第一篇:一次函数图像教学反思
一次函数图像教学反思
一次函数图像>教学反思
(一)教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用 “ 两点确定一条直线 ”,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。
根据学生状况,教学设计也应做出相应的调整.如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。
由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识。在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如 “ 随着 x 值的增大,y 的值分别如何化? ”,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。
一次函数图像教学反思
(二)一堂好的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。
适当地提出好问题,不仅可以引导学生的思考和探索活动,使他们经历观察实验、猜测发现、推理论证、交流反思等理性思维的基本过程,而且还给了学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。而“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。
探索一次函数的性质时,给出几个关联问题,问题1:既然一次函数 y=kx+b(k不为零)的图象是一条直线,那么作图时,至少要取几个点就可以了?取哪一些点比较简单,有代表性?
问题2:在前面的直角坐标系中作一次函数 y=2x-1,y=2x,y=-1/2x的图象,并观察四条直线的位置关系。
问题3:正比例函数 y=kx(k不为零)是一次函数吗?作图时需要几个点?每一个正比例函数一定能通过哪一个点?
设置的问题由浅入深,使得学生能进行理性的思考,并提升他们思维的深度。
学生是学习的主人。新课标强调,让学生在自主探索与合作交流中学会学习,提高数学素养。本节课充分体现了这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。
教师是课堂的主导。教师是学生数学学习的组织者、引导者和合作者。然而,组织、引导本身就强调了教师必须是一个特殊的“合作者”,而不是撒手不管的“非主导者”。教师的主导作用不是体现在“主宰”课堂,而应体现在为学生提供鲜活的学习素材,体现在对学习团体的严密组织,体现在对交流活动的精心策划,体现在处理反馈信息的及时有效。这不仅需要教师透彻领会教材实质,更需要教师准确把握学生个性。试想本节课,如果教师不是真正了解学生,就不能组成协调高效的学习小组,也不能在有限的时间内完成教学任务。
一次函数图像教学反思
(三)一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。
先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。
练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!
反思:
1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。
2、本节课讲到第三个性质。
3、练习题要精而且少,难易适中。
4、注意课前准备,上课注意语言。
第二篇:一次函数图像性质教学反思
《一次函数的图象和性质》教学反思
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与 k、b 符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究 k、b 符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中 k、b 符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照 k、b 的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确 k 的符号决定直线的什么位置,b 的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中 k、b 的符号的练习,收到了一定的效果。
本节课我在练习的处理上,显得比较薄弱。一是时间安排上有些前松后紧,二是题量、题型不是很全面。感觉练习不到位,学生知识落实情况不是很了解。这一环节,今后还应加强。
第三篇:一次函数的图像和性质教学反思 TXC
一次函数的图象和性质复习教学反思 重庆中山外国语学校 谭显超
2013年3月18日在中山外国语学校初中数学教研组安排下,我校初中数学教师组织了同课异构的教研活动,课题为《一次函数的图象与性质复习》,有名师、领导对本节课的内容提供了不少宝贵的建议,经过几天的修改构思,我于3月26日在我校初三四班上了本节公开课,由于本节听课的老师和领导较多,这对于我来说是一大压力,当然也给了我不少动力。本节课的复习目标是:
