小)数 ⑴最小的自然数是0,无最大的自然数; ⑵最小的正整数是1,无最大的正整数; ⑶最大的负整数是-1,无最小的负整数 5.a可以表示什么数 ⑴a>0表示a是正数;反之,a是正数,则a>0; ⑵a<0表示a是负数;反之,a是负数,则a<0 ⑶a=0表示a是0;反之,a是0,,则a=0 6.数轴上点的移动规律 根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。 相反数 ⒈相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负; ⑶0的相反数是它本身;相反数为本身的数是0。 2.相反数的性质与判定 ⑴任何数都有相反数,且只有一个; ⑵0的相反数是0; ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 3.相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。 说明:在数轴上,表示互为相反数的两个点关于原点对称。 4.相反数的求法 ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5); ⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b); ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5) 5.相反数的表示方法 ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。 当a>0时,-a<0(正数的相反数是负数) 当a<0时,-a>0(负数的相反数是正数) 当a=0时,-a=0,(0的相反数是0) 6.多重符号的化简 多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。 绝对值 ⒈绝对值的几何定义 一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。 2.绝对值的代数定义 ⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0的绝对值是0.可用字母表示为: ①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。 可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。) ②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。) 3.绝对值的性质 任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0; ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0; ⑶任何数的绝对值都不小于原数。即:|a|≥a; ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a; ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|; ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b; ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。 (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0) 4.有理数大小的比较 ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小; ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。 5.绝对值的化简 ①当a≥0时,|a|=a; ②当a≤0时,|a|=-a 6.已知一个数的绝对值,求这个数 一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。 有理数的加减法 1.有理数的加法法则 ⑴同号两数相加,取相同的符号,并把绝对值相加; ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; ⑶互为相反数的两数相加,和为零; ⑷一个数与零相加,仍得这个数。 2.有理数加法的运算律 ⑴加法交换律:a+b=b+a ⑵加法结合律:(a+b)+c=a+(b+c) 在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: ①互为相反数的两个数先相加——“相反数结合法”; ②符号相同的两个数先相加——“同号结合法”; ③分母相同的数先相加——“同分母结合法”; ④几个数相加得到整数,先相加——“凑整法”; ⑤整数与整数、小数与小数相加——“同形结合法”。 3.加法性质 一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即: ⑴当b>0时,a+b>a ⑵当b<0时,a+b ⑶当b=0时,a+b=a 4.有理数减法法则 减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。 5.有理数加减法统一成加法的意义 在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如: (-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和” ②按运算意义读作“负8减7减6加5” 6.有理数加减混合运算中运用结合律时的一些技巧: Ⅰ.把符号相同的加数相结合(同号结合法) (-33)-(-18)+(-15)-(+1)+(+23) 原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法) =-33+18-15-1+23 (省略加号和括号) =(-33-15-1)+(18+23) (把符号相同的加数相结合) =-49+41 (运用加法法则一进行运算) =-8 (运用加法法则二进行运算) Ⅱ.