第一篇:一次函数的图像和性质的教学设计与反思
一次函数的图像和性质的教学设计与反思
教学目标:
1、知识与技能:学生会利用两个点画出一次函数和正比例函数的图像;结合图像,学生直观地初步感知一次函数中的k和b的几何意义。
2、过程与方法:通过观察图像和师生、生生间的交流,学生初步感受图像在探索一次函数的性质中的作用
3、情感态度与价值观:学生进一步体会数形结合的思想方法在探索中的应用。
重点:一次函数y=kx+b的图像及b的几何意义
难点:正比例函数及一次函数解析式中k和b的几何意义及其应用 教学媒体的运用:本节课使用PowerPoint演示文稿和几何画板。
1、上课伊始,运用几何画板演示几个一次函数的图像,学生回忆画过的图像,感受一次函数的图像是一条直线。
2、使用几何画板拖动图像并观察解析式,发现k不同正比例函数所在的象限也不同。从而得出一次函数y=kx+b,当k>0时图像经过一、三象限;当k<0时图像经过二、四象限。解决重点问题。
3、拖动图像沿y轴上下运动,发现b不同一次函数的图像的变化规律:当b>0时,图像向上平移 |b| 个单位;当b>0时,图像向下平移 |b| 个单位,突破本课的难点。教学过程:
1、引入: 复习题
1、直线y=3x过点(,0)、(1,)
直线y=3x+2过点(,0)、(0,)
2、直线y=0.5x过点(,0)、(1,)
直线y=0.5x-2过点(,0)、(0,)
3、直线y=-0.5x过点(,0)、(1,)
直线y=-0.5x+2过点(,0)、(0,)
4、直线y=kx过点(,0)、(1,)
学生填空并根据教师所给的点的坐标画出图像。体会一次函数的图像的画法:两点确定一条直线画一次函数的图像只要描出两点即可;体会k不同函数图像的位置就不同。
2、新授:
⑴教师利用几何画板展示学生画的一次函数的图像。
拖动正比例函数图像上一点A,使图像在一、三象限内运动,学生观察函数解析式中k的变化。
拖动正比例函数图像上一点A,使图像在二、四象限内运动,学生观察函数解析式中k的变化
得出结论:正比例函数y=kx的图像有如下结论
当k>0时,函数图像经过一、三象限;当k<0时,函数图像经过二、四象限。
⑵教师利用几何画板展示学生画的一次函数的图像y=3x及y=3x+2。引导学生观察这两个图像有什么样的位置关系。学生很容易发现它们互相平行。那么,图像互相平行的一次函数的解析式中k和b有什么特点?
得出结论:两条直线l1:y=k1x+b1,l2:y=k2x+b2 若 l1∥l2,则k1=k2,b1≠ b2
⑶教师利用几何画板展示学生画的一次函数的图像y=3x-2及y=3x+2;y=0.5x-2及y=0.5x+2;y=-0.5x-2及y=-0.5x+2。引导学生观察这三组图像有什么样的位置关系。学生很容易发现它们分别相交于y轴上同一点。那么,图像相交于y轴上同一点的一次函数解析式中的k和b有什么特点?
得出结论:两条直线l1:y=k1x+b1,l2:y=k2x+b2 若l1与l2相交于y轴上一点,则k1≠k2,b1=b23、练习:
1、直线y=kx+b经过二、三、四象限,则k
,b ; 经过一、三、四象限,则k
,b ;经过一、二、三象限,则k
,b。
2、已知一次函数一次函数y=(1-3k)x +2k -1(1)当k=
时,直线经过原点;
(2)当k=
时,直线与x轴交于点(,0);
(3)当k
时,与y轴的交点在x轴的下方(4)当k
时,直线经过二、三、四象限。
3、两条直线y=k1x+b1,y=k2x+b2交于y轴上同一点,则必有()
A、k1=k2,b1= bB、k1≠k2,b1=b2
C、k1=k2,b1≠ bD、b1= b2
4、在同一坐标系内画出函数y=-2x和y=-2x-6的图象,这两条直线的位置关系是。
5、将直线y=x+4向下平移2个单位,得到的直线解析式为()
A、y=x+6 B、y=x+2 C、y=x+4 D、y=x+4
4、小结:大屏幕展示
教学反思: 教学设计分析:
由于前面的教学中,学生已经用描点法画出一次函数的图像是一条直线,本节课的重点是画正比例函数与一次函数的图像及由图像总结出函数的性质。为了能使学生顺利地掌握画图的方法,首先给学生一个感性的认识:一次函数的图像是一条直线,再通过几何知识得到,画一条直线只要知道两点即可。在画完图像的基础上,由学生对图像进行观察,教师对学生加以引导,使学生很顺利地得到一次函数的性质。通过观察图像和师生、生生间的交流,学生初步感受图像在探索一次函数的性质中的作用。整节课的关联性较强,一环扣一环,便于学生思考教学过程是未经修饰的实录,教学效果还是不错。
不足之处:由于学生不能熟练使用几何画板,临时将本课从网络教室改在一般教室进行,这是课前没有把学生情况摸清的结果。提醒我在以后备课时一定要结合学生的具体实际。
总之,本节课学生接受的比较好,尚无知识盲点。以后更加努力。
第二篇:一次函数图像性质教学反思
《一次函数的图象和性质》教学反思
