第一篇:新人教版三年级下册数学知识点归纳总结
新人教版三年级下册数学知识点归纳
第一单元 位置与方向
1、八个方向:东、南、西、北、东南、东北、西南、西北。
2、①(东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。
② 清楚以谁为标准来判断位置。
③ 理解位置是相对的,不是绝对的。
3、地图通常是按(上北、下南、左西、右东)来绘制的。(做题时先标出北南西东。)
4、会看简单的路线图,会描述行走路线。
一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。
5、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
6、生活中的方位知识:
① 北斗星永远在北方。
② 影子与太阳的方向相对。
③ 早上太阳在东方,傍晚在西方。
④ 风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘„„)
第二单元 除数是一位数的除法
1、口算时要注意:
(1)0除以任何数(0除外)都等于0;(2)0乘以任何数都得0;
(3)0加任何数都得任何数本身;(4)任何数减0都得任何数本身。
2、乘除法的估算:4舍5入法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。(2)想口诀来估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。
如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600。除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),再口算480÷8得60。
3、没有余数的除法: 有余数的除法:
被除数÷除数=商 被除数÷除数=商„„余数
商×除数=被除数 商×除数+余数=被除数
被除数÷商=除数(被除数—余数)÷商=除数
4、笔算除法顺序:确定商的位数,试商,检查,验算。
(1)一位数除三位数的笔算方法:先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。
(2)除法的验算方法:
没有余数的除法的验算方法:商×除数=被除数; 有余数的除法的验算方法:商×除数+余数=被除数。
第三单元 统计
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
3、求平均数公式:总和÷份数=平均数 总和÷平均数=份数平均数×份数=总和
第四单元 两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:
(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加
(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:
(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:
一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:
先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。
小技巧:口算乘法:整
十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
如:30×500=15000 可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000
笔算乘法
先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
注意事项
1.估算:18×22,可以先把因数看成整
十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
2、有大约字样的一般要估算。
3、凡是问”够不够,能不能”等的题,都要三大步: ①计算、②比较、③答题。→ 别忘了比较这一步。
4、相关公式: 因数×因数 = 积 积÷因数 = 另一个因数
5、两位数乘两位数积可能是(三)位数,也可能是(四)位数。
6、特殊的算式:25×4=100,125×8=1000
第五单元 面积和面积单位
1.周长:封闭图形一周的长度,叫做周长。常用的长度单位有:(千米)、(米)、(分米)、(厘米)、(毫米)。
面积:物体表面或封闭图形的大小,叫做它们的面积。常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。2.理解面积单位的意义。
1平方米:边长是1米的正方形,它的面积是1平方米。1平方分米:边长是1分米的正方形,它的面积是1平方分米。1平方厘米:边长是1厘米的正方形,它的面积是1平方厘米。
3.在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲盖)、1平方分米(电脑光盘或电线插座)、1平方米(教室侧面的小展板)。
4.区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。5.比较两个图形面积的大小,要用(统一)的面积单位来测量。
2.正确理解并熟记相邻的面积单位之间的进率:
1平方米 = 100平方分米 = 10000平方厘米 1平方分米 = 100平方厘米 ④ 相邻两个常用的长度单位之间的进率是(10)。相邻两个常用的面积单位之间的进率是(100)。
背熟公式:
1、周长公式:
长方形的周长 =(长+宽)× 2 长 = 周长÷2-宽 长 =(周长-宽×2)÷2 宽 = 周长÷2-长 宽 =(周长-长×2)÷2 正方形的周长 = 边长×4 正方形的边长 = 周长÷4
2、面积公式:
长方形的面积=长×宽 正方形的面积=边长×边长 已知面积求长:长=面积÷宽 已知面积求宽:宽=面积÷长
A、正确区分长方形和正方形的周长和面积的意义,并能正确运用上面的4个计算公式求周长和面积。归类:
a、什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等)
b、什么样的问题是求面积?或与面积有关?(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地、裁手帕的等等)
B、长方形或正方形纸的剪或拼。有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。从一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。要求先画图,再标上所用数据,最后列式计算。C、刷墙的(有的中间有黑板、窗户等):用大面积-小面积。
注 意:
(1)面积相等的两个图形,周长不一定相等。周长相等的两个图形,面积不一定相等。(2)大单位换算小单位(乘它们之间的进率)。小单位换算大单位(除以它们之间的进率)(3)长度单位和面积单位的单位不同,无法比较。
(4)周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长不一定相等。
第六单元 年、月、日
1、一年有十二个月,1、3、5、7、8、10、12 这七个月是31天叫做大月,4、6、9、11这四个月是30天叫做小月,平年2月是28天,全年有365天,闰年2月是29天,全年有366天。
2、一年分四季,每3个月为一季; 一、二、三月是第一季度,四、五、六月是第二季度,七、八、九月是第三季度,十、十一、十二是第四季度。
3、一月分为上中下三旬:1-10号是上旬,11-20号是中旬,21-30(31)号是下旬
4、公历年份是4的倍数一般都是闰年,但公历年份是整百数的,必须是400的倍数才是闰年。如1900年不是闰年而是平年,而2000年是闰年。
5、推算星期几的方法 例:已知今天星期三,再过50天星期几?
