第一篇:等比数列经典故事
等比数列经典故事
根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宗师见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.
国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宗师,作为对他忠心的奖赏,他需要得到什么赏赐.宗师开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒„„即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的倍数,直到最后一个格子第64格放满为止,这样我就十分满足了. “好吧!”国王哈哈大笑,慷慨地答应了宗师的这个谦卑的请求.
这位聪明的宰相到底要求的是多少麦粒呢?稍微算一下就可以得出:1+2+2^2+2^3+2^4+„„+2^63=2^64-1,直接写出数字来就是18、446、744、073、709、551、615粒,这位宰相所要求的,竟是全世界在两千年内所产的小麦的总和!
如果造一个宽四米,高四米的粮仓来储存这些粮食,那么这个粮仓就要长三亿千米,可以绕地球赤道7500圈,或在日地之间打个来回。
国王哪有这么多的麦子呢?他的一句慷慨之言,成了他欠宰相西萨·班·达依尔的一笔永远也无法还清的债。
正当国王一筹莫展之际,王太子的数学教师知道了这件事,他笑着对国王说:“陛下,这个问题很简单啊,就像1+1=2一样容易,您怎么会被它难倒?”国王大怒:“难道你要我把全世界两千年产的小麦都给他?”年轻的教师说:“没有必要啊,陛下。其实,您只要让宰相大人到粮仓去,自己数出那些麦子就可以了。假如宰相大人一秒钟数一粒,数完18、446、744、073、709、551、615粒麦子所需要的时间,大约是5800亿年(大家可以自己用计算器算一下!)。就算宰相大人日夜不停地数,数到他自己魂归极乐,也只是数出了那些麦粒中极小的一部分。这样的话,就不是陛下无法支付赏赐,而是宰相大人自己没有能力取走赏赐。”国王恍然大悟,当下就召来宰相,将教师的方法告诉了他。
西萨·班·达依尔沉思片刻后笑道:“陛下啊,您的智慧超过了我,那些赏赐„„我也只好不要了!”当然,最后宰相还是获得了很多赏赐(没有麦子)。
第二篇:等比数列题
等比数列
【做一做1】 等比数列3,6,12,24的公比q=__________.2.通项公式
等比数列{an}的首项为a1,公比为q,则通项公式为an=______(a1≠0,q≠0).
【做一做2】 等比数列{an}中,a1=2,q=3,则an等于()
n-1A.6B.3×2
n-1nC.2×3D.6
【做一做3】 4与9的等比中项为()
A.6B.-6C.±6D.36
题型一求等比数列的通项公式
【例题1】 在等比数列{an}中,已知a5-a1=15,a4-a2=6,求an.分析:设公比q,列出关于a1和q的方程组来求解.
题型二等比数列的判定和证明
【例题2】 已知数列{an}满足lg an=3n+5,求证:{an}是等比数列. 反思:证明数列是等比数列常用的方法:
①定义法:an+1anq(q≠0,且是常数)或q(q≠0,且是常数)(n≥2)anan-1{an}为等比
数列.此法适用于给出通项公式的数列,如本题.
*②等比中项法:a2n+1=an·an+2(an≠0,n∈N){an}为等比数列.此法适用于通项公
式不明确的数列.
n-1*③通项法:an=a1q(其中a1,q为非零常数,n∈N){an}为等比数列.此法适用于
做选择题和填空题.
题型四易错辨析
【例题4】 23与2-3的等比中项是__________.已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7等于()
A.243B.128C.81D.64
111,则其第8项是__________. ,248
9123在等比数列{an}中,a1=,an=,公比q=,则n=__________.8332(2011·浙江杭州一模)已知等比数列前3项为
第三篇:等比数列第一节
课题:等比数列及其前N项和
学习目标:掌握等比数列的定义,通项公式和前n项和的公式,并能利用这些知识解决有关
问题,培养学生的化归能力
重点、难点:
对等比数列的判断,通项公式和前n项和的公式及性质的应用
知识梳理:
1.等比数列的定义
由定义可推导等比数列的单调性为2.等比数列的是通项公式(如何推导?)通项公式的推广:
3.等比中项 问题探究1:b2=ac是a,b,c成等比数列的什么条件? 4.等比数列的常用性质
(1)若{ab12n},{n}(项数相同)是等比数列,则{λan}(λ≠0),an,{an},{an·bn},abn
是否是等比数列.
(2)若{an}为等比数列,且m+n=p+q,则(m,n,p,q∈N*).(3)若{an}是等比数列,公比为q,则ak,ak+m,ak+2m,…(k,m∈N*)是公比为的等比数列.(4)若{an}为等比数列,则数列Sm,S2m-Sm,S3m-S2m,…是否是等比数列 5.等比数列的前n项和公式(如何推导?)
若已知首项a1,公比是q,则Sn=,或首项是a1,末项an,Sn=.6.问题探究2:如何用函数的观点认识等比数列{an}的通项公式an及前n项和Sn?