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与 k、b 符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究 k、b 符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中 k、b 符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照 k、b 的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确 k 的符号决定直线的什么位置,b 的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中 k、b 的符号的练习,收到了一定的效果。
本节课我在练习的处理上,显得比较薄弱。一是时间安排上有些前松后紧,二是题量、题型不是很全面。感觉练习不到位,学生知识落实情况不是很了解。这一环节,今后还应加强。
第三篇:一次函数的图像与性质教学反思
一次函数的图像与性质教学反思
周 炜
14.2.2一次函数这一节的重点是一次函数的概念、图象和性质,以及如何用待定系数法和函数的图像求一次函数解析式。一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在新课标规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。
一:备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
二:教材课时安排过紧。这一小节共有三课时的内容,一次函数的概念,图像和性质,用待定系数法和函数的图像求一次函数。
三:教学内容不好处理。
在“ 一次函数的图象”中有平移的问题,1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;(2)将直线y=-x-5向上平移5个单位,得到直线_________________.2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲:
概括一次函数图象的性质
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.(3)当b>0时,这时函数的图象与y轴的交点在:(4)当b>0时,这时函数的图象与y轴的交点在:
四:难度不好处理:如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=(m-1)x+m.当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。”
学生难以理解,我个人认为太难,超出了学生的理解能力。反而对一个具体的一次函数y=-2x+3中k,b是多少强调的不多。
满意之笔
一次函数有以下令自己较满意的地方:
一.结合生活实例,充分调动学生学习的激情,恰当的过渡,点燃其求知的欲望。
在本节课的引入部分采用班级里的真人真事(学生每天上学这一过程)“在过程中涉及到哪些量?”“假定每位同学各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问题既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二、大胆对教材作大幅度调整、修改 ①对知识内容的完整性作了补充。
一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。虽然在课后的习题与作业本中都有涉及到:当一次函数的自变量限制在某一范围时如何画此一次函数的图象,但在教材中似乎没有涉及到此类问题,对于B班的学生需要教师对此类问题做相关示范解决。(1)求 y1 关于 x 的函数关系式 及自变量x的取值范围;(2)画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:对于射线,取起点与另一个异于起点的任一点画出射线;对于线段,取线段的两个端点然后连接即可。
②对例题的处理:对例2作两处调整:一是对题目的设置,二是对题目的讲解次序。
为更好阐述当一次项的系数为分数或小数时,如何画一次函数的图象(自变量可取任何数),特在例2中添加了画(2),问学生取怎样的两个点使作图方便简洁,让学生自由发挥充分讨论后总结:一般取整点。在讲解次序上,先解决作图,归纳方法;再解决如何求函数图象与坐标轴的交点坐标,归纳拓展为一般情况:与y轴交点坐标(0,b)与x轴的交点坐标(-b/k,0)
遗憾之处:
一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上吧。
二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)。
第四篇:一次函数的图像与性质教学反思
一次函数的图像与性质教学反思
一、总体概述:
《一次函数图像的性质》这节课主要是在学生熟练掌握一次函数图像画法的基础上,通过观察几组特殊函数图象的特点和函数表达式之间关系归纳总结出函数图像的一般规律。加深对图象表示的理解,进一步体会数形结合以及从特殊到一般的数学思想。
本节课的学习目标主要包括三部分内容:1.如果函数表达式中的k相同,那么他们的函数图像互相平行;2.将直线y=kx沿y轴向上平移b个单位,得到直线y=kx+b;沿y轴向下平移b个单位,得到直线y=kx-b;3.由k、b的正负号判断函数图像所经过的象限。本节课的难点是根据函数表达式中k和b的正负快速的画出图像的草图进而判断出图像所经过的象限。
