向日葵组丁志明——一次函数的图像与性质教学设计

时间:2019-05-12 20:17:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《向日葵组丁志明——一次函数的图像与性质教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《向日葵组丁志明——一次函数的图像与性质教学设计》。

第一篇:向日葵组丁志明——一次函数的图像与性质教学设计

一次函数的图像与性质——教学设计

库尔勒市第四中学初中数学组

丁志明

【知识与技能目标】

1、掌握并会运用正比例函数y=kx与一次函数y=kx+b之间的位置关系。

2、经历探索由一次函数图像观察归纳一次函数性质的过程,掌握并应用性质解决问题。

3、会画一次函数草图,并将其运用到实际当中。

【过程与方法目标】:经历观察、猜想、实验、归纳、推理、交流等数学活动过程,使学生体会和学会探索问题的一般方法,同时渗透数形结合、数学建模、类比和分类讨论数学思想。

【情感态度价值观目标】:通过数学实验、自主探究和合作交流,增强团队意识和大胆猜想、乐于探究的良好品质,体验成功的喜悦。【教学重点】是一次函数的图像和性质

【教学难点】是由一次函数的图像实验归纳出一次函数的性质及对性质的理解。

【教学过程】:

一、二、反馈:重点表扬导入问题做得比较好的的同学与小组,讲解导入问题中的错误。情境引入:由正比例函数的图像与性质引入,引起质疑:一次函数的图像与性质是什么样的?

1、请画出正比例函数y=-2x与y=2x的图像

复习正比例函数的画图方法及性质,引入一次函数的性质 正比例函数的性质:

1)当k>0时,图像经过一、三象限。2)当k<0时,图像经过二、四象限。

3)k的绝对值越大越向y轴靠拢,绝对值越小越向x轴靠拢。4)图像是经过原点的一条直线。

那么一次函数的图像是什么样的?它的性质又与正比例函数有什么样的区别?

三、出示讨论任务与学习目标

学习目标:

1、掌握并会运用定理“k值相等,则两直线平行”及其逆命题。

2、类比正比例函数的图像与性质,知道解决一次函数的图像与性质的方法

讨论任务:

1、正比例函数的图像与性质是什么?

2、直线y=kx与y=kx+b的图像之间有什么样的位置关系?

3、正比例函数与一次函数的图像性质之间有什么共同点与不同点?四、五、六、讨论

小组在组内解决简单问题,在组间解决复杂问题,在黑板上书写全班都不会的疑难问题。

自主学习三分钟

主要纠正预习性导入问题中的错误,弥补笔记,纠正自己认识上的错误。

展示

前黑板:预习性导入问题或讨论任务。

后黑板:学生生成的问题。教师对学生生成的问题给出分数,用于评价。

七、点评

选取与展示不同的另外的学生上台点评,并且给出相应的分数进行评价。学生可能会有一些题型没有考虑到,需要教师及时补充。具体题目如下:

跟踪性练习

1、利用两点画函数:y=2x+1的图像,并说明其与坐标轴的交点坐标。跟踪性练习

2、利用图像与坐标轴的交点画一次函数y=3x-1的图像

跟踪性练习

3、利用一次函数草图的画法,确定一次函数y=-3x+1经过哪几个象限? 跟踪性练习

4、一次函数y=2x+1的图像是由正比例函数

向 平移 个单位后得来的。

跟踪性练习

5、与一次函数y=kx+b与y=4x平行,且是由该函数向上平移三个单位后得到的,求该一次函数解析式。

跟踪性练习

6、一次函数y=(-k-2)x-2(k-1)经过一二三象限,那么该函数的k值的取值范围是。

跟踪性练习

7、已知y与x的函数y=(2m-1)x-m-3(1)若这个函数的图象经过原点,求m的值。

(2)若这个函数的图象不经过第三象限,求m的取值范围.跟踪性练习

8、与一次函数y=kx+b与y=-5x平行,且与一次函数y=3x-2相交于y轴,求该一次函数解析式。八、九、十、回归问题(相当于归纳总结)