把和为整数的加数相结合(凑整法) (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8) 原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法) =6.6-5.2+3.8-2.6-4.8 (省略加号和括号) =(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合) =4-10+3.8 (运用加法法则进行运算) =7.8-10 (把符号相同的加数相结合,并进行运算) =-2.2 (得出结论) Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法) --+-+- 原式=(--)+(-+)+(+-) =-1+0- =-1 Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合) (+0.125)-(-3)+(-3)-(-10)-(+1.25) 原式=(+)+(+3)+(-3)+(+10)+(-1) =+3-3+10-1 =(3-1)+(-3)+10 =2-3+10 =-3+13 =10 Ⅴ.把带分数拆分后再结合(先拆分后结合) -3+10-12+4 原式=(-3+10-12+4)+(-+)+(-) =-1++ =-1++ Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69 原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69) =0 Ⅶ.先拆项后结合(1+3+5+7…+99)-(2+4+6+8…+100) 有理数的乘除法 1.有理数的乘法法则 法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三) 法则二:任何数同0相乘,都得0; 法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数 乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。 注意:①0没有倒数; ②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置; ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质); ④倒数等于它本身的数是1或-1,不包括0。 3.有理数的乘法运算律 ⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba ⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac 4.有理数的除法法则 (1)除以一个不等0的数,等于乘以这个数的倒数。 (2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0 5.有理数的乘除混合运算 (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。 (2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。 有理数的乘方 1.乘方的概念 求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在中,a 叫做底数,n 叫做指数。 2.乘方的性质 (1)负数的奇次幂是负数,负数的偶次幂的正数。 (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。 有理数的混合运算 做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。 科学记数法 把一个大于10的数表示成的形式(其中,n是正整数),这种记数法是科学记数法。 七年级上册·有理数知识点小总结 §1.1具有相反意义的量 (一)知识点一:正数和负数的概念 【归纳总结】叫做正数,正数前面加上负号“—”的数叫做﹒ 如–2012读作;+2012读作﹒ 知识点二:0的意义 【归纳总结】0既不是,也不是﹒ 知识点三:正数和负数的大小 【归纳总结】1.正数____ 0,负数 ____ 0,正数 _____ 负数.2.和 统称为非负数.§1.1具有相反意义的量 (二)知识点一:有理数的概念 学一学:阅读教材P4 的内容,并解决下面的问题: 1.正整数,除教材给出的外,请你再写出三个.2.负整数,除教材给出的外,请你再写出三个.3.正分数,除教材给出的外,请你再写出三个.4.负分数,除教材给出的外,请你再写出三个.【归纳总结】1.统称为整数; 2.统称为分数; 3.统称为有理数.知识点二:有理数的分类 【归纳总结】有理数可以按下列两种方法分类: 1.按数的结构(整数﹑分数)分; 2.按数的性质(正﹑负性)分 正整数正整数正有理数整数—————有理数——有理数 __正分数负整数__数________—————§1.2.1数轴 知识点一:数轴的概念及画法 【归纳总结】规定了﹑和的直线叫做数轴. 知识点二:数轴上的点与有理数的关系 学一学:阅读教材P8例题解答下列问题: 1.在数轴上,表示—2的数在原点的侧,它到原点的距离是个单位长度. 【总结】一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示-a的点在原点的边,与原点的距离是个单位长度. §1.2.2相反数 知识点一:相反数的概念 【归纳总结】只有不同的两个数叫做互为相反数.一般地,a和互为 相反数,特别地,0的相反数是.知识点二:相反数的意义和求法 在这个数的前面添上“-”,就可表示这个数的相反数。如12的相反数 是____,-9的相反数是_____,如果在这个数的前面添上“+”表示____.知识点三:利用相反数进行多重符号的化简 学一学:阅读教材P10“说一说”和例题4的内容 提示: +(—7)不能记为+(-7)也不能记为--7.§1.2.3绝对值 知识点一:绝对值的概念 【归纳总结】:1.一般地,数轴上表示数a的点与原点的距离叫做a的.例如:—2的绝对值等于.记做.2.一个数的绝对值等于数轴上表示这个数的点与的距离 知识点二:绝对值的求法 学一学:阅读教材P12的内容.1.分别写出下列各数的绝对值︱5︱=_____,︱-2︱=_____,︱︱0︱=_____,︱-7.8︱=_____.4︱=_____,9§1.3有理数大小的比较 学习目标 1.会借助数轴比较两个有理数的大小;2.能熟练运用法则结合数轴比较有理数的大小;3.初步渗透分类讨论和数形结合的思想.教学重点:会比较两个有理数的大小 任务: 1、预习课本24至26页(一个字一个字的看,至少两遍。挡住答案做书上的例题) 2、做学法大视野 第12页至第16页 3、写一篇周记(300字以上)根据这个星期的数学学习情况;比如:有没有按时写导学案、上课有没有参与讨论,学习上有什么问题、有什么学习方法、你会如何解决现有的问题等等。第三篇:2018年人教版初一上册数学知识点总结:有理数
第四篇:有理数知识点总结
第五篇:有理数知识点总结