第一篇:高中物理磁场部分知识点总结
2016高中物理―磁场部分知识点总结
2016高中物理―磁场部分知识点总结
2016.03
一、磁场
磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。
电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。
与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。
1.地磁场
地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。2.地磁体周围的磁场分布
与条形磁铁周围的磁场分布情况相似。3.指南针
放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。4.磁偏角
地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。
说明:
①地球上不同点的磁偏角的数值是不同的。
②磁偏角随地球磁极缓慢移动而缓慢变化。
③地磁轴和地球自转轴的夹角约为11°。
二、磁场的方向
在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。
规定:
在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。
确定磁场方向的方法是:
将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。
磁体磁场:
可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。
2016高中物理―磁场部分知识点总结
电流磁场:
利用安培定则(也叫右手螺旋定则)判定磁场方向。
三、磁感线
在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。
(1)磁感线上每一点切线方向跟该点磁场方向相同。
(2)磁感线特点
(1)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。
(2)磁感线上每一点的切线方向就是该点的磁场方向。
(3)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极到S极,在磁体内部由S极到N极。
以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场
说明:
①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实曲线。
②磁感线与电场线类似,在空间不能相交,不能相切,也不能中断。
四、几种常见磁场
1通电直导线周围的磁场
(1)安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,这个规律也叫右手螺旋定则。
(2)磁感线分布如图所示:
2016高中物理―磁场部分知识点总结
说明:
①通电直导线周围的磁感线是以导线上各点为圆心的同心圆,实际上电流磁场应为空间图形。
②直线电流的磁场无磁极。
③磁场的强弱与距导线的距离有关,离导线越近磁场越强,离导线越远磁场越弱。
④图中的“×”号表示磁场方向垂直进入纸面,“·”表示磁场方向垂直离开纸面。2.环形电流的磁场
(1)安培定则:让右手弯曲的四指与环形电流的方向一致,伸直的拇指的方向就是环形导线轴线上磁感线的方向。
(2)磁感线分布如图所示:
(3)几种常用的磁感线不同画法。
说明:
①环形电流的磁场类似于条形磁铁的磁场,其两侧分别是N极和S极。
②由于磁感线均为闭合曲线,所以环内、外磁感线条数相等,故环内磁场强,环外磁场弱。
③环形电流的磁场在微观上可看成无数根很短的直线电流的磁场的叠加。
3.通电螺线管的磁场
(1)安培定则:用右手握住螺线管,让弯曲时四指的方向跟电流方向一致,大拇指所指的方向就是螺线管中心轴线上的磁感线方向。
(2)磁感线分布:如图所示。
(3)几种常用的磁感线不同的画法。
2016高中物理―磁场部分知识点总结
说明:
①通电螺线管的磁场分布:外部与条形磁铁外部的磁场分布情况相同,两端分别为N极和S极。管内(边缘除外)是匀强磁场,磁场分布由S极指向N极。
②环形电流宏观上其实就是只有一匝的通电螺线管,通电螺线管则是由许多匝环形电流串联而成的。因此,通电螺线管的磁场也就是这些环形电流磁场的叠加。
③不管是磁体的磁场还是电流的磁场,其分布都是在立体空间的,要熟练掌握其立体图、纵截面图、横横面图的画法及转换。4.匀强磁场
(1)定义:在磁场的某个区域内,如果各点的磁感应强度大小和方向都相同,这个区域内的磁场叫做匀强磁场。
(2)磁感线分布特点:间距相同的平行直线。
(3)产生:距离很近的两个异名磁极之间的磁场除边缘部分外可以认为是匀强磁场;相隔一定距离的两个平行放置的线圈通电时,其中间区域的磁场也是匀强磁场,如图所示:
五、磁感应强度
1、磁感应强度
为了表征磁场的强弱和方向,我们引入一个新的物理量:磁感应强度。描述磁场强弱和方向的物理量,用符号“B”表示。
通过精确的实验可以知道,当通电直导线在匀强磁场中与磁场方向垂直时,受到磁场对它的力的作用。对于同一磁场,当电流加倍时,通电导线受到的磁场力也加倍,这说明通电导线受到的磁场力与通过它的电流强度成正比。而当通电导线长度加倍时,它受到的磁场力也加倍,这说明通电导线受到的磁场力与导线长也成正比。对于磁场中某处来说,通电导线在该处受的磁场力F与通电电流强度I与导线长度L乘积的比值是一个恒量,它与电流强度和导线长度的大小均无关。在磁场中不同位置,这个比值可能各不相同,因此,这个比值反映了磁场的强弱。
(1)磁感应强度的定义
电流元
①定义:物理学中把很短一段通电导线中的电流I与导线长度L的乘积IL叫做电流元。
②理解:孤立的电流元是不存在的,因为要使导线中有电流,就必须把它连到电源上。
(2)磁场对通电导线的作用力
①内容:通电导线与磁场方向垂直时,它受力的大小与I和L的乘积成正比。
②公式:。
说明:
①B为比例系数,与导线的长度和电流的大小都无关。②不同的磁场中,B的值是不同的。
③B应为与电流垂直的值,即式子成立条件为:B与I垂直。
2016高中物理―磁场部分知识点总结
磁感应强度
定义:在磁场中垂直于磁场方向的通电直导线,受到的安培力的作用F,跟电流I和导线长度L的乘积IL的比值,叫做通电直导线所在处的磁场的磁感应强度。
公式:B=F / IL。(2)磁感应强度的单位
在国际单位制中,B的单位是特斯拉(T),由B的定义式可知:
1特(T)=
(3)磁感应强度的方向
磁感应强度是矢量,不仅有大小,而且有方向,其方向即为该处磁场方向。小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称为磁场的方向。B是矢量,其方向就是磁场方向,即小磁针静止时N极所指的方向。
2、磁通量
磁感线和电场线一样也是一种形象描述磁场强度大小和方向分布的假想的线,磁感线上各点的切线方向即该点的磁感应强度方向,磁感线的密疏,反映磁感应强度的大小。为了定量地确定磁感线的条数跟磁感应强度大小的关系,规定:在垂直磁场方向每平方米面积的磁感线的条数与该处的磁感应强度大小(单位是特)数值相同。这里应注意的是一般画磁感线可以按上述规定的任意数来画图,这种画法只能帮助我们了解磁感应强度大小;方向的分布,不能通过每平方米的磁感线数来得出磁感应强度的数值。
(1)磁通量的定义
穿过某一面积的磁感线的条数,叫做穿过这个面积的磁通量,用符号φ表示。
物理意义:穿过某一面的磁感线条数。
(2)磁通量与磁感应强度的关系
按前面的规定,穿过垂直磁场方向单位面积的磁感线条数,等于磁感应强度B,所以在匀强磁场中,垂直于磁场方向的面积S上的磁通量φ=BS。
若平面S不跟磁场方向垂直,则应把S平面投影到垂直磁场方向上。
当平面S与磁场方向平行时,φ=0。公式
(1)公式:Φ=BS。
(2)公式运用的条件:
a.匀强磁场;b.磁感线与平面垂直。
(3)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积。
此时效面积”。,式中
即为面积S在垂直于磁感线方向的投影,我们称为“有
2016高中物理―磁场部分知识点总结
(3)磁通量的单位
在国际单位中,磁通量的单位是韦伯(Wb),简称韦。磁通量是标量,只有大小没有方向。
(4)磁通密度
磁感线越密的地方,穿过垂直单位面积的磁感线条数越多,反之越少,因此穿过单位面积的磁通量——磁通密度,它反映了磁感应强度的大小,在数值上等于磁感应强度的大小,B =Φ/S。
六、磁场对电流的作用
1.安培分子电流假说的内容
安培认为,在原子、分子等物质微粒的内部存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,分子的两侧相当于两个磁极。
2.安培假说对有关磁现象的解释
(1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软磁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了。
(2)磁体的消磁:磁体的高温或猛烈敲击,即在激烈的热运动或机械运动影响下,分子电流取向又变得杂乱无章,磁体磁性消失。磁现象的电本质
磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。
说明:
①根据物质的微观结构理论,原子由原子核和核外电子组成,原子核带正电,核外电子带负电,核外电子在库仑引力作用下绕核高速旋转,形成分子电流。在安培生活的时代,由于人们对物质的微观结构尚不清楚,所以称为“假说”。但是现在,“假设”已成为真理。
②分子电流假说揭示了电和磁的本质联系,指出了磁性的起源:一切磁现象都是由运动的电荷产生的。安培力
通电导线在磁场中受到的力称为安培力。3.安培力的方向——左手定则
(1)左手定则
伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场,让磁感线穿过手心,让伸开的四指指向电流方向,那么大拇指所指方向即为安培力方向。
(2)安培力F、磁感应强度B、电流I三者的方向关系:
①直。,即安培力垂直于电流和磁感线所在的平面,但B与I不一定垂
2016高中物理―磁场部分知识点总结
②判断通电导线在磁场中所受安培力时,注意一定要用左手,并注意各方向间的关系。
③若已知B、I方向,则
方向确定;但若已知B(或I)和
方向,则I(或B)方向不确定。
4.电流间的作用规律
同向电流相互吸引,异向电流相互排斥。安培力大小的公式表述
(1)当B与I垂直时,F=BIL。
(2)当B与I成角时,是B与I的夹角。
和沿电流方向的推导过程:如图所示,将B分解为垂直电流的,B对I的作用可用B1、B2对电流的作用等效替代。
5.几点说明
(1)通电导线与磁场方向垂直时,F=BIL最大;平行时最小,F=0。
(2)B对放入的通电导线来说是外磁场的磁感应强度。
(3)导线L所处的磁场应为匀强磁场;在非匀强磁场中,公式
仅适用于很短的通电导线(我们可以把这样的直线电流称为直线电流元)。
(4)式中的L为导线垂直磁场方向的有效长度。如图所示,半径为r的半圆形导线与磁场B垂直放置,当导线中通以电流I时,导线的等效长度为2 r,故安培力F=2BIr。
七、磁电式电流表 1.电流表的构造
磁电式电流表的构造如图所示。在蹄形磁铁的两极间有一个固定的圆柱形铁芯,铁芯外面套有一个可以转动的铝框,在铝框上绕有线圈。铝框的转轴上装有两个螺旋弹簧和一个指针,线圈的两端分别接在这两个螺旋弹簧上,被测电流经过这两个弹簧流入线圈。
2016高中物理―磁场部分知识点总结
2.电流表的工作原理
如图所示,设线圈所处位置的磁感应强度大小为B,线圈长度为L,宽为d,匝数为n,当线圈中通有电流I时,安培力对转轴产生力矩:为:F=nBIL。故安培力的力矩大小为M1=nBILd。,安培力的大小
当线圈发生转动时,不论通过电线圈转到什么位置,它的平面都跟磁感线平行,安培力的力矩不变。
当线圈转过角时,这时指针偏角为角,两弹簧产生阻碍线圈转动的扭转力矩为M2,对线圈,根据力矩平衡有M1=M2。
设弹簧材料的扭转力矩与偏转角成正比,且为M2=k。
由nBILd=k得。
其中k、n、B、I、d是一定的,因此有
由此可知:电流表的工作原理是指针的偏角的值可以反映I值的大小,且电流表刻度是均匀的,对应不同的在刻度盘上标出相应的电流值,这样就可以直接读取电流值了。
第二篇:高中物理万有引力部分知识点总结
高中物理——万有引力与航天
知识点总结
一、开普勒行星运动定律
(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。
(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律
1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.