典型例题: 考向一 等比数列基本量的计算
【例1】设等比数列{an}的前n项和为Sn,已知a2=6,6a1+a3=30.求an和Sn.考向二 等比数列的判定或证明
【例2】已知数列{aaan+an+1n}满足1=1,a2=2,an*
+2=2,n∈N.(1)令bn=an+1-an,证明:{bn}是等比数列;(2)求{an}的通项公式.
考向三等比数列性质的应用
【例3】已知等比数列前n项的和为2,其后2n项的和为12,求再往后3n项的和.达标训练:
1.等比数列{an}满足:a1+a6=11,a3·a32
4=
9,且公比q∈(0,1).
(1)求数列{an}的通项公式;
(2)若该数列前n项和Sn=21,求n的值.
2.在等比数列{a}中,若a1
n1=2a4=-4,则公比q=________;|a1|+|a2|+…+|an|=________.3、已知数列{an}是等比数列,且a*
n>0,nN,a3a52a4a6a5a781,则a4a6.
【收获总结】
第四篇:2.3 等比数列(范文模版)
怀仁十一中高中部数学学案导学(三十三——1)
2.3 等比数列主备人袁永红
教学目的:
1.掌握等比数列的定义.2.理解等比数列的通项公式及推导
教学重点:教学难点:学习关键:
自学指导
1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么
a这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),n=qan
1(q≠01“从第二项起”与“前一项”之比为常数(q){an}成等比数列an1=q(nN,q≠0).an
2 隐含:任一项an0且q0、“an≠0”是数列{an}成等比数列的必要非充分条件. 3 q= 1时,{an}2.等比数列的通项公式1: ana1qn1(a1q0)由等比数列的定义,有:
a2a1q;a3a2q(a1q)qa1q2;a4a3q(a1q2)qa1q3;
„ „ „ „ „ „ „ anan1qa1qn1(a1q03.等比数列的通项公式2: anamqm1(a1q0)
4.既是等差又是等比数列的数列:非零常数列.
5.证明数列{an}为等比数列:
①定义:证明an1an1an22aa或=常数,②中项性质:an 1nn2anan1an
尝试练习
1.求下面等比数列的第4项与第5项:
(1)5,-15,45,„„;(2)1.2,2.4,4.8,„„;(3),.,;(4)2,1,2.求下列等比数列的公比、第5项和第n项:2133282,„„.2
(1)2,6,18,54,„;(2)7,561428,,;2739
(3)0.3,-0.09,0.027,-0.0081,„;(4)5,5c1,52c1,53c1,.3.数列m,m,m,„m,()
A.一定是等比数列B.既是等差数列又是等比数列
C.一定是等差数列不一定是等比数列D.既不是等差数列,又不是等比数列
4.已知数列{an}是公比q≠±1的等比数列,则在{an+an+1},{an+1-an},{
是等比数列的有()
A.1个B.2个C.3个D.4个
5.(1)一个等比数列的第9项是,公比是-,求它的第1项.(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.典例精讲
例1.求下列各等比数列的通项公式:
1.a1=2,a3=8
解:a3a1qq24q24913an}{nan}这四个数列中,an1an(2)2n12n或an(2)(2)n1(2)n
2.a1=5, 且2an1=3an解:qan13an23又:a15an5()n1 2
an1n ann13.a1=5, 且
解:an1an12,ann1a12a32an1 ,,na23an1n
1a1n例2.求出下列等比数列中的未知项:
(1)2,a,8;以上各式相乘得:an
(2)-4,b,c,.解:
(1)根据题意,得
(2)根据题意,得
所以a=4或a=-4.
解得
所以b=2,c=-1.
例3在等比数列{an}中,(1)已知a1=3,q=-2,求a6;(2)已知a3=20,a6=160,求an.
解:(1)由等比数列的通项公式,得
(2)设等比数列的公比为q,那么
所以
例4在243和3中间插入3个数,使这5个数成等比数列.
解设插入的三个数为a2,a3,a4,由题意知243,a2,a3,a4,3成等比数列.
设公比为q,则
因此,所求三个数为81,27,9,或-81,27,-9.
基础训练
1.判断下列数列是否为等比数列:
(1)1,1,1,1,1;
(2)0,1,2,4,8;
(3)1,1111,,.81624
2在等比数列{an}中,(1)已知a1=3,q=-2,求a6;
(2)已知a3=20,a6=160,求an.3.在243和3中间插入3个数,使这5个数成等比数列.
4.成等差数列的三个正数之和为15,若这三个数分别加上1,3,9后又成等比数列,求这三个数.能力提升
1.在等比数列{an}中,a3·a4·a5=3,a6·a7·a8=24,则a9·a10·a11的值等于()
A.48B.72C.144D.192
2.在等比数列中,已知首项为
3.已知等比数列{an}的公比q=-912,末项为,公比为,则项数n等于______.833aa3a5a71,则13a2a4a6a8
4.已知数列{an}为等比数列,(1)若an>0,且a2a4+2a3a5+a4a6=25,求a3+a5.(2)a1+a2+a3=7,a1a2a3=8,求an.5.已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列.6.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12
学习反思
第五篇:等比数列复习题
等比数列
[重点]
等比数列的概念,等比数列的通项公式,等比数列的前n项和公式。1.定义:数列{an}若满足
an
1=q(q0,q为常数)称为等比数列。q为公比。an
2.通项公式:an=a1qn-1(a10、q0)。
na13.前n
4.性质:(man=a2p,(3)记 5a
1和q[难点]
例题选讲1.(湖北),则a
()2.(辽宁),则Sn等于()3.已知a1(1)(2)设(3)记bn=
2,求{bn}数列的前项和Sn,并证明Sn+=1.