解析:因为一个星期是七天,那么由50÷7=7(星期)„„1(天),知道50天里有7个星期多一天,所以第50天是星期四。6、24时表示法:在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。
7、超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午、晚上等字在时刻前面。比如下午3时→3+12=15时。
8、时间段的计算:就是用结束时刻减开始时刻。比如10:00开始营业,22:00结束营业,营业时间为:22:00—10:00=12(小时)结束时刻—开始时刻=经过时间
9.经过的天数的计算:结束时间—开始时间+1=经过的天数 例如:6月12到6月30日是多少天?(30-12+1=19天)
10、常用的时间单位有:年、月、日、时、分、秒。
11、重要的日子:1949年10月1日,中华人民共和国成立。
1月1日元旦节、3月12日植树节,5月1日劳动节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节
12、时间单位进率: 1世纪=100年 1年 =12个月 1天(日)=24小时 1小时=60分钟 1分钟=60秒钟 1周=7天
第七单元 小数的初步认识
1、小数的意义:像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。小数是分数的另一种表现形式。
2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。例如:127.005读作:一百二十七点零零五。
3、小数与分数的关系、互换。小数不同表示的分数就不同。例如:0.5=5/10 0.50=50/100
4、运用元/角/分、米/分米/厘米的知识写小数;把7角、7分改写成以元作单位的小数。
5、把“单位1”平均分成10份,每份是它的十分之一,也就是0.1 把“单位1”平均分成100份,每份是它的百分之一,也就是0.01
6、分母是10的分数写成一位小数(0.1),分母是100的分数写成两位小数(0.01)。
7、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。
8、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。
9、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。
10、小数加减法计算。(尤其注意:12-3.9; 9+8.3 等题的计算。)
11、小数不一定比整数小。(如:5.1 >5 ;1.3 > 1等)
第八单元 数学广角-搭配
(二)简单的排列:有序排列才能做到不重复、不遗漏。简单的组合:组合问题可以用连线的方法来解决。
组合与排列的区别:排列与事物的顺序有关,而组合与事物的顺序无关。
第二篇:新人教八年级下册数学期末考试知识点归纳
新人教八年级下册数学期末考试知识点归
纳
二次根式
知识回顾
1.二次根式:式子(ge;0)叫做二次根式。2.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。4.二次根式的性质:(1)()2=(ge;0);(2)5.二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=(age;0,bge;0);(bge;0,agt;0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。3.直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:ang;C=90deg;ang;A+ang;B=90deg;(2)、在直角三角形中,30deg;角所对的直角边等于斜边的一半。ang;A=30deg;可表示如下:BC=AB ang;C=90deg;(3)、直角三角形斜边上的中线等于斜边的一半 ang;ACB=90deg;可表示如下:CD=AB=BD=AD D为AB的中点
4、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
5、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
四边形
1.四边形的内角和与外角和定理:(1)四边形的内角和等于360deg;;(2)四边形的外角和等于360deg;.2.多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180deg;;(2)任意多边形的外角和等于360deg;12.等腰梯形的判定:
(四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD
there4;ABCD四边形是等腰梯形 14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.一次函数