1.让学生理解一次函数的定义,知道正比例函数是一次函数的特例,学习使用待定系数法求一次函数的解析式,让学生能够掌握其基本做法。2.复习画一次函数的图象,能让学生根据图象和解析式探索一次函数的性质.3.让学生借助一次函数的图象或性质解决一次函数与一次方程、一次不等式的综合问题。
教学重点:一次函数的图象与性质;
教学难点:一次函数的与一次方程、一次不等式的综合问题。
对于本节内容我将教学案分为四部分:一.课前复习(列表归纳知识点);二.基础自测(了解学生存在那些问题);三.例题精讲;四.学习检测;有效的课前复习它有利于督促学生及时复习回顾本节内容,有利于教师了解学生掌握知识的情况,将学生基础自测中失误率较高的题目及时评讲,查漏补缺;课上选取典型的例题,其中考查的知识点有已知点求直线的关系式,有已知直线求点,一次函数的增减性、一次函数与方程、与不等式之间的关系,有利用数型结合的思想解题,等等,在例题的选取或原创题基本已将大多数知识点容纳其中,课上在学生的主动参与下,一起完成了例题的讲解,最后还剩下5分钟的时间一起完成学习检测。整个这节课学习目标基本达成。
本节课中始终以一次函数的图象与性质为主线进行复习,课堂教学时重视学生对基础知识的理解和基本方法的指导,重点解决学生在平时学习和练习中的难点和易错点,有针对性的进行复习讲解,本课采用“教学案”的形式,实现了课下与课上相结合,学案与教案相结合,学生自主学习与教师讲解相结合,让学生自主、探究、主动地学习。本节课“教学案” 的设计注重了夯实基础,复习实行“低起点、多归纳、快反馈”的策略,注重激发全体学生学习数学的自信心,教学中也注重学生解题的准确性及表达的规范性。当然本节课也有很多有待改进的地方,老师在方法点拨不细,比如求直线与坐标轴交点坐标讲得不细,另外整课容量偏大导致例三学生完成时间偏短等。
总之,在本节课的教学设计时,我在明确复习课的目的的任务下,以培养学生能力,遵循复习课原则中的系统性原则和主体性原则,以学生的“学”为出发点,将“自主探究”的学习方式贯穿于课的始终,我相信,在各位专家和同仁的帮助下,我的数学课堂将会越来越精彩。
第四篇:一次函数的图像与性质教学反思
一次函数的图像与性质教学反思
周 炜
14.2.2一次函数这一节的重点是一次函数的概念、图象和性质,以及如何用待定系数法和函数的图像求一次函数解析式。一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在新课标规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。
一:备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
二:教材课时安排过紧。这一小节共有三课时的内容,一次函数的概念,图像和性质,用待定系数法和函数的图像求一次函数。
三:教学内容不好处理。
在“ 一次函数的图象”中有平移的问题,1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;(2)将直线y=-x-5向上平移5个单位,得到直线_________________.2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲:
概括一次函数图象的性质
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.(3)当b>0时,这时函数的图象与y轴的交点在:(4)当b>0时,这时函数的图象与y轴的交点在:
四:难度不好处理:如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=(m-1)x+m.当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。”
学生难以理解,我个人认为太难,超出了学生的理解能力。反而对一个具体的一次函数y=-2x+3中k,b是多少强调的不多。
满意之笔
一次函数有以下令自己较满意的地方:
一.结合生活实例,充分调动学生学习的激情,恰当的过渡,点燃其求知的欲望。
在本节课的引入部分采用班级里的真人真事(学生每天上学这一过程)“在过程中涉及到哪些量?”“假定每位同学各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问题既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二、大胆对教材作大幅度调整、修改 ①对知识内容的完整性作了补充。
一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。虽然在课后的习题与作业本中都有涉及到:当一次函数的自变量限制在某一范围时如何画此一次函数的图象,但在教材中似乎没有涉及到此类问题,对于B班的学生需要教师对此类问题做相关示范解决。(1)求 y1 关于 x 的函数关系式 及自变量x的取值范围;(2)画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:对于射线,取起点与另一个异于起点的任一点画出射线;对于线段,取线段的两个端点然后连接即可。