anan23Tn1
一、选择题
1.在公比q1的等比数列{an}中,若am=p,则am+n的值为()
n+1n-1nm+n-
1(A)pq(B)pq(C)pq(D)pq
2.若数列{an}是等比数列,公比为q,则下列命题中是真命题的是()(A)若q>1,则an+1>an(B)若0 3eud教育网 http://教学资源集散地。可能是最大的免费教育资源网! (C)若q=1,则sn+1=Sn(D)若-1 b9bb9b10 (A)8(B)()(C)9(D)()10 aaaa 4.在2与6之间插入n个数,使它们组成等比数列,则这个数列的公比为 ()(A)3(B)1(C)n(D)n 35.若 值为((A)60) (2){a2n-1的个数为(A)(7a、b((A)8C,则一AC=B2(9.() (A)10.设n} 中((A(C)至多有一项为零(D)或有一项为零,或有无穷多项为零 11.在由正数组成的等比数列{an}中,若a4a5a6=3,log3a1+log3a2+log3a8+log3a9的值为 43(A)(B)(C)2(D)3 () 4n 112.在正项等比数列{an}中,a1+a2+……an=,则a1+a2+…an的值为 () (A)2n(B)2n-1(C)2n+1(D)2n+1- 213.数列{an}是正数组成的等比数列,公比q=2,a1a2a3……a20=a50,,则a2a4a6……a20的值为(A)230(B)283(C)2170(D)2102-2() 14.在数列{an}中,a1=2,an+1=2an+2,则a100的值为() (A)2100-2(B)2101-2(C)2101(D)21 515.某商品的价格前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是() (A 123.已知…,xn,bK,则45.5a7+2,则实数6.若28在n1.已知等比数列{an},公比为-2,它的第n项为48,第2n-3项为192,求此数列的通项公式。 2.数列{an}是正项等比数列,它的前n项和为80,其中数值最大的项为54,前2n项的和为6560,求它的前100项的和。 3.已知a+b+c,b+c-a,c+a-b,a+b-c成等比数列,且公比为q,求证:(1)q3+ q 2+q=1,a (2)q= c 11,从第二项起,{an}是以为公比的等比数列,{an}22的前n项和为Sn,试问:S1,S2,S3…,Sn,…能否构成等比数列?为什么? 4.已知数列{an}满足a1=1,a2=- 5.求Sn=(x+ 111)+(x2+2)+…+(xn+n)(y0)。yyy 6.某企业年初有资金1000万元,如果该企业经过生产经营,50%,但每年年底都要扣除消费基金x资金达到2000万元(扣除消费基金后)(精确到万元)。 7.已知数列{an}满足a1=1,a2n比为q的等比数列(q>0),bn=anan+1,cn=a2n-1+a2n,求cn。 8.7m2,1000/ m2,一次性国家财政补贴28800元,学校补贴14400若付107.5%每年复利一次计算(即本年利息计入次年的本息),那么每年应付款多少元?(参考数据:1.0759 1011 1.921,1.0752.065,1.0752.221) 第八单元等比数列 一、选择题CDACABCDBDABABD 二、填空题 1. 12.50,10,2或2,10,50 3.ab k7k27 4.05.9简解:a3+a9=-,a3a9=a5a7=-,∴(-)=3×+2k=933336、1Ar(1r)n 7.2248、n (1r) 2二、解答题 n 1①ana1(2)48n-1n-1 1.解得a=3(-2)。1=3 ∴an=a1q2n 4192②a2n3a1(2) a1(1qn) ①80 2.∵ n项中又由3.(a c 4.当当当n1(11212S 1n-1n1 ∴Sn=()Sn 1()n {S}可以构成等比数列。 n1n1 2()25、当x1,y1时,11(1)nnyx(1x)xxn11yny1112n n∴Sn=(x+x+…+x)+(+)= n 111x1xyy2ynyy1 y 1yn 当x=1,y1时Sn=n+n n1 yy xxn1 n 当x1,y=1时Sn= 1x 当x=y=1时Sn=2n 6.设an表示第n年年底扣除消费基金后的资金。 a1=1000(1+)-x 21111 a2=[1000(1+)-x](1+)-x=1000(1+)2-x(1+)-x a3类推所得a5则1000,解得x 7、∵bn+1由a1=1,a由a2=r,a∴Cn8依次类推第n则各年付款的本利和{an}为等比数列。 x(11.07510) 元。∴10年付款的本利和为S10= 11.075 个人负担的余额总数为72×1000-28800-14400=28800元。10年后余款的本利和为18800×1.07510 11.07510288001.075100.07510 288001.075解得x=4200元 ∴x10 11.0751.0751