2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。
3.适用条件:
严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离。对于均匀的球体,r是两球心间的距离。
三、万有引力定律的应用
1.解决天体(卫星)运动问题的基本思路
(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:
F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r
(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM.2.天体质量和密度的估算
通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2(Mm)=mT2(4π2)r,得出天体质量M=GT2(4π2r3).(1)若已知天体的半径R,则天体的密度
ρ=V(M)=πR3(4)=GT2R3(3πr3)
(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π)
可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.
3.人造卫星
(1)研究人造卫星的基本方法
看成匀速圆周运动,其所需的向心力由万有引力提供.Gr2(Mm)=mr(v2)=mrω2=m4
2T2r^2=ma向.
(2)卫星的线速度、角速度、周期与半径的关系
①由GMm/r^2=mv^2/r得v=GM/r,故r越大,v越小
②由GMm/r^2=mrω2得ω=GMm/r^3,故r越大,ω越小
23③由GMm/r^2=m(4π^2/T^2)r得T=4r,故r越
大,T越大
(3)人造卫星的超重与失重
①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态。
②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态,在这种情况下凡是与重力有关的力学现象都会停止发生。
(4)三种宇宙速度
①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度.若7.9 km/s≤v<11.2 km/s,物体绕地球运行. ②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度.若11.2 km/s≤v<16.7 km/s,物体绕太阳运行.
③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度。若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行。
题型:
1.求星球表面的重力加速度
在星球表面处万有引力等于或近似等于重力,则:GMm/r^2=mg,所以g=GM/r^2(R为星球半径,M为星球质量).由此推得两个不同天体表面重力加速度的关系为:g2(g1)=R12(R22)·M2(M1).2.求某高度处的重力加速度
若设离星球表面高h处的重力加速度为gh,则:GMm/(R+h)^2=mgh,所以gh=GM/(R+h)^2,可见随高度的增加重力加速度逐渐减小。
3.近地卫星与同步卫星
(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=R(GM)=7.9 km/s,是所有卫星的最大绕行速度;运
行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度。
(2)地球同步卫星的五个“一定”
①周期一定T=24 h
②距离地球表面的高度h一定
③线速度v一定
④角速度ω一定
⑤向心加速度a一定
第三篇:高中物理知识点总结:专题复习三_电场、电路、磁场
专题复习三 电场、电路、磁场
一.本周教学内容:专题复习三 电场、电路、磁场 【典型例题】
例1.如图所示,P、Q是两个电量相等的正的点电荷,它们连线的中点是O,A,B是中垂线上的两点,OA<OB。用EA、EB、UA、UB分别表示A、B两点的场强和电势,则()
A.EA一定大于EB,UA一定大于UB B.EA不一定大于EB,UA一定大于UB C.EA一定大于EB,UA不一定大于UB D.EA不一定大于EB,UA不一定大于UB 解析:等量同号点电荷电场分布,沿OA方向电势降低,场强先增大后减小,但由于不能确定场强最大值出现在哪儿,故选B。
例2.如图所示,虚线a、b和c是某静电场中的三个等势面,它们的电势分别是Ua、Ub、Uc,且Ua>Ub>Uc,一个带正电的粒子射入电场中,其运动轨迹如实线KLMN所示,由图可知()
A.ab间电路通,cd间电路不通 B.ab间电路不通,bc间电路通 C.ab间电路通,bc间电路不通 D.bc间电路不通,cd间电路通 解析:Uad=220V,Ubd=220V,说明ab间通,由Uad=220V,Uac=220V,说明cd间通,由于无电流,故只能bc间断,选CD。
例4.如图所示,在粗糙水平面上固定一点电荷Q,在M点无初速度释放一带有恒定电量的小物块,小物块在Q的电场中运动到N点静止,则从M点运动到N点的过程中()
A.小物块所受电场力逐渐减小 B.小物块具有的电势能逐渐减小 C.M点的电势一定高于N点的电势
D.小物块电势能变化量的大小一定等于克服摩擦力做的功
解析:小物块在库仑斥力和摩擦力作用下从M至N,先加速后减速,加速度变化是先减小后增大。但库仑斥力一直做正功,电势能减小。由于小物块远离Q,电场力逐渐减小。对小物块由M点至N点运用动能定理,W电-Wf=0-0,故W电=Wf。由于不知Q的电性,故M、N 点电势无法比较。选 ABD。
例5.目前世界上正在研究一种新型发电机叫磁流体发电机,它可以把气体的内能直接转化为电能。如图所示为它的发电原理。将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,从整体来说呈电中性)喷射入磁感应强度为B的匀强磁场,磁场中有两块面积为S,相距为d的平行金属板与外电阻R相连构成一电路。设气流的速度为v,气体的电导率(电阻率的倒数)为g,则流过外电阻R的电流强度I及电流方向为()
解析:
放电电流方向A→R→B,选D。
例6.在如图所示的电路中,当可变电阻R的阻值增大时()
A.AB两点间的电压U增大 B.AB两点间的电压U减小 C.通过R的电流I增大 D.回路中的总电功率增大
解析:当可变电阻R增大时,R外增大故闭合电路总电流I减小,电源两端电压U端增
例7.如图所示,虚线框abcd内为一矩形匀强磁场区域,ab=2bc,磁场方向垂直纸面;实线框a'b'c'd'是一正方形导线框,a'b'与ab边平行,若将导线框匀速地拉离磁场区域,以W1表示沿平行于ab的方向拉出过程中外力所做的功,W2表示以同样速率沿平行于bc的方向拉出过程中外力所做的功,则()
例8.电磁流量计如图所示,用非磁性材料制成的圆管道,外加一匀强磁场。当管中导电液体流过此区域时,测出管道直径两端的电势差U,就可以得知管中液体的流量Q,即单位时间内流过管道横截面的液体的体积(m3/s)。若管道直径为D,磁感应强度为B,则Q=_____________。
A.保持K接通,减小两极板间的距离,则两极板间电场的电场强度减小 B.保持K接通,在两极板间插入一块介质,则极板上的电量减小 C.断开K,减小两极板间的距离,则两极板间的电势差减小 D.断开K,在两极板间插入一块介质,则两极板间的电势差增大
解析:K接通,电容器电压不变,减小板间距d,则电场强度增大。在两板插入介质,例11.如图所示,光滑绝缘半球槽的半径为R,处在水平向右的匀强电场中,一质量为m的带电小球从槽的右端A处无初速沿轨道滑下,滑到最低位置B时,球对轨道的压力为2mg。
例12.汤姆生在测定阴极射线的荷质比时采用的方法是利用电场、磁场偏转法,即通过测出阴极射线在给定匀强电场和匀强磁场中穿过一定距离时的速度偏转角来达到测定其荷质比的目的。利用这种方法也可以测定其它未知粒子的荷质比,反过来,知道了某种粒子的荷质比,也可以利用该方法了解电场或者磁场的情况。
假设已知某种带正电粒子(不计重力)的荷质比(q/m)为k,匀强电场的电场强度为E,方向竖直向下。先让粒子沿垂直于电场的方向射入电场,测出它穿过水平距离L后的速度偏转角θ(θ很小,可认为θ≈tanθ)(见图甲);接着用匀强磁场代替电场,让粒子以同样的初速度沿垂直于磁场的方向射入磁场,测出它通过一段不超过1/4圆周长的弧
解析:
例13.如图所示,空间分布着场强为E的匀强电场和匀强磁场B1、B2,且磁感强度大小B1=B2=B,磁场B2的区域足够大,电场宽度为L。一带电粒子质量为 m,电量为q。不计重力,从电场边缘A点由静止释放该粒子经电场加速后进入磁场,穿过磁场B1区域(图中虚线为磁场分界线,对粒子运动无影响。)进入磁场 B2,粒子能沿某一路径再次返回A点,然后重复上述运动过程。求:
(1)粒子进入磁场时的速度大小v。(2)磁场B1的宽度D。
(3)粒子由A点出发至返回A点需要的最短时间t。
解析:
例14.如图所示为示波管的原理图,电子枪中炽热的金属丝可以发射电子,初速度很小,可视为零。电子枪的加速电压为U0,紧挨着是偏转电极YY'和XX',设偏转电极的极板长均为
求:(1)若只在YY'偏转电极上加电压UYY'=U1(U1>0),则电子到达荧光屏上的速度多大?