一、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且kne;0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且kne;0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:
(1)图象:正比例函数y=kx(k是常数,kne;0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当kgt;0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,bgt;0图像经过一、二、三象限;(2)kgt;0,blt;0图像经过一、三、四象限;(3)kgt;0,b=0图像经过一、三象限;(4)klt;0,bgt;0图像经过一、二、四象限;(5)klt;0,blt;0图像经过二、三、四象限;(6)klt;0,b=0图像经过二、四象限。
一次函数表达式的确定
求一次函数y=kx+b(k、b是常数,kne;0)时,需要由两个点来确定;求正比例函数y=kx(kne;0)时,只需一个点即可.5.一次函数与二元一次方程组:
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并
求出这个函数值
解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析
数据的代表:平均数、众数、中位数、极差、方差
一元二次方程知识点总结
一、知识框架
二、知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(ane;0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(ane;0)3.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,•都能化成如下形式ax2+bx+c=0(ane;0)。
一个一元二次方程经过整理化成ax2+bx+c=0(ane;0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。4.一元二次方程的解法(1)直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,当b”、“=”、“lt;”)。
16.如图,在四边形ABCD中ABCD,若加上ADBC,则四边形ABCD为平行四边形。现在请你添加一个适当的条件:,使得四边形AECF为平行四边形.(图中不再添加点和线)转眼之间一个学期也将过去了,同学们也迎来了期末考试,希望上文为大家提供的八年级下册数学期末考试知识点归纳,能帮助到大家。
精编八年级数学下册《全等三角形》知识点总结 2016学年初二下册《反证法》知识点归纳:例题解析
第三篇:冀教版,三年级下册数学知识点总结
三年级数学知识点
一、定义、概念
1.24时计时法:从0时到24时的计时法,叫做24时计时法。2.平年:2月是28天的年份叫做平年。3.闰年:2月是29天的年份叫做闰年。4.1厘米=10毫米 1cm=10mm 5.1000米=1千米 1000m=1km 6.速度:汽车每小时行驶的千米数叫做速度。7.速度=路程÷时间
8.像7.25、8.80、1.06、0.58这样的数,都叫做小数。“.”叫做小数点。
9.面积:物体表面或平面图形的大小,叫做它们的面积。
10.测量和计算面积要用面积单位。常用的面积单位有平方厘米、平方分米、平方米。
11.边长是1厘米的正方形,面积是1平方厘米,平方厘米用示。
12.边长是1分米的正方形,面积是1平方分米,平方分米用dm表示。
13.边长是1米的正方形,面积是1平方米,平方米用m表示。14.1平方米=100平方分米 1m=100dm 15.1平方分米=100平方厘米 1dm=100cm 16.1平方米=10000平方厘米 1m=10000cm 17.长方形的面积=长×宽 18.正方形的面积=边长×边长 19.一半也可以说是二分之一,记作
20.分数:像、、、、这样的数,都叫做分数。1213222222cm表
2221223143
4二、算理
1.普通计时法与24时计时法的转化:把普通计时法转化成24时计时法时,要注意在下午1时到晚间12时所对应的时间要加12时,还要去掉限制词。把24时计时法转化成普通计时法时,时间减12时后,要加上限制词。
2.计算不是同一天的经过时间的方法:先计算出每一天分别经过的时间,然后将它们加起来就得到所经过的总时间。
3.平年2月份有28天,闰年2月份有29天。平年每年有365天,闰年每年有366天。通常连续四年里,有3个平年1个闰年。4.公历年份是4的倍数的一般都是闰年。公历年份是整百数的,必须是四百的倍数才是闰年。