②对例题的处理:对例2作两处调整:一是对题目的设置,二是对题目的讲解次序。
为更好阐述当一次项的系数为分数或小数时,如何画一次函数的图象(自变量可取任何数),特在例2中添加了画(2),问学生取怎样的两个点使作图方便简洁,让学生自由发挥充分讨论后总结:一般取整点。在讲解次序上,先解决作图,归纳方法;再解决如何求函数图象与坐标轴的交点坐标,归纳拓展为一般情况:与y轴交点坐标(0,b)与x轴的交点坐标(-b/k,0)
遗憾之处:
一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上吧。
二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)。
第五篇:一次函数的图像与性质教学反思
一次函数的图像与性质教学反思
一、总体概述:
《一次函数图像的性质》这节课主要是在学生熟练掌握一次函数图像画法的基础上,通过观察几组特殊函数图象的特点和函数表达式之间关系归纳总结出函数图像的一般规律。加深对图象表示的理解,进一步体会数形结合以及从特殊到一般的数学思想。
本节课的学习目标主要包括三部分内容:1.如果函数表达式中的k相同,那么他们的函数图像互相平行;2.将直线y=kx沿y轴向上平移b个单位,得到直线y=kx+b;沿y轴向下平移b个单位,得到直线y=kx-b;3.由k、b的正负号判断函数图像所经过的象限。本节课的难点是根据函数表达式中k和b的正负快速的画出图像的草图进而判断出图像所经过的象限。
二:教学流程
上课一开始我让学生自己先动手运用两点法画出y=-2x,y=-2x+3,y=-2x-4这三个函数的图像,接着让给学生观察这三个函数图象的位置关系以及函数表达式中的共同点,并用自己的语言总结;第二步,我以教鞭作为教具取一个固定的点在黑板上动态的演示出直线的上下平移,得出图像的平移与函数表达式之间的关系;再讲最后一个内容之前先让学生观察函数表达式中的b和图像与y轴的交点的纵坐标之间的关系,使学生了解表达式中的b就是图像与y轴的那个交点,从而得出当y>0时图像交与y轴的正半轴,当y<0时,图像交与y轴的负半轴,再结合k正负决定函数的增减性这个知识点,学会在没有要求的情况下大致的画出函数图象,进而判断出函数所经过的象限。
这节课基本脱离教材的束缚从学生的认知顺序出发,层层递进。在教学当中设计了多个学生自己思考的过程,给学生发表见解的机会,把课堂的大部分时间还给学生,教师做一个引导的作用让学生多思考,自己动手得到结论,让他们的印象更加深刻,在理解的基础上熟练掌握并运用结论。通过随后的提问、练习以及下课前得小测发现大部分学生都掌握的很好,基本完成了学习目标。
三:教学内容的处理。
在“ 一次函数的图象”中有平移的问题,1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.与多位教师讨论后,我们用学案(下面的表)来处理,让学生更多一点感性认识,少一点理论上的结论.2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲 环节二:概括一次函数图象的性质
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.(3)当b>0时,这时函数的图象与y轴的交点在:(4)当b>0时,这时函数的图象与y轴的交点在:
满意之笔
一、在本节课的引入部分采用班级里的真人真事(学生每天上学这一过程)“在过程中涉及到哪些量?”“假定每位同学各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问题既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二、大胆对教材作大幅度调整、修改
①对知识内容的完整性作了补充。一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:
②对例题的处理:对例1作两处调整:一是对题目的设置,二是对题目的讲解次序。为更好阐述当一次项的系数为分数或小数时,如何画一次函数的图象(自变量可取任何数),特在例1中添加了画(2),问学生取怎样的两个点使作图方便简洁,让学生自由发挥充分讨论后总结:一般取整数点。在讲解次序上,先解决(1)(2)(3)小题的作图,归纳方法;再解决如何求(1)(2)(3)小题的函数图象与坐标轴的交点坐标,归纳拓展为一般情况:与y轴交点坐标(0,b)与x轴的交点坐标
遗憾之处:
一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上吧。
二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)。
三、表扬的力度不够,有几个成绩靠后的学生踊跃的举手回答问题,我没有及时的给予鼓励和表扬。
总之,通过教学反思,使我再次体会到:教学是一门艺术。因此我要经常反思、总结,使这门艺术不断贴近学生发展的需求,从而不断提高自己的课堂教学能力。
反思人:吴晓勇 2012年11月29日