(2)在第(1)问中,若再在XX'偏转电板上加上UXX'=U2(U2>0),试在荧光屏上标出亮点的大致位置,并求出该点在荧光屏上坐标系中的坐标值。
解析:(1)
(2)电子在y电场中偏移距离:
根据相似三角形
同理在xx'方向
根据相似三角形
(1)试分析说明带电小球被抛出后沿竖直方向和水平方向分别做什么运动。(2)在图中画出带电小球从抛出点O到落与O在同一水平线上的O'点的运动轨迹示意图。(3)带电小球落回到O'点时的动能。
解析:(1)竖直方向:重力向下,初速v0向上,做匀减速直线或上抛运动 水平:电场力向右,初速度为0,匀加速直线(2)竖直:小球向上运动和向下运动时间相等。
【模拟试题】 卷I
14.下列说法正确的是()
A.1 kg 0℃水的内能比1kg0℃冰的内能小 B.气体膨胀,它的内能一定减少 C.已知阿伏加德罗常数、某气体的摩尔质量和密度,就可估算出该气体中分子的平均距离
D.对于一定质量的理想气体,当分子热运动变剧烈时,压强必变大
15.如图所示,一列简谐横波在介质中沿水平方向传播,实线是在 时的波形图,虚线是在
A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)
16.如图所示,带箭头的直线表示电场线,虚线表示等势面,弯曲实线表示一个带电粒子在电场力作用下由A运动到B的径迹。粒子在A点的加速度为动能为,则(),A.粒子带正电,B.粒子带正电,17.氢原子从第五能级跃迁到第三能级时氢原子辐射的光子的频率为
(3)氢原子从第二能级向第一能级跃迁时产生的光子,一定能使金属A产生光电效应现象(4)氢原子从第五能级向第四能级跃迁时产生的光子,一定不能使金属A产生光电效应现象
在这四种判断中,正确的是()A.(1)(3)B.(2)(4)
C.(1)(2)(3)D.(1)(3)(4)
18.汽车在平直公路上以速度 匀速行驶,发动机功率为P。快进入闹市区时,司机减小了油门,使汽车的功率立即减小一半并保持该功率继续行驶。设汽车行驶过程中所受阻力大小不变,则下面四个图象中,哪个图象正确表示了从司机减小油门开始,汽车的速度与时间的关系()
19.如图所示,某空间存在着沿水平方向指向纸里的匀强磁场,磁场中固定着与水平面夹角为α的光滑绝缘斜面。一个带电小球,从斜面顶端由静止开始释放,经过时间t,小球离开了斜面。则有()
A.液滴仍保持静止状态 B.液滴做自由落体运动 C.电容器上的带电量减小 D.电容器上的带电量增大
21.如图所示中的虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O以角速度ω匀速转动。设线框中感应电流方向以逆时针为正方向,那么在下图中能正确描述线框从下图所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是()
卷II 22.(18分)
(1)在实验室中用螺旋测微器测量金属丝的直径,螺旋测微器的读数部分如下面左图所示,由图可知,金属丝的直径是______________。
(2)在“把电流表改装为电压表”的实验中,给出的器材有:
①电流表(量程为,内阻约200Ω);
②标准电压表(量程为2V); ③电阻箱(0~999Ω); ④滑动变阻器(0~200Ω);
⑤电位器(一种可变电阻,其原理与滑动变阻器相当)(0~47⑥电源(电动势2V,有内阻); ⑦电源(电动势6V,有内阻); ⑧电键两只;导线若干。);
<1>首先要用半偏法测定电流表的内阻。如果采用如图所示的电路测定电流表A的内电阻并且要想得到较高的精确度,那么从以上给的器材中,可变电阻;
C.观察 的阻值调至最大;
D.调节 竖直向上做匀加速直线运动(<7“ style='width:14.25pt;> 为地面附近的重力加速度),已知地球半径为R。
(1)到某一高度时,测试仪器对平台的压力是刚起飞时压力的<8” style= > 求此时火箭离地面的高度h。,(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为<9" >,试问:该行星的平均密度为多少?(假定行星为球体,且已知万有引力恒量为G)
24.(18分)
如图所示,在求:,不计粒子的重力和粒子间的相互作用。(1)带电粒子的比荷 与带电粒子在磁场中的运动时间 之比。
25.(18分)
如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为;木板右端放着一个小滑块,小滑块质量为
(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?
(2)其它条件不变,若恒力
【试题答案】
14.C 15.C 16.D 17.A 18.C 19.C 20.D 21.A 22.(1)0.920mm(2)<1>⑤,③,⑦
<2>①C,②A,③D,④B,⑤E,⑥F <3>200,小 <4>串,19800 23.(1)
(2)
(2)
25.(1)F>20N(2)
第四篇:高中物理“磁场”教学研究
专题讲座
高中物理“磁场”教学研究
张宇(北京市育英中学,高级教师)
一、磁场主题的学科知识的深层次理解
(一)《磁场》的知识结构
本主题内容按如下的线索展开:
磁场概念的建立和描述——磁场对电流和运动电荷的作用——安培力和洛仑兹力的应用。这样安排,知识的逻辑结构比较清晰,也符合学生的认知规律。
本主题可以分为三个单元。第一单元主要内容为:通过演示实验使学生对磁场有了一定的感性认识,在此基础上,利用科学的方法来描述磁场。本单元可以分为三节课。第 1 节在初中相关知识的基础上,通过磁体间的作用、小磁针指南北的性质和奥斯特实验等现象认识到在磁体、地球和电流周围存在磁场,认识到磁体与磁体、磁体与电流、电流与电流之间的作用力是通过磁场发生的。第 2、3 两节学习了磁场的描述。磁场具有强弱和方向,磁场的这种性质可以用磁感应强度进行定量描述,也可以用磁感线定性描述。第二单元学习磁场的一个性质:磁场对通电导线的作用力——安培力。第三单元学习磁场的另一个性质:磁场对运动电荷的作用力——洛伦兹力,以及带电粒子在匀强磁场中的运动,里面穿插了洛仑兹力的应用,尤其是在现代高新科技中的应用。这样安排,从初中知识讲起,注重了循序渐进,先宏观后微观,注重了知识的依次生成。
(二)《磁场》在学科知识体系中的地位及相互关系
学生在初中已经学习了简单的磁现象,头脑中初步建立了磁场的概念。在本模块我们刚刚学习了静电场,对于磁场,可以通过和电场类比进行教学。比如磁感应强度与电强场度类比;磁感线与电场线类比;安培力、洛伦兹力和电场力类比。类比是一种重要的学习方法,它不单单是从旧知识发展新知识的生长点,同时通过对比,使学生辩析两者的不同,从而对知识的理解更深入。另外,通过类比学习,也可以发展学生的求同思维和变异思维,培养学生的思维能力。
本主题内容对学生的空间想象能力比较高,电流周围的磁场、安培力和洛伦兹力等内容都涉及到不同物理量之间的空间关系。在教学中注意通过立体图和平面图(三视图)之间的转化来培养学生的空间思维能力。
带电粒子在磁场中的运动轨迹是圆周,解决这类问题,对平面几何中圆的知识应用较多,通过习题训练,可以培养学生应用数学知识解决物理问题的能力。
本主题涉及到很多实际应用,课本中涉及到磁电式电流表、电视显像管、回旋加速器、质谱仪等,课后习题涉及到电流天平、速度选择器、磁流体发电、电磁流量计等。通过这些内容可以激发学生的学习兴趣,可以使学生树立理论联系实际的意识,还可以训练学生把实际问题转化成物理模型的能力。
注意物理学思想与方法的渗透。新课标教材首次引入“电流元”这个物理量,就像质点、点电荷、试探电荷一样,电流元也是一个理想化模型。另外,电流元还涉及到“微元法”这一物理思想。其实我们在引导学生分析电流在非匀强磁场受力时,需要用到微元法,这次课改把微元法纳入教材内容,提醒我们在课堂上应该有意识、有步骤地渗透物理思想和方法。
本主题的教学内容,对后续知识的学习是重要的基础。比如选修 3-2 中电磁感应、交流电和选修 3-4 中的电磁场和电磁波。
(三)对磁感应强度概念的深入理解 1.磁感应强度的几种定义
磁感应强度是描述磁场的基本物理量,已知一个磁场的磁感应强度的分布,就可以确定运动电荷、电流在磁场中受到的作用力。磁感应强度 B 是和静电场的电场强度 E 相对应的物理量。静电场对电荷有作用力,静电场可以用检验电荷在电场中各点受到的力来研究,电场强度 E 定义为 E=F/q。研究 磁场也要引进一个检测的物体,由于磁场对运动电荷、电流有作用力,对通电线圈有力矩的作用,所以可以采用这三种物体作为检测磁场的物体,采用不同的检测物体,也就相应地给出了磁感应强度 B 的不同定义。
2.下面介绍常见的磁感应强度的三种定义方法。
(1)用一段通电直导线受到的磁场力来定义
通电直导线在磁场中受到力的作用,这种力叫做安培力。实验表明,如果直导线的长度为 L,电流为 I,垂直放在匀强磁场中,作用在导线上的安培力大小为 F=ILB。由此可以定义磁感应强度 B,即 B=F/(IL)。