解决学生生成的疑难问题,有争议性问题,闪光点。最有价值题目(相当于当堂检测)用学生找的比较好的题目用于当堂检测。布置作业

分层作业:练习册上部分题后进生可不做。

第二篇:《一次函数图像与性质》教学设计

《一次函数的图象与性质》教学设计

一、教学分析

(一)教学内容分析

本节课主要让学生掌握一次函数的图像的画法与性质,能否学好本节课是学好函数的关键所在.(二)教学对象分析

学生刚学习了正比例函数, 该内容对于刚学函数不久的八年级同学来说是个难点,因为本节内容相对比较抽象.(三)教学环境分析

我们处在农村学校,以往使用传统教学讲本节内容时(特别在讲性质时)学生总感到不易理解,因此我使用FLASH软件制作了FLASH动画课件,学生可在网络教室自己动手操作.二、教学目标

(一)知识与技能

⒈知道一次函数的图象是一条直线;

⒉会选取两个适当点画一次函数(含正比例函数)的图象; ⒊能结合图象理解一次函数(含正比例函数)的性质.(二)过程与方法

⒈通过画函数的图象,培养学生的动手能力;

⒉通过结合函数图象揭示性质的教学,培养学生观察、比较、抽象和概括能力.(三)情感态度与价值观

经历对一次函数图象的观察、分析及对性质的探索活动,激发学生主动学习的欲望,培养学生的探究精神.三、教学重点难点

(一)教学重点

一次函数(含正比例函数)图象的画法及性质.(二)教学难点

1.选取适当两点画一次函数y=kx+b的图象;

2.结合一次函数(含正比例函数)图象说出它们的性质.四、教学手段

用多媒体辅助教学,数形结合,直观生动地揭示函数性质,以突破难点,突出重点,同时可以增大教学容量,提高课堂教学效率.五、教学过程

(一)导学过程

什么叫一次函数?什么叫正比例函数?它们有何关系? 上节课老师布置的导学内容.(二)引入

已知函数的解析式,我们可以画出函数的图象,那么一次函数(包括正比例函数)的图象是什么形状呢?它们又有什么性质呢?

(三)新课

整合点:在电脑教室给学生分发”一次函数图像与性质学生版”flash课件,让学生打开”函数图像的画法”.这是教学重点,做了整合.⒈一次函数图象的形状

(1)电脑flash动画显示:函数y=0.5x,y=2x+1的图象.(2)问:这几个函数分别是什么函数?它们的图象分别是什么图形?(3)观察、讨论与归纳:所有一次函数的图象都是一条直线.⒉一次函数的图象的画法

(1)问:我们知道一次函数的图象是一条直线,那么今后我们画一次函数的图象是否还是通过描出许多点再连线呢?有没有简捷的方法呢?

(2)讨论:两点确定一条直线,画一次函数的图象只需描出两点,再过这两点作直线.(3)结论:一次函数图象的画法──“两点法”.⒊取两适当点画正比例函数的图象

(1)问题:取怎样的两点画函数y=0.5x,y=-0.5x的图象合适呢?

让学生在flash课件中自己动手选择数据来体会如何选合适的点画图像.(2)讨论:计算简便,描点方便.(3)画图:师生分别画图.(4)小结:画正比例函数的图象时,常选取(0,0)、(1,k)两点连线.正比例函数的图象必过原点.⒋取两适当点画一次函数的图象

(1)问题:怎样取合适的两点画一次函数y=kx+b 的图象呢?