5.两位数乘两位数进位乘法的计算方法:相同数位对齐,先用第二个乘数个位上的数乘第一个乘数,积的末位数与个位对齐;再用第二个乘数十位上的数去乘第一个乘数,积的末位数与十位对齐。哪一位相乘满几十就要向前一位进几,最后把乘得的积相加。
6.用竖式计算末尾有0的乘法时,把0前面的数位对齐,用0前面的数相乘,再看乘数的末尾一共有几个0,就在乘得的积的末尾添几个0。
7.估算时,先把算式中一个或两个乘数估算成和它接近的整十数或整百数然后计算。估算的结果不是准确数,因此结果用≈连接。用估算的方法解决实际问题,既要灵活,也要尽可能的接近准确值。8.辨认东西南北四个方向的方法:先确定一个方向,再根据这个方向辨认其它三个方向。
9.根据给定的一个方向找其他三个方向的方法:面南背北,左东右西;面北背南,左西右东;面东背西,左北右南;面西背东,左南右北。10.用尺子测量时,如果起始端刻度不是0,则要用末端刻度减去始端刻度,才能得出测量结果。11.测量比较薄的物品的厚度时,为使测量结果更精确,可以采用转化的方法。先测出若干数量的相同物品摞在一起的厚度,再除以这个数量,求出一个物品的厚度。
12.小数的读法:小数的整数部分按照整数的读法来读,整数部分是0的就读作零;中间的小数点读作点。小数部分按从左到右的顺序依次读出每一位上的数,如果是0,也必须读出来。
13.小数的写法:先写整数部分,按照整数的写法来写,如果整数部分是零,就直接写0;再在个位的右下角点上小数点;最后依次写出小数部分每一位上的数。小数部分不管有几个0都要写出来。14.小数大小比较的方法:先比较整数部分,整数部分大的那个数就大;如果整数部分相同,就比较小数部分,小数部分第一位上的数大的那个数就大。如果第一位上的数相同,就比较第二位上的数字,以此类推,直到比较出大小为止。
15.小数加、减法的计算方法:计算时,先把两个数的小数点对齐,也就是把相同数位对齐,再按照整数加、减法的计算法则进行计算。从最右边算起,算完后,得数的小数点要和加数或被减数、减数的小数点对齐。
16.进位的小数加法的计算方法:计算时先把两个加数的小数点对齐,也就是把相同数位对齐,再按照整数加法的计算法则进行计算。从最右边算起,哪一位相加满十就要向前一位进1。算完后,得数的小数点要和加数的小数点对齐。
17.退位的小数减法的计算方法:计算时,先把两个数的小数点对齐,也就是把相同数位对齐,再按照整数减法的计算法则进行计算。从最右边算起,哪一位不够减就要向前一位借1作10,算完后,差的小数点要和被减数、减数的小数点对齐。
18.同分母分数加减法的计算法则:同分母分数相加减,分母不变,只把分子相加减。
三、答题技巧
1.24时计时法转化为普通计时法:用24时计时法的时刻减去12,在再加上限制词。
2.终止时刻-开始时刻=经过时间
3.计算末尾有0的两位数乘法时,看乘数的末尾一共有几个0,一定要记得在乘得的积的末尾添上几个0 4.在一个算式里,如果只有加、减法或只有乘、除法,就从左向右依次计算;如果含有加、减、乘、除四种运算,要先算乘、除法,再算加、减法。
5.根据一个确定的方向找其他三个方向;面南背北,左东右西;面北背南,左西右东;面东背西,左北右南,面西背东,左南右北。6.我们认识了东、南、西、北、东南、东北、西南、西北八个方向,要学会应用到生活中去。
7.描述行走路线时,先确定好位置,再找出观测点,确定出方向,最后确定两地之间的距离。
8.我们并不知道这种生物从培养开始是多长,只知道30天时20毫米,那么就从第30天依次往前1天1天倒推回去。
9.比较两个量的大小时,一定要先统一单位,再作比较。10.速度=路程÷时间 时间=路程÷速度 路程=速度×时间 11.在统计数据时,要做到每个数据都不重复、不遗漏。
12.读小数时,小数点左边的部分按整数的读法来读,整数部分是0的读作“零”,小数点读作“点”,小数点右边的部分顺次读出每个数位上的数字,如果是0,也必须读出来。
13.记清楚单位之间的换算关系,按照正确的方法改写成小数。14.在比较成绩的时候,不要单纯地认为哪个小数大,谁的成绩就好,要具体情况具体分析。
15.计算小数加、减法用竖式计算比较简便,计算时,注意小数点对齐,按照整数加、减法的计算法则进行计算。
16.用竖式计算时,将小数点对齐,从最右边的一位算起,不要忘记在算出的得数里加上小数点。
17.先数出总的方格数,在算出阴影部分的方格数,最后用除法计算。18.相邻的面积单位之间,把大单位化成小单位,就用大单位前面的数乘100;反之,就用小单位前面的数除以100。
19.求正方形的面积必须知道正方形的边长,正方形的边长=周长÷4,正方形的面积=边长×边长。
20.一个物体或图形只有被平均分,才能用分数表示几分之一。21.用几分之几来表示各部分与整体的关系时,首先确定谁是整体,接着确定把整体平均分成的份数,并把它作为分数的分母,最后看取这样的几份,并把它作为分数的分子。同分母分数相加减,分母不变,只把分子相加减。
第四篇:三年级下册数学知识点
数学可以训练你的思维能力,思维方式。当然最重要的是与自己能在社会上生活有关,你想找到好的工作,基本都是和数学都是有关系的。因此从小的学习十分有必要。下面小编给大家分享一些三年级下册数学知识,希望能够帮助大家,欢迎阅读!