这种定义方法是用一小段通电导线作为检测物体,安培力能够演示,形象直观,便于学生接受。中学教科书多采用这种定义方法,在中学物理实验室用来测量 磁感应强度的电流天平就是根据这个原理设计的。但是这种方法确定的是一小段通电导线所在范围内磁感应强度 B 的平均值,只有对匀强磁场,给出的才是各点的 B ;对于非匀强磁场,不能给出各点的 B,因此,对学生建立磁感应强度的概念有不利之处。
(2)用通电矩形线圈受到的力矩来定义
面积为 S 的小矩形线圈,通以电流 I,当线圈平面跟磁场平行时,线圈所受磁场力的力矩为 M=BIS,由此可给出 B 的定义式,即 B=M/(IS)。
由于线圈等效于一个小磁针,线圈在磁场中受到的作用力相当于小磁针受到的作用力。所以用线圈作为检测物体来研究磁场,与历史上对磁场的认识过程比较一致,某些普通物理教科书中有采用这种定义方法的,但是由于线圈总有一定的大小,所确定的也是线圈范围内的磁感应强度 B 的平均值,不能严格地确定磁场中各个点的 B。
(3)用运动电荷受到的磁场力来定义
实验表明,运动电荷在磁场中要受到力的作用,这个力叫做洛伦兹力。运动电荷 在磁场中某点所受磁场力的大小跟电荷量 q、运动速度 v 以及该点的磁感应强度 B 有关系,还跟运动方向与磁场方向间的夹角有关系,当电荷运动的方向垂直于磁场时所受的磁场力最大,且 F=qvB,由此可给出磁感应强度 B 的定义式,即 B=F/(vq)。
电磁学是研究电磁场与电荷间相互作用及运动规律的,电磁场对电荷有作用 力,通过电场对电荷的作用力引入了电场强度 E,与此对应,通过磁场对运动电荷的作用力来引入磁感应强度 B。从理论上讲,这种定义 B 的方法也比较本质、严谨,所以许多教科书中采用这种定义方法,但这种定义方法比较抽象,要求学习者有较高的抽象思维能力和推理能力。
磁感应强度还有一个名称叫做磁通密度,即它在数值上等于通过与磁场方向垂直的单位面积的磁通量大小,反映了该处磁感线的疏密情况。这种定义方法可以把描述磁场的两种方法磁感应强度和磁感线有机地结合起来,便于学生理解。
3.《磁场》知识的拓展
磁的应用非常广泛,随着传感器技术的不断发展,和磁有关的霍尔元件得到广泛应用,我们下面主要介绍霍尔效应及其应用。
霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于 1879 年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应也是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
在半导体薄片两端通以控制电流 I,并在薄片的垂直方向施加磁感应强度为 B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为 U H 的霍尔电压。
根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
由于通电导线周围存在磁场,其大小与导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。
如果把霍尔元件按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号就可以传感出该运动物体的位移。若测出单位时间内发出的脉冲数,则可以确定其运动速度。
2010 年北京高考就考察了霍尔效应及其应用,题目如下:
23.(18 分)利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。本题在题干中介绍了霍尔效应的现象和产生机理等相关知识,考察学生联系实际,建立物理模型,应用所学知识解决实际问题的能力。在第 3 问还提出一个开放性问题 “利用霍尔测速仪可以测量汽车行驶的里程。除此之外,请你展开“智慧的翅膀”,提出另一个实例或设想。”本设问给学生提供了一个对问题进一步探索研究的空间和平台,引导学生学以致用、关注社会、关注身边的生活。应该说,这样设问,体现了课程改革的基本理念,对提高学生的科学素养、对中学物理教学起到了良好的导向作用。
二、《磁场》主题的教学策略
《磁场》主题的教学重点是,第一,学生在认识磁场的基础上正确理解磁场的描述方法,即理解磁感应强度这个概念以及磁感线的物理意义。第二,磁场对通电导线或运动电荷的作用力,即安培力和洛伦兹力。本主题的难点是应用磁场对运动电荷的作用规律来分析粒子在磁场中的运动,以及和磁场有关的实际应用。
(一)《磁感应强度》教学策略
磁感应强度是电磁学的基本概念之一,是本主题的重点。磁感强度概念的引人、方向的规定、大小的定义都可以通过和电场强度类比来学习,通过学习,可以让学生体验类比这种科学研究方法。但磁感强度方向的规定用小磁针 N 极的受力方向,磁感强度的大小利用电流受力来定义,这又比电场强度定义更复杂,往往使学生产生混淆。
有的教材中引人电流元这个理想模型,就像质点、点电荷、试探电荷一样,电流元也是一个理想化模型。另外,电流元还涉及到“微元法”这一物理思想。在用 V-t 图像求位移时,学生已经接触过微元法,电流元的引人可以让学生进一步体悟“微元法”这一物理思想。
磁感应强度是用比值定义法来定义的。比值定义法 是物理中最常用的定义物理量的方法,类比电场强度,结合微元法,使学生进一步巩固比值定义法。
《磁感应强度》教学案例
1.磁感应强度的方向
小磁针在磁场中静止时,它的 N、S的指向是唯一确定的,拨动它,它将发生转动,但当它重新静止时,又回到原来的指向。所以物理学中就把小磁针静止时 N 极所指的方向规定为该点的磁场方向,即磁感应强度的方向。或者说,小磁针N极的受力方向或S极受力的反方向为该点的磁感应强度的方向。
2.磁感应强度的大小
问题:小磁针确定磁场的方向非常方便,但无法确定N、S 极在磁场中的受力大小,怎么确定磁场的强弱呢?
磁场除了对磁体有力的作用外,还对通电导线有力的作用。我们可以根据通电导线在磁场中的受力情况来描述磁场的强弱。请学生猜想磁场对电流的作用力和哪些因素有关?
做好如图所示的定性演示实验:
(1)磁场力大小和悬线的偏角正相关,为了现象明显,悬线不能太短。演示时注意装置的摆放,让学生便于观察偏角的大小。
(2)当偏角不同时,要慢慢移动磁体使导线相对于磁体的位置不变。(3)分别接通1、2和1、4,改变导线通电部分的长度,保持电流大小相同,比较偏角大小。
(4)保持通电部分长度不变,改变电流的大小,比较偏角的大小。
定量实验表明:当通电导线和磁场垂直时,它受力的大小与导线的长度 L 成正比,又与导线中的电流 I 成正比。即 F ∝ IL。或者 F/IL= 定值。这个定值的大小可以反映磁场的强弱,定值越大,表明磁场越强。
为了反映磁场中各点的磁场强弱,在物理学中,把很短一段通电导线中的电流 I 与导线长度 L 的乘积 IL 叫做电流元。电流元和质点、点电荷一样都属于理想化模型。有了电流元这个模型,我们就可以定义 磁场中每一点磁场的强弱 , 即磁感应强度的大小。
定义:当导线和磁场垂直时,若电流元 IL 在该点所受磁场力为 F,则磁感应强 度 B 的大小大小等于 F 与 IL 的比值。
对于该定义,应该强调以下几点:
• 磁感强度 B 的单位特斯拉 T 由定义式确定,1T=1NAm • 定义的前提条件是导线和磁场垂直。
• 在磁场中同一点,F/IL= 定值。即某点磁感应强度 B 与电流元 IL、及其受力 F 无关。
• 磁感应强度 B 的方向并非 F 的方向,二者互相垂直,B 的方向为小磁针 N 极的受力方向。
作为对磁感应强度这个概念的的复习巩固,可对比磁场和静电场,比较磁感应强度和电场强度的异同。两者都用比值法定义物理量,其基础是力与电荷量、电流元成正比,比值反映了场的强弱;二者也有明显不同,从方向看,静电力与电场强度的方向总是相同或相反,而磁场对通电导线的作用力方向与磁感强度的方向总垂直。从大小看,某试探电荷在电场中某位置受静电力的大小是一定的,而某电流元在磁场中受的磁场力大小还与通电导线如何放置有关,定义式的成立条件是磁场和导线垂直。
(二)《磁感线》教学策略
用磁感线描述磁场的强弱和方向,由于有初中基础和前面电场线的学习,理解起来并不困难。但由于磁感线的分布是空间的,而不是平面的,应该通过演示实验来加深认识,教学中应注意培养学生学习的空间想象力。可以采取 “一图多画”的办法,即对于同一个物
-1-1理情景,从不同的角度用图形来描绘,可以先画出立体图,然后转化成不同的平面图,像正视图、侧视图和俯视图。
《磁感线》教学案例
1.磁感线
明确曲线上每一点的切线方向跟这点的磁感应强度方向一致,或者说与静止于该点的小磁针 N 极所指的方向一致。
可以用铁屑在磁场中的分布情况来模拟磁感线的形状。这是因为细铁屑在磁场中磁化成小磁针,轻敲玻璃板,铁屑就会有规则地排列起来,模拟出磁感线的形状。
明确磁感线只是为了研究问题方便而假想的一系列曲线,磁体周围并不真正存在磁感线。
引人磁感线后,让学生对比电场线和磁感线,并明确: • 两者都用切线方向描述场的方向,用疏密描述场的强弱;