(2)自学:学生自学例题1;

(电脑动画显示函数图象的作图过程)(3)思考与讨论

① 横坐标为0点在---上,纵坐标为0点在---上.② 在y=kx+b中,当x=0时,y=---;当y=0时,x=---.③ 画一次函数的图象,常选取(0,--)、(--,0)两点连线.(4)小结

画一次函数y=kx+b图象的一般步骤:

① 在横轴上取点(-b/k,0),在纵轴上取点(0,b); ② 过这两点作直线;

整合点:在此处重点整合了”一次函数的性质”,把它做成可手动操作的课件,把这节课的难点进行化解,使学生能够更好的理解其性质特点.⒌正比例函数的性质

(1)问题:正比例函数有着特殊形状,那么它有什么性质呢?

(2)观察、思考与讨论:在坐标平面内,对于直线y=0.5x与y=-0.5x,点的横坐标增大时,纵坐标怎样变化?(引导学生分别从列表、图象上点的升降分析)

(3)归纳:引导学生归纳正比例函数的性质.⒍一次函数的性质

(1)思考:一次函数y=kx+b又有什么性质呢?

(2)类比与归纳:引导学生用总结y=kx的性质的方法,总结一次函数y=kx+b 的性质.五、练习巩固

整合点:让学生自己打开”一次函数图像与性质学生版”flash课件解决上面的问题.六、课堂 小结及自我评测

(一)引导学生对一次函数和正比例函数小结:

1.定义;

2.图象(形状、画法);

3.性质.(二)自我评测、整合点

七、布置作业

(一)阅读课本P107--P109

(二)必作题:P109,P111

(三)发放下节导学内容(导学内容以纸质形式发放)附:

教学反思

函数的教学体现的是一个变化的过程,而学生还不具备这样的抽象思维能力,学起来很困难.本节课充分利用flash动画的强大操作功能和演示功能,直观的展示了数与型的变化过程,不仅降低了知识的难度,还满足了学生的好奇心理,激励学生积极参与知识的形成过程,加深对知识的理解和运用,使学生乐于

接受,实现教学过程的最优化,水到渠成,突破教学难点,解决了我以往传统教学中学生对理解函数的性质比较抽象问题.运用多媒体教学,为师生的交流提供共同经验,使学生展开认识、分析、综合、想象、表达能力、学习活动,变强迫性教学为诱导思维式教学,极力诱发学生的创新思维.使学生学起来不会感觉特别抽象.而且激发了学生的学习兴趣.为学生创设符合其心理特点的教学情境,不断地给学生以新的刺激,使学生的大脑始终保持兴奋状态,激发了学生强烈的学习欲望,增强了学习兴趣.他们会克服一切困难,充满信心的学习数学,学好数学,变“要我学”为“我要学”.多媒体教学的整合,我感到是教育教学的一次重大革命,是教育教学改革的一个重要里程碑,而我们这一代教师正是这一次教育革命的开创者和推进者.

第三篇:一次函数的图像与性质教学设计

一次函数的图像与性质教学设计

林州市临淇镇第三初级中学 刘振宇

教学分析:

由于前面的教学中,学生已经用描点法画出一次函数的图象是一条直线,本节课的重点是画正比例函数与一次函数的图象及由图象总结出函数的性质。为了能使学生顺利地掌握画图的方法,首先给学生一个感性的认识:一次函数的图象是一条直线,再通过几何知识得到,画一条直线只要知道两点即可。在画完图象的基础上,由学生对图象进行观察,教师对学生加以引导,使学生很顺利地得到一次函数的性质。整节课的关联性较强,一环扣一环,便于学生思考。

教学目标:

1、知识与技能:学生会利用两个点画出一次函数和正比例函数的图象;结合图象,学生直观地初步感知一次函数中的k和b的几何意义。

2、过程与方法:通过观察图象和师生、生生间的交流,学生初步感受图象在探索一次函数的性质中的作用

3、情感态度与价值观:学生进一步体会数形结合的思想方法在探索中的应用。

重点:一次函数y=kx+b的图象及b的几何意义

难点:正比例函数及一次函数解析式中k和b的几何意义及其应用

教学媒体的运用:本节课使用PowerPoint演示文稿和几何画板。

1、上课伊始,运用几何画板演示几个一次函数的图象,学生回忆画过的图象,感受一次函数的图象是一条直线。

2、使用几何画板拖动图象并观察解析式,发现k不同正比例函数所在的象限也不同。从而得出一次函数y=kx+b,当k>0时图象经过一、三象限;当k<0时图象经过二、四象限。解决重点问题。