三年级下册数学知识1
多位数乘一位数
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
3、因数末尾有几个0,就在积的末尾添上几个0。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数
5、(关于“大约)应用题:
①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)
②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)
③条件和问题中都有“大约”,求近似数,用估算。→(≈)
分数的初步认识
1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、①相同分母的分数相加、减:分母不变,只和分子相加、减。
②1与分数相减:1可以看作是分子分母相同的分数。
四边形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式。长方形的周长=(长+宽)×2正方形的周长=边长×4
三年级下册数学知识2
除数是一位数的除法
1、只要是平均分就用(除法)计算。
2、除数是一位数的竖式除法法则:
(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。
(2)除到被除数的哪一位,就把商写在那一位上。
(3)每求出一位商,余下的数必须比除数小。
顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。
3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)
4、笔算除法:
(1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;的被除数=商×除数+的余数;
最小的被除数=商×除数+1;
(2)除法验算:→用乘法
没有余数的除法有余数的除法
被除数÷除数=商被除数÷除数=商??余数
商×除数=被除数商×除数+余数=被除数
被除数÷商=除数(被除数-余数)÷商=除数
0除以任何不是0的数(0不能为除数)都等于0;
0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。
5、笔算除法顺序:确定商的位数,试商,检查,验算。
6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)
7、多位数除以一位数(判断商是几位数):
用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。
三年级下册数学知识3
第一单元位置与方向
1、①(东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。
②清楚以谁为标准来判断位置。
③理解位置是相对的,不是绝对的。
2、地图通常是按(上北、下南、左西、右东)来绘制的。
(做题时先标出北南西东。)
3、会看简单的路线图,会描述行走路线。
一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。
4.、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5.、生活中的方位知识:
①北斗星永远在北方。
②影子与太阳的方向相对。
③早上太阳在东方,中午在南方,傍晚在西方。
④风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)
三年级下册数学知识41、口算时要注意:
(1)0除以任何数(0除外)都等于0;
(2)0乘以任何数都得0;
(3)0加任何数都得任何数本身;
(4)任何数减0都得任何数本身。
2、没有余数的除法:
被除数÷除数=商
商×除数=被除数
被除数÷商=除数
有余数的除法:
被除数÷除数=商……余数
商×除数+余数=被除数
(被除数—余数)÷商=除数
3、笔算除法顺序:确定商的位数,试商,检查,验算。
(1)一位数除两位数(商是两位数)的笔算方法:先用一位数除十位上的数,如果有余数,要把余数和个位上的数合起来,再用除数去除。除到被除数的哪一位,就把商写在那一位上面。
(2)一位数除三位数的笔算方法:先从被除数的位除起,如果位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。
(3)除法的验算方法:
没有余数的除法的验算方法:商×除数:被除数;
有余数的除法的验算方法:商×除数+余数=被除数。
4、基本规律:
(1)从高位除起,除到哪一位,就把商写在那一位;
(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(位不够除,就看两位上商。)
(3)哪一位有余数,就和后面一位上的数合起来再除;
(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
增:第二单元课外知识拓展5、2、3、5倍数的特点
2的倍数:个位上是2、4、6、8、0的数是2的倍数。
5的倍数:个位上是0或5的数是5的倍数。
3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。比如:462,4+6+2=12,12是3的倍数,所以462是3的倍数。
6、关于倍数问题:
两数和÷倍数和=1倍的数
两数差÷倍数差=1倍的数
例:已知甲数是乙数的5倍,甲乙两数的和是24,求甲乙两数?
这里把乙数看成1倍的数,那甲数就是5倍的数。它们加起来就相当于乙数的6倍了,而它们加起来的和是24。这也就相当于说乙数的6倍是24。所以乙数为:24÷6=4,甲数为:4×5=20
同样:若已知甲数是乙数的5倍,甲乙两数之差是24,求甲乙两数?
这里把乙数看成1倍的数,那甲数就是5倍的数。它们的差就相当于乙数的4倍了,而它们的差是24。这也就相当于说乙数的4倍是24。所以乙数为:24÷4=6,甲数为:6×5=307、和差问题
(两数和—两数差)÷2=较小的数
(两数和+两数差)÷2=较大的数
例:已知甲乙两数之和是37,两数之差是19,求甲乙两数各是多少?