• 电场线是不闭合的,始于正电荷,终于负电荷;磁感线是闭合的,没有起点和终点。学生明确了用磁感线来描述磁场的强弱和方向后,可以引导学生研究几种常见的磁场,加深理解,同时也为进一步学习提供具体的磁场形式。
学生在初中已经学习过条形磁体、蹄形磁体、同名磁极间、异名磁极间的磁感线。比较熟悉通电螺线管周围的磁场。高中阶段我们在复习以上磁场的基础上,应该把通电直导线和环形电流的磁场作为重点。
首先用细铁屑模拟出通电直导线的磁感线,使学生认识到通电直导线周围的磁感线是以导线上各点为圆心的同心圆。然后用小磁针来确定磁感线的方向。把实验现象用图形表示出来,和学生共同总结出安培定则。
为了培养学生的空间想象能力,可以引导学生做一做图形转换,先画出通电直导线周围磁场的立体图,然后转换出平面图。首先让学生识记两个表示方向的符号 × 和 · 的意义,然后带领学生画出纵剖图,图中的符号 × 和·表示磁感线的方向。接着再让学生画出俯视图和仰视图,图中的符号 × 和·表示电流的方向。引导学生比较仰视图和俯视图,两图描述同一磁场的磁感线,一个是逆时针,而另一个是顺时针,所以我们描述环形磁场方向的时候,必须明确观察的角度。由于磁感线的分布是空间的,而不是平面的,所以我们有必要演示磁场的空间分布情况,图中的实验装置给学生看一看,学生马上有豁然开朗的感觉。
对于环形电流的磁场,从磁感线的描述、磁场方向的确定到安培定则的得出,由于有直导线的磁场作为铺垫,教师只要做好演示实验,归纳和总结大可让学生完成,一方面是给学生一个练习的机会,另一方面也可以培养学生的思维能力和科学表述能力。
最后,教师可以引导学生把环形电流和通电直导线以及通电螺线管的磁场做一做分析对比。我们可以把环形电流分割成无数个电流元,每一个电流元可以看成是一个通电直导线,环形电流的磁场可以认为是这些电流元的磁场进行矢量叠加得到的。从另一个角度看,环形电流也可以看作只有一匝的通电螺线管,从磁场分布情况看,通电螺线管可以等效成一个条形磁体,环形电流可以等效成一个小磁针。通过这样的类比,使学生对电流的磁场形成一个统一的认识,另外等效思想也为学生分析具体问题提供了一个非常方便的办法。比如下面问题:
如图所示,两个完全相同的闭合导线环挂在光滑绝缘的水平横杆上,当导线环中通有同向电流时(如下图),两导线环的运动情况是()A.互相吸引,电流大的环其加速度也大 B.互相排斥,电流小的环其加速度较大 C.互相吸引,两环加速度大小相同 D.互相排斥,两环加速度大小相同
尽管学生还没有学习左手定则,但我们可以用等效方来分析本题,把两个环形电流等效成一对小磁针,靠近的两端为异名磁极相互吸引,所以两个导线环互相吸引,又由于牛顿第三定律,相互作用力大小相等,而两环完全相同,由牛顿第二定律可知,两环加速度大小相同。所以正确答案为 C。本题也可以把环形电流分割成无数的电流元,每两个相对的电流元电流方向相同,相互吸引。
2.分子电流假说
安培分子电流假说,尽管教学要求不高,但对培养学生的物理思维有非常重要的价值,使学生感受物理理论的和谐、统一。进一步理解磁现象的电本质,使学生体会由事物的表面现象挖掘其本质原因的思维过程,培养思维的深刻性。
有必要让学生知道,“假说”是用来说明某种现象但未经实践证实的命题。在物理规律和物理理论建立的过程中,假说常常起着很重要的作用。它是在一定的观察和实验的基础上概括和抽象出来的。安培分子电流就是在“通电螺线管磁场与条形磁铁的磁场极为相似”这一事实的启发下,结合环形电流磁场的特点,经过思维发展而产生出来的,这种从表面现象的简单相似到本质的内在联系的发展,体现了物理学深刻而又简洁之美。
安培电流假说把电流的磁场和磁体产生的磁场很好地统一起来,利用它可以很好地解释磁化和消磁这两种物理现象。
(三)《磁场对通电导线的作用力》教学策略
对于安培力的大小,在前面定义磁感应强度的大小时学生对磁场和导线垂直的情况已经了解,通过公式变形,很容易得到安培力大小的公式。这里需要学生理解当导线和磁场不垂直的情景,安培力大小如何确定。安培力、电流和磁感强度三者方向的空间关系是教学难点。教学中首先做好演示实验,学生在实验现象的基础上,建立三维坐标系,标清三者的方向,正确理解三者之间的空间关系,并得出左手定则。
安培力、电流和磁感强度三者方向的空间关系是培养学生空间想象能力的好题材,要使学生能够看懂立体图,并能熟悉地转化成平面图,如各个角度的侧视图、俯视图和剖面图。让学生养成作图分析问题的良好思维习惯,需要一定量的习题来训练和巩固。
学习安培力后,可以把安培力和静力学及平衡状态进行综合命题,培养学生的综合能力。通过练习,使学生树立电磁学问题转换为力学问题、把陌生问题转换成熟悉问题的转换意识。这类问题,把三维立体情景转化为同一平面内的共点力平衡,做好平面受力图,养成受力分析的好习惯,是解决这类问题的关键。
《磁场对通电导线的作用力》教学案例
1.安培力的方向
做好演示实验,引导学生认真观察记录、分析实验现象。记录和分析的过程本身就是培养学生空间思维能力的过程,要很好地把握。如图,把实验结果用三维坐标图记录下来;并学习教材介绍的左手定则验证实验现象。分别改变磁场方向和电流方向,先让学生用左手定则预测安培力的方向,然后用实验验证。为了让学生熟练掌握左手定则,这时可以安排练习让学生熟悉左手定则的应用。比如下题。
在下列各图中,分别标出了磁场 B 的方向,电流 I 方向和导线所受安培力 F 的方向,其中正确的是
当然本题也可以改编为电流、磁感线、安培力三个方向,知道其中两个,判断第三个物理量的方向。
对于导线和磁感线方向不垂直的情况,往往学生感到困难,先让学生观察演示实验,转动磁极,使磁感线和导线方向夹角不是 90 度,学生通过悬挂导线的偏转认识到,安培力的方向不变,大小减小。然后作图分析。比如图中的情形,磁感线和电流方向不垂直,由实验结果知安培力的方向垂直纸面向里。这里,可以和学生一起复习立体几何的一个定理:如果一条直线垂直于平面内两条相交的直线,则该直线和平面垂直。可见,不管电流和磁感线夹角如何,安培力一定既垂直于电流,也垂直于磁感线,即垂直于电流和磁感线所确定的平面。这种情形也可以用左手定则来判断安培力的方向,但注意磁感线是倾斜穿过掌心。如图所示的情形,安培力应该垂直纸面向里。分析下面习题:
关于左手定则的使用,下列说法中正确的是()
A.在电流、磁感应强度和安培力三个物理量中,知道其中任意两个量的方向,就可以确定第三个量的方向
B.知道电流方向和磁场方向,可以唯一确定安培力的方向 C.知道磁场方向和安培力的方向,可以唯一确定电流的方向 D.知道电流方向和安培力的方向,可以唯一确定磁场方向
我们知道,不管电流与磁场夹角如何,安培力方向不变,所以知道电流方向和磁场方向,可以唯一确定安培力的方向。所以正确选项是B。
左手定则涉及三个物理量的方向,三维图的立体感强,具有直观、形象、逼真等特点,而学生的空间想象力还不强,教学中要重视对三维图形的识读训练。2009 年北京高考第 23 题以电磁流量计为背景命题,很多考生就是因为对电磁流量计的立体图读不懂而导致丢分。但三维图在表达方向、夹角和力的图示等方面不如二维图形表达得清楚、准确,因此,有效地训练如何恰当地用用侧视图、俯视图和剖面图等表达很有必要。比如让学生练习把图示的立体情景转换为平面图。2.安培力的大小
首先让学生明白两种特殊情况。从磁感应强度大小的定义式变形,很容易得到电流与磁场方向垂直时,安培力 F=BIL。另外,让学生明确当电流和磁场方向平行时,安培力为 0.再引导学生根据等效替代关系,对磁感应强度进行矢量分解,把磁感强度 B 沿平行于电流和垂直于电流两个方向分解为 B2 和 B1。则 B2 分量对电流的安培力为零,所以磁场对电流的安培力为 B1分量对电流的安培力。
这里应该让学生体会由特殊到一般的研究思路以及等效替代的物理思想。明确了安培力的大小和方向,应该引导学生把安培力和电场力做对比:电荷在电场中某点受到的静电力是一定的,方向与电场强度的方向同向或反向。而电流在磁场中受到的安培力大小和电流与磁感线的夹角有关,方向与磁感强度的方向垂直。
安培力的规律学完后,我们可以和学生分析两根平行通电导线之间力的作用,作为安培力知识的应用。以习题的形式给出以下问题让学生分析:
两根平行的通电导线,其电流方向如图所示,请分析:(1)I1 在 I2 处产生磁场 B1 方向?(2)I2 受到 I1 磁场的作用力如何?(3)I1 受到 I2 磁场的作用力如何?
分析时注意引导学生做出平面图,可以画出正视图(剖面图);也可以画出俯视图来分析。课堂上让学生把两个图都画一画,对培养学生的空间思维能力是很有帮助的。
磁电式电流表是安培力的一个重要应用。学生在实验中多次使用过电流表和电压表,也知道它们都是由表头改装而成。有进一步学习表头的结构和原理的动机和兴趣。如果条件允许的话,先让学生观察实物,找到磁体、极靴、铝框、铁质圆柱、线圈、螺旋弹簧、指针等构件。了解它们之中哪些是固定的,哪些是可动的。然后利用结构图引导学生进行分析。
a.在线框转动范围内,线框所在的B的大小和方向如何?