3、拖动图象沿y轴上下运动,发现b不同一次函数的图象的变化规律:当b>0时,图象向上平移 |b| 个单位;当b>0时,图象向下平移 |b| 个单位,突破本课的难点。

教学过程:

一、引入:

复习题

1、直线y=3x过点(,0)、(1,)

直线y=3x+2过点(,0)、(0,)

2、直线y=0.5x过点(,0)、(1,)

直线y=0.5x-2过点(,0)、(0,)

3、直线y=-0.5x过点(,0)、(1,)

直线y=-0.5x+2过点(,0)、(0,)

4、直线y=kx过点(,0)、(1,)

学生填空并根据教师所给的点的坐标画出图象。体会一次函数的图像的画法:两点确定一条直线画一次函数的图象只要描出两点即可;体会k不同函数图像的位置就不同。

二、新授:

⑴教师利用几何画板展示学生画的一次函数的图像。

拖动正比例函数图像上一点A,使图像在一、三象限内运动,学生观察函数解析式中k的变化。

拖动正比例函数图像上一点A,使图像在二、四象限内运动,学生观察函数解析式中k的变化

得出结论:正比例函数y=kx的图像有如下结论

当k>0时,函数图像经过一、三象限;当k<0时,函数图像经过二、四象限。

⑵教师利用几何画板展示学生画的一次函数的图像y=3x及y=3x+2。引导学生观察这两个图像有什么样的位置关系。学生很容易发现它们互相平行。那么,图像互相平行的一次函数的解析式中k和b有什么特点?

得出结论:两条直线l1:y=k1x+b1,l2:y=k2x+b

2若 l1∥l2,则k1=k2,b1≠ b2

⑶教师利用几何画板展示学生画的一次函数的图像y=3x-2及y=3x+2;y=0.5x-2及y=0.5x+2;y=-0.5x-2及y=-0.5x+2。引导学生观察这三组图像有什么样的位置关系。学生很容易发现它们分别相交于y轴上同一点。那么,图像相交于y轴上同一点的一次函数解析式中的k和b有什么特点?

得出结论:两条直线l1:y=k1x+b1,l2:y=k2x+b2

若l1与l2相交于y轴上一点,则k1≠k2,b1=b2

三、练习:

1、直线y=kx+b经过二、三、四象限,则k

,b ; 经过一、三、四象限,则k

,b ;经过一、二、三象限,则k

,b。

2、已知一次函数一次函数y=(1-3k)x +2k -1(1)当k=

时,直线经过原点;(2)当k=

时,直线与x轴交于点(,0);(3)当k

时,与y轴的交点在x轴的下方

(4)当k

时,直线经过二、三、四象限。

3、两条直线y=k1x+b1,y=k2x+b2交于y轴上同一点,则必有()

A、k1=k2,b1= bB、k1≠k2,b1=b2

C、k1=k2,b1≠ bD、b1= b2

4、在同一坐标系内画出函数y=-2x和y=-2x-6的图象,这两条直线的位置关系是。

5、将直线y=x+4向下平移2个单位,得到的直线解析式为()

A、y=x+6 B、y=x+2 C、y=x+4 D、y=x+4

四、小结:大屏幕展示

五.作业

第1,3,4题

第四篇:《一次函数的图像和性质》教学设计

《一次函数的图象与性质》教学设计

黑山镇九年制学校 王新来

一、教材分析

一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。为此,在教学中,通过设置问题,引导学生观察探索,让学生在学习过程中体验、感悟函数思想等思想方法,从而激发学生学习函数的信心和兴趣,这也是教学目标。