二:教学流程
上课一开始我让学生自己先动手运用两点法画出y=-2x,y=-2x+3,y=-2x-4这三个函数的图像,接着让给学生观察这三个函数图象的位置关系以及函数表达式中的共同点,并用自己的语言总结;第二步,我以教鞭作为教具取一个固定的点在黑板上动态的演示出直线的上下平移,得出图像的平移与函数表达式之间的关系;再讲最后一个内容之前先让学生观察函数表达式中的b和图像与y轴的交点的纵坐标之间的关系,使学生了解表达式中的b就是图像与y轴的那个交点,从而得出当y>0时图像交与y轴的正半轴,当y<0时,图像交与y轴的负半轴,再结合k正负决定函数的增减性这个知识点,学会在没有要求的情况下大致的画出函数图象,进而判断出函数所经过的象限。
这节课基本脱离教材的束缚从学生的认知顺序出发,层层递进。在教学当中设计了多个学生自己思考的过程,给学生发表见解的机会,把课堂的大部分时间还给学生,教师做一个引导的作用让学生多思考,自己动手得到结论,让他们的印象更加深刻,在理解的基础上熟练掌握并运用结论。通过随后的提问、练习以及下课前得小测发现大部分学生都掌握的很好,基本完成了学习目标。
三:教学内容的处理。
在“ 一次函数的图象”中有平移的问题,1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.与多位教师讨论后,我们用学案(下面的表)来处理,让学生更多一点感性认识,少一点理论上的结论.2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲 环节二:概括一次函数图象的性质
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.(3)当b>0时,这时函数的图象与y轴的交点在:(4)当b>0时,这时函数的图象与y轴的交点在:
满意之笔
一、在本节课的引入部分采用班级里的真人真事(学生每天上学这一过程)“在过程中涉及到哪些量?”“假定每位同学各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问题既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二、大胆对教材作大幅度调整、修改
①对知识内容的完整性作了补充。一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:
②对例题的处理:对例1作两处调整:一是对题目的设置,二是对题目的讲解次序。为更好阐述当一次项的系数为分数或小数时,如何画一次函数的图象(自变量可取任何数),特在例1中添加了画(2),问学生取怎样的两个点使作图方便简洁,让学生自由发挥充分讨论后总结:一般取整数点。在讲解次序上,先解决(1)(2)(3)小题的作图,归纳方法;再解决如何求(1)(2)(3)小题的函数图象与坐标轴的交点坐标,归纳拓展为一般情况:与y轴交点坐标(0,b)与x轴的交点坐标
遗憾之处:
一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上吧。
二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)。
三、表扬的力度不够,有几个成绩靠后的学生踊跃的举手回答问题,我没有及时的给予鼓励和表扬。
总之,通过教学反思,使我再次体会到:教学是一门艺术。因此我要经常反思、总结,使这门艺术不断贴近学生发展的需求,从而不断提高自己的课堂教学能力。
反思人:吴晓勇 2012年11月29日
第五篇:《一次函数图像与性质》教学设计
《一次函数的图象与性质》教学设计
一、教学分析
(一)教学内容分析
本节课主要让学生掌握一次函数的图像的画法与性质,能否学好本节课是学好函数的关键所在.(二)教学对象分析
学生刚学习了正比例函数, 该内容对于刚学函数不久的八年级同学来说是个难点,因为本节内容相对比较抽象.(三)教学环境分析
我们处在农村学校,以往使用传统教学讲本节内容时(特别在讲性质时)学生总感到不易理解,因此我使用FLASH软件制作了FLASH动画课件,学生可在网络教室自己动手操作.二、教学目标
(一)知识与技能
⒈知道一次函数的图象是一条直线;
⒉会选取两个适当点画一次函数(含正比例函数)的图象; ⒊能结合图象理解一次函数(含正比例函数)的性质.(二)过程与方法
⒈通过画函数的图象,培养学生的动手能力;
⒉通过结合函数图象揭示性质的教学,培养学生观察、比较、抽象和概括能力.(三)情感态度与价值观
经历对一次函数图象的观察、分析及对性质的探索活动,激发学生主动学习的欲望,培养学生的探究精神.三、教学重点难点
(一)教学重点
一次函数(含正比例函数)图象的画法及性质.(二)教学难点
1.选取适当两点画一次函数y=kx+b的图象;
2.结合一次函数(含正比例函数)图象说出它们的性质.四、教学手段
用多媒体辅助教学,数形结合,直观生动地揭示函数性质,以突破难点,突出重点,同时可以增大教学容量,提高课堂教学效率.五、教学过程
(一)导学过程
什么叫一次函数?什么叫正比例函数?它们有何关系? 上节课老师布置的导学内容.(二)引入
已知函数的解析式,我们可以画出函数的图象,那么一次函数(包括正比例函数)的图象是什么形状呢?它们又有什么性质呢?