由于极靴的作用,极靴与铁质圆柱间的磁场都沿半径方向,而且在同一圆周上,磁感强度 B 的大小相等。
b.线框转动过程磁力大小变化否? 线圈无论转动到什么位置,线圈平面都跟磁感线平行,左右两边受到的磁力大小不变。c.在线框转动时,螺旋弹簧阻力如何变化?
随着线圈转动,螺旋弹簧形变变大,弹簧阻力变大。进一步研究表明,弹簧阻力和线圈转过的角度成正比。
d.电流与指针偏角的关系?
当线圈停止转动时,安培力和阻力对线圈产生的转动效果相当,可见电流越大,指针偏角越大,指针偏角和电流大小成正比,所以电流表刻度均匀。
(四)《磁场对运动电荷的作用力》教学策略
关于洛伦兹力的方向教学,在安培力知识的基础上,通过提出问题、进行猜想和假设,然后通过实验验证、分析论证,使学生经历一次实验探究过程。对于洛伦兹力的大小,引导学生由安培力的表达式推导出洛伦兹力的表达式,使学生经历一次理论探究过程。
阴极射线管的实验,当学生看到磁体使亮线发生弯曲时,觉得非常新奇、刺激,可以大大激发起学生的好奇心和求知欲,因此做好这个实验非常重要。
《磁场对运动电荷的作用力》教学案例
1.洛伦兹力的方向
提出问题:安培力是磁场对电流的作用力,电流是电荷定向移动形成的,那么安培力的实质是否是磁场对运动电荷的作用力呢?
猜想和假设:如果安培力的实质是磁场对运动电荷的作用力,那么它们应该遵循同样的物理规律 —— 左手定则。
实验验证:介绍阴极射线管,让学生明白电子流的运动方向。介绍磁体如何放置,让学生明确磁场的方向,然后让学生运用左手定则来预言,电子流将向哪边偏转。当学生看到亮线弯曲,而且和自己的预言完全吻合时,会感到非常兴奋。
分析论证:我们把运动电荷受到的力叫做洛伦兹力,运动电荷和电流在磁场中受力都遵循左手定则,可以推断,安培力是洛伦兹力的宏观表现。知道了安培力和洛伦兹力的关系,接下来通过类比学习,明确洛伦兹力既垂直于带电粒子的运动方向,也垂直于磁场方向,即垂直于运动方向和磁场方向所确定的平面。当运动方向和磁场方向垂直时,洛伦兹力最大;当运动方向和磁场方向平行时,洛伦兹力为零。
如果运动电荷为负电荷,电流方向和电荷运动方向相反,这种情况,学生很容易弄错,需要用习题来强化,比如练习1,知道磁场方向、运动方向和受力方向,让学生判断运动粒子的电性。像练习2 这样的题目其实并不严谨,因为磁场并不是唯一确定的,它可以是在竖直平面内和运动方向夹角不为零的任意方向。
与学习安培力的方向一样,培养学生的空间想象能力同样是本节课的重要任务,比如我们可以结合三维坐标来让学生分析磁场方向、电荷运动方向和洛伦兹力方向三者关系。比如练习3.同时本题还用到电场力,学生在完成练习的同时,也在进行二者的对比:洛伦磁力的方向和磁场垂直,电磁力的方向和电场平行。
2.洛伦兹力的大小
首先让学生理解推导洛伦兹力大小公式的思路。先明确推导的出发点:安培力实际是洛伦磁力的宏观表现,即一段导线所受安培力等于该段导线内所有电荷定向移动所受洛伦兹力的合力;其次建立推导的物理模型:长为 L 的静止的通电导线,它受到的安培力除以导体内定向移动的带电粒子数目,即为每个运动电荷所受到的洛伦兹力。再分析电流强度和电荷定向移动之间的关系,让学生回顾电流的微观表达式。抓住了上述线索,思考和讨论就有了方向。
即使明确了推导思路,推导过程对大部学生来说还是有一定难度的,教学中 可以采取“搭梯子”的办法。比如通过思考题的办法给学生进行逐步提示:
思考:
(l)如何用(单位体积内含的运动电荷数 n,每个电荷电量为 q,电荷的平均定向移动速率是 v,导线的横截面积是 S)n、q、v、S 来表示通电导线中的电流强度 I ?
(2)如何从合力的观点出发用洛仑兹力 f 来表达安培力 F 的值?(当通电导线垂直于磁场时)
F = IBL = Nf(N 为导线中电荷总数)
(3)如何求得 N ?(4)能否根据上面的关系,推出一个运动电荷垂直于磁场方向运动时受到的洛仑兹力的大小。
(5)适用条件是什么?
洛伦兹力的计算公式 F=qvB 是在导线与磁场垂直的情况下导出的,这个公式只适用于电荷运动方向与磁场垂直的情况。如果电荷的运动方向和磁场不垂直,应该如何处理,教师提出问题后,应该让学生独立完成。对于有困难的学生,可以让他们参照上一节电流和磁场不垂直的情况来处理。
洛伦兹力对运动电荷不做功,是带电粒子在磁场中运动的重要特点。可以引导学生分析讨论得到。比如让学生思考下面几个问题:洛伦兹力一定垂直于粒子的运动方向,它对粒子的速度有何影响?当一个力和物体的运动方向总是垂直的,它是否做功?带电粒子在磁场中运动时,它的动能如何变化?在此基础上,让学生完成以下练习:
电子以速度 V,垂直进入磁感强度为 B 的匀强磁场中,则()A、磁场对电子的作用力始终不变 B、磁场对电子的作用力始终不做功 C、电子的动量始终不变 D、电子的动能始终不变
用力学规律来分析洛伦兹力和粒子的运动的关系,使学生意识到带电粒子的运动规律和宏观物体的一样,分析电学问题的总的思路就是把它转换成力学问题。
可以启发学生也可以利用运动电荷所受的洛伦兹力来定义磁感强度,这样不仅拓宽了学生的视野,更重要的是揭示了磁现象的电本质,把 B=F/(qB)与 E=F/q 相比较,它们都是用比值的方法定义物理量。然后让学生对电场和磁场、静电力和洛伦兹力进行对比。
• 电场力和洛伦兹力的比较
1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用。
2.电场力的大小 F = Eq,与电荷的运动的速度无关;而洛伦兹力的大小 f=Bqvsinα, 与电荷运动的速度大小和方向均有关。3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直。
4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小
5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能。
6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.(学完《带电粒子在磁场中的运动》补充)
3.电视显像管的工作原理
这部分内容体现了物理知识与科学技术的联系,培养学生理论联系实际的作风。对于实际应用问题,不必深究技术细节,重点是理解其应用的物理原理,从实际问题中抽象出物理模型。
电子显像管中,电子枪利用了热电子发射和加速电子的原理,这一点和示波管是相同的。而显像管的偏转线圈应用了磁场对运动电荷的洛伦兹力作用,即磁偏转;而示波管用电场来控制电子的运动轨迹,即电偏转,由于磁偏转可以使偏转角为任意值,所以显像管的屏幕面积更大。
电子技术中的扫描应用的物理原理是速度的合成,学生只要明白电子的水平运动是竖直方向的磁场控制的,而电子的竖直分运动是水平方向的磁场控制的即可。
(五)《带电粒子在匀强磁场中的运动》教学策略
《磁场》主题的教学难点是带电粒子在磁场中的运动,尽管在课程标准中没有明确要求,但作为洛伦兹力的应用,对培养学生的分析能力和应用能力有重要的作用。
因为粒子的运动对学生来说比宏观物体的运动抽象,学生缺乏感性材料。可以采用了先实验探究,再理论分析推导的顺序。带着实验得到的感性材料,再用学过的知识进行理论分析,从理论的高度推导出实验现象的必然性,这样先实验观察再理论论证比较符合一般的认知过程。也降低了学习的难度。如果学生整体水平比较高,也可以采用先理论分析,再实验验证的顺序,给学生提供高强度思维训练的材料。作为带电粒子在匀强磁场中运动的知识在现代科学技术中的应用实例,质谱仪和回旋加速器也是本节课的重要内容,可以培养学生的综合运用力学知识和电学知识的能力。
《带电粒子在匀强磁场中的运动》教学案例
首先让学生了解洛伦兹力 演示仪的结构和原理。电子枪产生的电子射线可以使玻璃泡内的稀薄气体发出辉光,显示电子的运动轨迹。电子运动速度的大小可以通过加速电压来调节。两个相隔一定间距的环形线圈(亥姆霍玆线圈)之间产生匀强磁场,磁场的方向和两线圈中心的连线平行,即与电子运动方向垂直。磁感应强度的大小可以通过调节励磁线圈的电流来调节。
实验演示:
1.不加磁场观察电子射线的轨迹。
2.加上和电子运动方向垂直的匀强磁场,观察电子射线的轨迹。
3.保持电子速度不变,通过调节励磁电流改变磁感应强度,观察圆形轨迹如何变化。4.保持磁感强度不变,通过调节加速电压改变电子运动速度,观察圆形轨迹的半径变化。
理论推导:
垂直射入匀强磁场的电子,它的初速度和所受洛伦兹力都在垂直于磁场的同一平面内,没有其他作用使粒子离开这个平面。洛伦兹力始终垂直于粒子的运动方向,只能改变速度的方向,而不能改变速度的大小,它的效果就是粒子做匀速圆周运动的向心力。
1.洛伦兹力提供向心力 qvB=mv/R 2.所以轨道半径 R=mv/qB 根据轨道半径的表达式,分析粒子的速度和磁感强度对轨道半径的影响,和刚才的实验现象相印证。
进一步提出问题:若增大粒子运动的速度,由刚才分析知轨道半径会增大,它运动一周所需的时间(周期)如何变化?