本节课安排在正比例函数与一次函数的概念和函数图象画法之后。目的是通过这一节课的学习使学生掌握一次函数图象和性质,并能简单应用性质。它既是探究其他函数性质的基础,又是后续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

二、学情分析

学生已经学习了一次函数和正比例函数的定义、一次函数的图象形状以及会 选择两点来画直线。会使用几何画板软件画函数图象。

三、教学目标的确定

基于以上对教材、学情分析和新课标的要求,特制定本节课的教学目标: 知识与技能:经历探索由一次函数图象观察归纳一次函数性质的过程,掌握并应用性质解决问题。

过程与方法:经历观察、猜想、实验、归纳、推理、交流等数学活动过程,使学生体会和学会探索问题的一般方法,同时渗透数形结合、数学建模、类比和分类讨论数学思想。

情感态度价值观:通过数学实验、自主探究和合作交流,增强团队意识和大胆猜想、乐于探究的良好品质,体验成功的喜悦。

四、教学重点和难点

教学重点:一次函数的图象和性质

教学难点:由一次函数的图象实验归纳出一次函数的性质及对性质的理解。

五、教学方法:数学实验法、自主探究式教学方法

六、教学手段:几何画板软件

七、教学过程设计

一、创设情境、引入新课

小明和爸爸比赛跑步,小明速度为每秒1.5米,爸爸速度为每秒2米。小明在爸爸前面2米,两人同时出发。分别写出两人距爸爸起跑点的距离y与出发的时间x的关系式?谁能获胜?

学生说出解析式:y=2x 和 y=1.5x+2,引导学生回忆正比例函数和一次函数的定义和一般形式。谁能获胜这个问题,先让学生充分讨论。若能讨论解决,引导学生换个角度用图象直观形象地解决。若学生还不能解决,适时指出要想解决这个问题我们可以借助函数图象来研究,从而自然引出课题—一次函数的图象和性质,板书这堂课的课题内容.二、实验探究、发现新知 实验探究一:一次函数的图象和性质

(环节一)提出探究问题:k、b对一次函数的图象和性质有何影响?(环节二)先让学生讨论交流实验方案。(画函数图象)

(环节三)启发引导学生,要想研究一个因素,就保持别的因素不变,就改变这个因素,看它的影响。(分四种情况画图:y=2x+

1、y=2x-

1、y=-2x+1 y=-2x-1)(环节四)学生自主探究与展示交流。引导学生自主探究,两个参数要一个一个研究,研究一个参数时,另一个参数保持不变。

(环节五)得出结论:一次函数y=kx+b(k,b为常数,k≠0)的性质

(1)k的正负决定直线的倾斜方向;

① k>0时,y的值随x值的增大而增大;

② k<O时,y的值随x值的增大而减小.

k相同,直线互相平行

学生探究后,及时给予点拨指导,并用课件配合演示k的变化对直线的影响。(2)b的正、负决定直线与y轴交点的位置;

① 当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上;

b相同,直线交于一点

学生探究后,及时给予点拨指导,并用课件配合演示b的变化对直线的影响。实验探究二:K、b对函数y=kx+b的图象位置的影响 启发学生根据K、b的符号,探究画图,得出结论:

①如图(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);

②如图(2)所示,当k>0,b<O时,直线经过第一、三、四象限(直线不经过第二象限);

③如图(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);

④如图(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).

给学生留有足够的时间与空间进行实验探索,让学生自己发现错误、自行纠错,力求使学生在充分的思维冲突中,强化对性质的理解和把握,学会研究问题的方法。

三、思维升华、应用新知 1.下列函数中

① y=2x ② y=-0.2x ③y=-3x-1 ④ y=5x-7 ⑤y=4x+6 y随着x值的增大而增大的函数有

y随着x值的增大而减小的函数有 直线交x轴负半轴的有 2.(1)直线y=2x 和y=2x+1的位置关系如何?(2)直线y=-3x与 y=-3x-1的位置关系如何?(3)由直线y=6x如何得到直线y=6x-1 3.请写出一个一次函数,使它的图象与直线 y=-x+1平行,且经过点(0,-3).4.根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图中k、b的符号:

5. 已知一次函数y=(3-k)x-2k+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?(5)k为何值时,y随x的增大而减小?