解析:如果给甲数加上“乙数比甲数多的部分(两数差)”(虚线部分),则由图知,甲数+两数差=乙数。如是:甲数+两数差+乙数=甲数+乙数+两数差=两数和+两数差
又有:甲数+两数差+乙数=乙数+乙数=乙数×2
知道:两数和+两数差=乙数×2
(两数和+两数差)÷2=乙数
解:假设乙数是较大的数。乙:(37+19)÷2=28甲:28-19=98、锯木头问题。
王叔叔把一根木条锯成4段用12分钟,锯成5段需要多长时间?
锯成4段只用锯3次,也就是锯3次要12分钟,那么可以知道锯一次要:12÷3=4(分钟)
而锯成5段只用锯4次,所需时间为:4×4=16(分钟)
9、巧用余数解决问题。
①()÷8=6……(),求被除数是,最小是。
根据除法中“余数一定要比除数小”规则,余数应是7,最小应是1。
再由公式:商×除数+余数=被除数,知道被除数应是6×8+7=55,最小应是6×8+1=49。
②少年宫有一串彩灯,按1红,2黄,3绿排列着,请你猜一猜第89个是什么颜色?
彩灯一组为:1+2+3=6(个),照这样下去,89÷6=14(组)……5(个)第89个已经有像上面的这样6个一组14组,还多余5个;这5个再照1红,2黄,3绿排列下去,第5个就是绿色的了。
③加一份和减一份的余数问题。
例1:38个去划船,每条船限坐4个,一共要几条船?
38÷4=9(条)……2(人)
余下的2人也要1条船,9+1=10条。
答:一共要10条船。
例2:做一件成人衣服要3米布,现在有17米布,能做几件成人衣服?
17÷3=5(件)……2(米)
余下的2米布不能做一件成人衣服
答:能做5件成人衣服。
三年级下册数学知识5
第三单元复式统计表
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
第四单元两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:
(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加
(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:
(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。
(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。
(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:
一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:
先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。
小技巧:口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
如:30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000
笔算乘法
先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
注意事项
1.估算:18×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
2、有大约字样的一般要估算。
3、凡是问够不够,能不能等的题,都要三大步:
①计算、②比较、③答题。→别忘了比较这一步。
几个特殊数:
25×4=100,125×8=10004、相关公式:
因数×因数=积
积÷因数=另一个因数
5、两位数乘两位数积可能是(三)位数,也可能是(四)位数。
三年级下册数学知识点
第五篇:三年级下册数学知识点归纳
三年级下册数学知识点归纳
1、东和西相对,北和南相对
2、早晨太阳从东边升起,傍晚太阳从西边落下。
3、地图上的方向:上北下南左西右东
4、除法验算:被除数=除数×商+余数5、12时计时法转换24是计时法:
凌晨0时——中午12时,时刻不变;中午1时——晚上12时,时刻+12
24时计时法转换12是计时法:
0时—12时,时刻不变,标明凌晨、上午、中午;
13时——24时,时刻—12,标明下午、晚上
6、经过时间=结束时间—开始时间结束时间=开始时间+经过时间开始时间=结束时间—经过时间
7、一年有12个月,31天的月份有1月、3月、5月、7月、8月、10月、12月; 30天的月份有4月、6月、9月、11月。有31天的月份是大月,30天的月份是小月
2月平年有28天,闰年有29天
平年一年有365天,闰年一年有366天
8、判断平年闰年:一般情况用年份除以4;但年份是整百数的要除以4009、3月8日妇女节3月12日植树节5月1日劳动节
6月1日儿童节8月1日建军节9月10日教师节 10月1日国庆节
10、大单位变小单位用乘法,乘它们之间的进率。
小单位变大单位用除法,除以他们之间的进率。
11、物体表面或封闭图形的大小,就是它们的面积。
11、长方形的周长=(长+宽)×2正方形的周长=边长×4
长方形的面积=长×宽正方形的面积=边长×边长
12、已知正方形的周长:正方形的边长=周长÷4
已知长方形的周长:长方形的长=周长÷2—宽长方形的宽=周长÷2—长
已知长方形的面积:长方形的长=面积÷宽长方形的宽=面积÷长
13、从一个长方形中剪下一个最大的正方形,剪下的正方形的边长就是原来长方形的宽。
14、平均数能较好地反映一组数据的总体情况。
15、混合运算的方法:①有括号的先算括号里的②没有括号的:只有乘法和除法时,按顺序计算
只有加法和减法时,按顺序计算
既有加法或减法,又有乘法或除法时,先算乘除法,再算加减法。16、1公顷=10000平方米1平方千米=100公顷