2有学生认为速度变大,周期变小;也有的认为速度v增大,圆的周长变大,周期变小。这两种想法考虑的都不全面,提示学生必须推导出周期的数学表达式进行分析。由此培养学生利用数学知识分析物理问题的意识和能力。
1.圆周的周长为 S=2πR 2.周期为 T=2πR/v 3.把轨道半径 R=mv/qB 代入得 T=2πm/(qB)由周期的表达式可知,周期和粒子的运动速度及轨道半径无关,周期大小取决于磁感强度和粒子的比荷。
对于带电粒子在磁场中的运动,要求学生明确两种情况: 1.若带电粒子的运动方向与磁场方向平行 v∥B,f = 0,→ 匀速直线
2.若带电粒子的运动方向与匀强磁场方向垂直 v ┴ B,f ┴ v,f = C,匀速圆周运动。
三、学生学习中常见的错误与问题分析与解决策略
(一)前知识引起的负迁移,导致学生对新知识理解性错误
对于磁场,可以通过和电场类比进行教学。类比学习,可以让学生由旧知识很快迁移到新知识上。但是随着学习的深入,往往有同学不去注意电场和磁场两者的区别,造成理解上的错误。因此我们更应该注意新旧知识之间的差别,防止出现负迁移。
1.关于磁场的产生
我们知道,在电荷或带电体周围存在电场;根据麦克斯韦理论我们知道,变化的磁场也可以产生电场。但磁场的来源比电场就复杂的多,对此,学生往往容易引起混乱。教师在恰当的时机应该进行归纳和概括,以澄清学生的错误认识。
我们知道,磁体周围存在磁场,电流周围也存在磁场,学习完安培电流假说,我们知道二者在本质上是一致的,即磁现象的电本质,而电流是电荷定向移动形成的,总而言之,运动电荷的周围产生磁场。历史上有一个著名的实验叫罗兰实验,在带电的绝缘圆盘附近设置一个小磁针,起初小磁针由于地磁作用指向南北方向,但是,当圆盘转到起来,小磁针有了新的指向,说明转动的圆盘周围产生了磁场,其实质是圆盘上的电荷随圆盘发生定向移动从而产生磁场。但是我们刚才所进行的是不完全归纳,如果有同学概括归纳为:一切磁场都是由于电荷运动而产生的,这就是错误的。因为我们后面还会学习到麦克斯韦理论,变化的电场产生磁场,变化的磁场产生电场,可见电场和磁场还可以互相感生,可以脱离电荷而存在。所以在教学中,我们既要引导学生对知识进行归纳和总结,提炼出最本质、最简洁的统一规律,又要注意理论的严谨,为以后的学习留下知识的增长点。
2.关于磁感应强度概念
由电场强度过渡到磁感应强度,因为其物理思想相同,所以学生接受起来非常容易。但磁感应强度的方向和大小的定义并不是根据同一个物理事实,这一点往往造成学生的错误理解。所以学完以后,一定要注意引导学生比较磁感应强度和电场强度这两个概念的异同。
两者的相同点:都用比值法定义物理量,其依据是力与电荷量或电流元成正比,比值反映了场的强弱;但是我们更应该引导学生分析两者的区别,从方向看,静电力与电场强度的方向总是相同或相反,而电流或运动电荷所受的磁场力方向与磁感强度的方向总垂直,因为磁感强度的方向是用小磁针 N 极的受力方向来定义的。从大小看,某试探电荷在电场中某位置受静电力的大小是一定的,而某电流元在磁场中受的磁场力大小还与通电导线如何放置有关,磁感应强度定义式的成立条件是磁场和导线垂直。对于这些区别,学生很容易混淆,我们可以通过一些辨析题来加深理解:
(1)磁场中某处的磁感应强度大小,就是通以电流 I,长为 L 的一小段导线放在该处时,所受的磁场力 F 与 I、L 乘积的比值。
错误原因:学生机械地记忆公式,不注重物理公式的成立条件。电流在磁场中受的磁场力大小与导线如何放置有关,磁感应强度定义式的成立条件是磁场和导线垂直。
(2)一小段通电导线放在某处不受磁场力的作用,则该处一定没有磁场。错误原因:没有正确地区分电场力和磁场力。试探电荷在电场中某位置受电场力的大小是一定的,若电场力为零,则该处的电场强度一定为零;但是,磁场不同,当导线和磁场方向同向时,即使磁感强度不为零,也不受到磁场力的作用。
(3)垂直于磁场而放置的通电导线的受力方向就是磁感应强度的方向。
错误原因:概念掌握不准确,磁感应强度的定义中,大小和方向从不同的角度来定义。磁感强度的方向是用小磁针 N 极的受力方向来定义的,而磁场力方向与磁感强度的方向总垂直。(4)一小段通电导线放在磁场中 A 处时受磁场力比放在 B 处大,则 A 处磁感应强度比 B 处的磁感应强度大。
错误原因:由于电场强度产生的负迁移,对于电场,场强大,同一电荷受力大。而通电导线受到的磁场力和该导线如何放置有关。
(5)因为 B=F/IL,所以某处磁感应强度的大小与放在该处的电流元 IL 的乘积成反比。
错误原因:不理解比值定义法,垂直放在某处的电流元,所受的磁场力和电流元 IL 的乘积成正比,即比值不变,这个比值就是磁感应强度。所以磁感应强度和电流元 IL 的乘积无关。
(二)对磁场力认识模糊,导致分析错误
磁体和电流周围都存在磁场;磁体和磁体之间、磁体和电流之间、电流和电流之间都存在相互作用的磁力;对于种类繁多的磁场力,往往容易引起学生混乱。如何判断磁体受到的磁力方向?初学者往往找不到明确的思路。他们往往根据 同名磁极相互排斥,异名磁极相互吸引来判断,就可能得到错误的结论;而对于电流对磁体的作用方向更是无从下手。其实问题的根源还在学生没有深入理解磁感应强度的概念,我们把小磁针N极的受力方向规定为该处磁感应强度的方向,由此我们可知,磁体的N极受力方向就是该处的磁场方向,而S极受力方向是该处磁场的反方向。从场的角度认识和分析磁场力才是科学的思维方法。分析下面例题来澄清学生的模糊认识:
1.如图所示,弹簧秤下挂一条形磁铁,其中条形磁铁 N 极的一部分位于未通电的螺线管内,下列说法正确的是
① 若将 a 接电源正极,b 接负极,弹簧秤示数减小 ② 若将 a 接电源正极,b 接负极,弹簧秤示数增大 ③ 若将 b 接电源正极,a 接负极,弹簧秤示数增大 ④ 若将 b 接电源正极,a 接负极,弹簧秤示数减小 A ①② B ①③ C ②③ D ②④
常见错误:根据同名磁极相互排斥,异名磁极相互吸引,若将 a 接电源正极,b 接负极,通电螺线管下端是 S 极,而条形磁体下端是 N 极,相互吸引,所以弹簧秤示数增大。出现这样的错误,说明学生对磁场的认识还不到位,还是停留在磁体间相互作用的感性认识水平。
解决这个问题,应该让学生认识到 磁体和电流周围都存在磁场;磁体和磁体之间、磁体和电流之间、电流和电流之间都存在相互作用的磁力;它们间的作用力是通过磁场而发生的。而磁场力的方向取决于磁场的方向。对于磁体受到的磁场力,磁体 N 极受力方向和磁场方向相同;S 极受力方向和磁场方向相反。对于电流或运动电荷在磁场中的受力方向,根据左手定则来判断。本题中弹簧秤的示数变化取决于磁体受到的磁场力,首先要根据安培定则判断通电螺线管内部磁场的方向。若将 a 接电源正极,b 接负极,螺线管内部磁场方向向上,所以磁体 N 极受力方向向上,S 极受力方向向下,但 N 极受到的磁场力大于 S 极受到的磁场力,合力方向向上,弹簧秤示数变小。所以本题正确答案为 B。
2.条形磁铁放在水平桌面上,它的上方靠近S 极一侧悬挂一根与它垂直的导电棒,如图所示(图中只画出棒的截面图).在棒中通以垂直纸面向里的电流的瞬间,可能产生的情况是
A .磁铁对桌面的压力减小 B .磁铁对桌面的压力增大 C .磁铁受到向左的摩擦力
D .磁铁受到向右的摩擦力
常见问题:很多同学碰到这个问题,首先想到去分析通电导线对磁体的作用力,他先画出导线周围的磁感线分布情况,再分析磁体的 N 极和 S 极的受力情况,这样分析,把问题复杂化,导致无法求解。
解决这类问题,要启发学生应用逆向思维。由于牛顿第三定律同样适用于电磁力,我们可以先分析磁体对通电导线的作用力,先画出磁体周围的磁感线,再根据左手定则判断出通电导线所受磁场力的方向,应用牛顿第三定律就可以判断磁体受到的磁场力。再对磁体进行受力分析,可以判断正确答案为 AC。
(三)对洛仑兹力方向判断有误,导致分析问题出错
洛仑兹力的方向判断也用到左手定则,四指所指的方向应该是正电荷运动的方向或负电荷运动的反方向,出错往往是由于学生不注意运动电荷的电性正负,或运动方向的变化而导致洛仑兹力方向分析错误。请看下例:
3.如图所示,厚度为 h,宽度为 d 的金属导体板放在垂直于它的磁感应强度为 B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面 A 和下侧面 A'之间会产生电势差,这种现象称为霍尔效应。设电流 I 是由于电子的定向移动形成的,请分析达到稳定状态时,比较导体板上侧面 A 的电势与下侧面 A'的电势的高低。