四、总结收获、反思提高

谈谈本节课的收获和体会?

五、作业布置、巩固落实 课后习题4、5题

2014年9月15

第五篇:一次函数的图像和性质的教学设计与反思

一次函数的图像和性质的教学设计与反思

教学目标:

1、知识与技能:学生会利用两个点画出一次函数和正比例函数的图像;结合图像,学生直观地初步感知一次函数中的k和b的几何意义。

2、过程与方法:通过观察图像和师生、生生间的交流,学生初步感受图像在探索一次函数的性质中的作用

3、情感态度与价值观:学生进一步体会数形结合的思想方法在探索中的应用。

重点:一次函数y=kx+b的图像及b的几何意义

难点:正比例函数及一次函数解析式中k和b的几何意义及其应用 教学媒体的运用:本节课使用PowerPoint演示文稿和几何画板。

1、上课伊始,运用几何画板演示几个一次函数的图像,学生回忆画过的图像,感受一次函数的图像是一条直线。

2、使用几何画板拖动图像并观察解析式,发现k不同正比例函数所在的象限也不同。从而得出一次函数y=kx+b,当k>0时图像经过一、三象限;当k<0时图像经过二、四象限。解决重点问题。

3、拖动图像沿y轴上下运动,发现b不同一次函数的图像的变化规律:当b>0时,图像向上平移 |b| 个单位;当b>0时,图像向下平移 |b| 个单位,突破本课的难点。教学过程:

1、引入: 复习题

1、直线y=3x过点(,0)、(1,)

直线y=3x+2过点(,0)、(0,)

2、直线y=0.5x过点(,0)、(1,)

直线y=0.5x-2过点(,0)、(0,)

3、直线y=-0.5x过点(,0)、(1,)

直线y=-0.5x+2过点(,0)、(0,)

4、直线y=kx过点(,0)、(1,)

学生填空并根据教师所给的点的坐标画出图像。体会一次函数的图像的画法:两点确定一条直线画一次函数的图像只要描出两点即可;体会k不同函数图像的位置就不同。

2、新授:

⑴教师利用几何画板展示学生画的一次函数的图像。

拖动正比例函数图像上一点A,使图像在一、三象限内运动,学生观察函数解析式中k的变化。

拖动正比例函数图像上一点A,使图像在二、四象限内运动,学生观察函数解析式中k的变化

得出结论:正比例函数y=kx的图像有如下结论

当k>0时,函数图像经过一、三象限;当k<0时,函数图像经过二、四象限。

⑵教师利用几何画板展示学生画的一次函数的图像y=3x及y=3x+2。引导学生观察这两个图像有什么样的位置关系。学生很容易发现它们互相平行。那么,图像互相平行的一次函数的解析式中k和b有什么特点?

得出结论:两条直线l1:y=k1x+b1,l2:y=k2x+b2 若 l1∥l2,则k1=k2,b1≠ b2

⑶教师利用几何画板展示学生画的一次函数的图像y=3x-2及y=3x+2;y=0.5x-2及y=0.5x+2;y=-0.5x-2及y=-0.5x+2。引导学生观察这三组图像有什么样的位置关系。学生很容易发现它们分别相交于y轴上同一点。那么,图像相交于y轴上同一点的一次函数解析式中的k和b有什么特点?