(三)新课
整合点:在电脑教室给学生分发”一次函数图像与性质学生版”flash课件,让学生打开”函数图像的画法”.这是教学重点,做了整合.⒈一次函数图象的形状
(1)电脑flash动画显示:函数y=0.5x,y=2x+1的图象.(2)问:这几个函数分别是什么函数?它们的图象分别是什么图形?(3)观察、讨论与归纳:所有一次函数的图象都是一条直线.⒉一次函数的图象的画法
(1)问:我们知道一次函数的图象是一条直线,那么今后我们画一次函数的图象是否还是通过描出许多点再连线呢?有没有简捷的方法呢?
(2)讨论:两点确定一条直线,画一次函数的图象只需描出两点,再过这两点作直线.(3)结论:一次函数图象的画法──“两点法”.⒊取两适当点画正比例函数的图象
(1)问题:取怎样的两点画函数y=0.5x,y=-0.5x的图象合适呢?
让学生在flash课件中自己动手选择数据来体会如何选合适的点画图像.(2)讨论:计算简便,描点方便.(3)画图:师生分别画图.(4)小结:画正比例函数的图象时,常选取(0,0)、(1,k)两点连线.正比例函数的图象必过原点.⒋取两适当点画一次函数的图象
(1)问题:怎样取合适的两点画一次函数y=kx+b 的图象呢?
(2)自学:学生自学例题1;
(电脑动画显示函数图象的作图过程)(3)思考与讨论
① 横坐标为0点在---上,纵坐标为0点在---上.② 在y=kx+b中,当x=0时,y=---;当y=0时,x=---.③ 画一次函数的图象,常选取(0,--)、(--,0)两点连线.(4)小结
画一次函数y=kx+b图象的一般步骤:
① 在横轴上取点(-b/k,0),在纵轴上取点(0,b); ② 过这两点作直线;
整合点:在此处重点整合了”一次函数的性质”,把它做成可手动操作的课件,把这节课的难点进行化解,使学生能够更好的理解其性质特点.⒌正比例函数的性质
(1)问题:正比例函数有着特殊形状,那么它有什么性质呢?
(2)观察、思考与讨论:在坐标平面内,对于直线y=0.5x与y=-0.5x,点的横坐标增大时,纵坐标怎样变化?(引导学生分别从列表、图象上点的升降分析)
(3)归纳:引导学生归纳正比例函数的性质.⒍一次函数的性质
(1)思考:一次函数y=kx+b又有什么性质呢?
(2)类比与归纳:引导学生用总结y=kx的性质的方法,总结一次函数y=kx+b 的性质.五、练习巩固
整合点:让学生自己打开”一次函数图像与性质学生版”flash课件解决上面的问题.六、课堂 小结及自我评测
(一)引导学生对一次函数和正比例函数小结:
1.定义;
2.图象(形状、画法);
3.性质.(二)自我评测、整合点
七、布置作业
(一)阅读课本P107--P109
(二)必作题:P109,P111
(三)发放下节导学内容(导学内容以纸质形式发放)附:
教学反思
函数的教学体现的是一个变化的过程,而学生还不具备这样的抽象思维能力,学起来很困难.本节课充分利用flash动画的强大操作功能和演示功能,直观的展示了数与型的变化过程,不仅降低了知识的难度,还满足了学生的好奇心理,激励学生积极参与知识的形成过程,加深对知识的理解和运用,使学生乐于
接受,实现教学过程的最优化,水到渠成,突破教学难点,解决了我以往传统教学中学生对理解函数的性质比较抽象问题.运用多媒体教学,为师生的交流提供共同经验,使学生展开认识、分析、综合、想象、表达能力、学习活动,变强迫性教学为诱导思维式教学,极力诱发学生的创新思维.使学生学起来不会感觉特别抽象.而且激发了学生的学习兴趣.为学生创设符合其心理特点的教学情境,不断地给学生以新的刺激,使学生的大脑始终保持兴奋状态,激发了学生强烈的学习欲望,增强了学习兴趣.他们会克服一切困难,充满信心的学习数学,学好数学,变“要我学”为“我要学”.多媒体教学的整合,我感到是教育教学的一次重大革命,是教育教学改革的一个重要里程碑,而我们这一代教师正是这一次教育革命的开创者和推进者.