得出结论:两条直线l1:y=k1x+b1,l2:y=k2x+b2 若l1与l2相交于y轴上一点,则k1≠k2,b1=b23、练习:

1、直线y=kx+b经过二、三、四象限,则k

,b ; 经过一、三、四象限,则k

,b ;经过一、二、三象限,则k

,b。

2、已知一次函数一次函数y=(1-3k)x +2k -1(1)当k=

时,直线经过原点;

(2)当k=

时,直线与x轴交于点(,0);

(3)当k

时,与y轴的交点在x轴的下方(4)当k

时,直线经过二、三、四象限。

3、两条直线y=k1x+b1,y=k2x+b2交于y轴上同一点,则必有()

A、k1=k2,b1= bB、k1≠k2,b1=b2

C、k1=k2,b1≠ bD、b1= b2

4、在同一坐标系内画出函数y=-2x和y=-2x-6的图象,这两条直线的位置关系是。

5、将直线y=x+4向下平移2个单位,得到的直线解析式为()

A、y=x+6 B、y=x+2 C、y=x+4 D、y=x+4

4、小结:大屏幕展示

教学反思: 教学设计分析:

由于前面的教学中,学生已经用描点法画出一次函数的图像是一条直线,本节课的重点是画正比例函数与一次函数的图像及由图像总结出函数的性质。为了能使学生顺利地掌握画图的方法,首先给学生一个感性的认识:一次函数的图像是一条直线,再通过几何知识得到,画一条直线只要知道两点即可。在画完图像的基础上,由学生对图像进行观察,教师对学生加以引导,使学生很顺利地得到一次函数的性质。通过观察图像和师生、生生间的交流,学生初步感受图像在探索一次函数的性质中的作用。整节课的关联性较强,一环扣一环,便于学生思考教学过程是未经修饰的实录,教学效果还是不错。

不足之处:由于学生不能熟练使用几何画板,临时将本课从网络教室改在一般教室进行,这是课前没有把学生情况摸清的结果。提醒我在以后备课时一定要结合学生的具体实际。

总之,本节课学生接受的比较好,尚无知识盲点。以后更加努力。

下载向日葵组丁志明——一次函数的图像与性质教学设计word格式文档
下载向日葵组丁志明——一次函数的图像与性质教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一次函数图像和性质教学设计说明

    教学设计说明 本节内容是人教版《义务教育课程标准实验教科书·数学》八年级上册“14.2.2一次函数”(第二课时) 一、本课数学内容的本质、地位和作用分析 本课数学内容的本质......

    一次函数图像性质教学反思

    《一次函数的图象和性质》教学反思 从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课......

    专题四作业:一次函数图像和性质教学设计

    “一次函数(2)图象和性质”教学设计 一、教学目标: 1.知识与能力目标: (1)让学生会画一次函数的图象,理解一次函数的图像和性质以及与正比例图像之间的关系。 (2)灵活运用一次函数的性......

    一次函数的图像与性质教学反思

    一次函数的图像与性质教学反思 周 炜 14.2.2一次函数这一节的重点是一次函数的概念、图象和性质,以及如何用待定系数法和函数的图像求一次函数解析式。一方面,在学生初次接触......

    一次函数的图像与性质教学反思

    一次函数的图像与性质教学反思 一、总体概述: 《一次函数图像的性质》这节课主要是在学生熟练掌握一次函数图像画法的基础上,通过观察几组特殊函数图象的特点和函数表达式之......

    《一次函数图像与性质》说课稿(小编整理)

    《一次函数的图像与性质》说课稿 尊敬的各位评委、老师:大家好!我是来自mou学校的moumoumou。今天我说课的内容是人教版八年级上册第一章中的《一次函数的图像与性质》,我将从......

    一次函数的图像和性质教学反思 TXC

    一次函数的图象和性质复习教学反思 重庆中山外国语学校 谭显超 2013年3月18日在中山外国语学校初中数学教研组安排下,我校初中数学教师组织了同课异构的教研活动,课题为《一次......

    一次函数的图像和性质教学反思(推荐阅读)

    一次函数的图像和性质教学反思 在本节课的教学中,上课老师坚持以学生为主体,采用自主探究——小组合作、 交流——问题升 华的教学模式。既注重学生基础知识的掌握,又重视学......