常见错误:在磁场中定向移动时所受洛仑兹力的方向判断错误,或者没有意识到电子带负电,电势高低判断错误。
本题首先要正确判断电子所受磁场力的方向,根据左手定则,四指指向电流的方向(或者说电子定向移动的反方向),可以判断洛仑兹力方向向上。上侧面聚集了多余的电子,下侧面缺少电子,由于电子带负电,所以下侧面带正电电势高。这样在导体内部又建立了电场,当电子所受的磁场力和电场力平衡时,就达到了稳定状态,上下两个侧面的电势差保持不变。
如果本题中的导电材料是半导体,靠空穴的定向移动形成电流,那么上下两个侧面哪个电势高呢?我们知道空穴带正电荷,由于磁场方向和电流方向不变,空穴定向移动所受磁场的方向也不变,即空穴所受洛仑兹力方向向上。所以上侧面聚集了带正电的空穴,上侧面电势更高。可见,对于不同导电材料,在磁场和电流方向相同的情况下,霍尔电势差的正负和载流子有关。洛仑兹力的方向随着电荷运动方向的变化而变化,当电荷运动反向时,洛仑兹力的方向随之而反向,很多学生因为思维定势,而导致出错。
4.如图所示,用长为 L 的细线把小球悬挂起来做一单摆,球的质量为 M,带电量为-q,匀强磁场的磁感应强度方向垂直纸面向里,大小为 B。小球始终在垂直于磁场方向的竖直平面内往复摆动,其悬线和竖直方向的最大夹角是 60。试计算小球通过最低点时对细线拉力的大小。
0
常见错误:
解:小球从静止开始运动到最低点的过程中,利用动能定理 mgL(1—cos60)=mv/2 得 v=√gL 当小球从左向右通过最低点时 T1—qvB—mg=mv/L 得 T1 =2mg+qB√gL。
本题出现错误是由于学生没有注意到当带电粒子的运动方向相反时,所受洛仑兹力的方向反向。造成答案不完整,反映了学生思维的严密性需要进一步加强。所以在动力学问题中如果出现洛仑兹力,一定要注意当粒子运动方向变化时,洛仑兹力方向随之而变化。补全另一种情况:当小球从右向左通过电低点时,洛仑兹力反向,有
T2 + qvB — mg = mv /L 得 T1=2mg—qB√gL。
(四)粒子在场中的运动分析不透彻导致错误
明确了粒子在电场和磁场中的受力特点,就可以根据动力学规律确定粒子在电场或磁场中的运动。学生必须综合应用电磁学和力学知识来进行分析推理,从而解决问题。这里面涉及到的知识点多,对学生逻辑思维能力要求比较高,学习过程中很多学生会出现困难。
要解决这个问题,就要培养学生良好的思维习惯。从受力分析入手,判断带电粒子的运动形式,再根据该种运动所遵循的物理规律来进行演绎推理。
5.如图所示,在竖直虚线 MN 和 M′N′ 之间区域内存在着相互垂直的匀强电场和匀强磁场,一带电粒子(不计重力)以初速度 v0 由 A 点垂直于 MN 进入这个区域,带电粒
220
2子沿直线运动,并从 C 点离开场区。如果撤去磁场,该粒子将从 B 点离开场区;如果撤去电场,该粒子将从 D 点离开场区。则下列判断正确的是
A .该粒子由 B、C、D 三点离开场区时的动能相同 B .该粒子由 A 点运动到 B、C、D 三点的时间均不相同
C .匀强电场的场强 E 与匀强磁场的磁感应强度 B 之比
D .若该粒子带负电,则电场方向竖直向下,磁场方向垂直于纸面向外
常见错误及错误原因分析:错选A:不能正确理解洛伦兹力对运动电荷不做功,或者不会用动能定理分析粒子的动能变化。错选B:只是浅层次地根据三种情况下粒子的运动轨迹不同来猜测,没有根据各自的运动特点通过推理来确定不同情况下的运动时间。错选D:不能正确找出带电粒子所受电场力和磁场力的方向与电场和磁场方向之间的关系。
本题目既要求学生对磁场力和电场力的知识清晰,又要求学生会根据动力学规律来进行分析推理,对学生的分析综合能力要求较高。通过练习,使学生树立把电磁学问题转换为力学问题、把陌生问题转换成熟悉问题的转换意识。对于这类问题,养成受力分析的好习惯,根据受力情况和初始状态确定粒子的运动形式,再根据不同运动的物理规律进行推理分析,是解决这类问题的关键。
由题意,当电场和磁场同时存在时,带电粒子做匀速直线运动,电场力和磁场力二力平衡,它俩大小相等,qv0B=Eq, 可见B选项正确。若粒子带负电,电场方向竖直向下,则电场力竖直向上,磁场力与此相反,则磁场方向应该垂直于纸面向里,排除D。
若撤掉电场,只受磁场力,粒子做匀速圆周运动,运动时间应该等于弧AD的长度除以速度V0,又因为洛伦磁力不做功,动能不变。若撤掉磁场,只受电场力作用,粒子将做类平抛运动,在水平方向上的分运动仍为匀速直线运动,运动时间等于线段AC的长度除以速度V0,和电磁场同时存在时运动时间相同。所以运动时间应该为tD > tB =tC。平抛运动过程中,电场力对粒子做正功,由动能定理可知,粒子动能增大。所以EKB > EKC= EKD。
四、《磁场》学习目标的检测
根据课标要求,磁场主题的主要检查的知识点为磁感强度的定义以及磁感线,通电导线和运动电荷在磁场中的受力规律。但新课标更加注重学生能力的培养,“课程总目标”中明确提出,学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决问题。所以测试命题时应该以能力立意,在考察知识的基础上,更主要的是考察学生的理解能力、分析能力和应用能力。
1.两个粒子 , 带电量相等 , 在同一匀强磁场中只受磁场力而作匀速圆周运动。则 A.若速率相等, 则半径必相等 ; B.若速率相等, 则周期必相等 ; C.若动量大小相等, 则半径必相等 ; D.若动能相等, 则周期必相等。
尽管带电粒子在磁场中的运动没有在《课程标准》中专门提出,但作为洛伦兹力的应用,学生应该熟练掌握。本题综合应用洛伦兹力和匀速圆周运动的知识,推导出带电粒子在匀强磁场中运动的半径和周期表达式,再利用表达式来分析。其中又涉及到动能和动量的概念。
分析:洛伦兹力提供向心力,有 qvB=mv/R, 得半径R= mv/(qB), 周期T=2πm/(qB), 由题干知,电量q和磁感应强度B相同,要想周期相同,只需要粒子质量m相同,周期T和粒子速率v无关。要使半径R相同,应该是粒子的质量m和速率v的乘积相同,即动量大小相同。所以正确答案为C。
本题属于容易题,在掌握相关知识的基础上,经过简单的推理,就可以得出正确结论。
2.一束混合的离子束,先径直穿过正交匀强电场和匀强磁场,再进入一个磁场区域后分裂成几束,如图所示,若粒子的重力不计,则分裂是因为()A .带电性质不同,有正离又有负离子 B .速率不同
C .质量和电量的比值不同 D .以上答案均不正确
本题难度较大,学生必须熟练掌握相关知识,并具有一定的分析和推理能力。首先根据粒子束在磁场中的偏转,应用左手定则来判断带电性。然后根据“径直穿过正交匀强电、磁场”这个条件分析出速度相同的结论。再根据粒子在磁场中轨道半径的不同来确定荷质比。本题实际是质谱仪的 物理模型,正交的匀强电、磁场是速度选择仪。
粒子都能沿直线穿过正交的电磁场,说明电场力和磁场力二力平衡,即qvB=Eq,速度v=E/B,所以几种粒子的速率都相同。进入右端的磁场后做匀速圆周运动,洛伦兹力提供向心力,根据左手定则,几种粒子都带正电。但它们的半径不同,由导出的结论R=mv/(qB),在速率v和磁场B相同的条件下,m /q 比值越大,半径R越大。所以正确选项为C。.如图 , 用丝线吊一个质量为 m 的带电(绝缘)小球处于匀强磁场中 , 空气阻力不计 , 当小球分别从 A 点和 B 点向最低点 O 运动且两次经过 O 点时()
A 小球的动能相同 B 丝线所受的拉力相同 C 小球所受的洛伦兹力相同 D 小球的向心加速度不相同
本题综合性较强,对学生分析解决问题的能力要求较高。首先它的受力情况复杂,运动也不是简单的匀速圆周运动,涉及到的概念有功、动能、向心加速度以及矢量和标量,物理规律有机械能守恒以及圆周运动的规律。首先根据洛伦兹力对运动电荷不做功的特点,丝线拉力也不做功,只有重力做功,由机械能守恒的条件,可以判断小球往返经过 O 动能相同。根据圆周运动向心加速度公式,a=v 2 /R,小球往返经过O点时向心加速度大小相同,方向都竖直向上,也相同,所以D选项错误。BC选项学生很容易错选,往往由于定势思维,忽略小球往返经过 O 时洛伦兹力方向相反。因为力是矢量,所以C选项错误。又因为经过此位置向心力相同,即重力、拉力和洛伦兹力的合力相同,洛伦兹力变向,拉力显然不同,B选项错误。所以正确答案为A。
4.如图所示,质量为 m,带电量为 +q 的粒子,从两平行电极板正中央垂直电场线和磁感线以速度 v 飞入,已知两板间距为 d,磁感强度为 B,这时粒子恰能沿直线穿过电场和磁场区域(不计重力)。今将磁感强度增大到某值,则粒子将落到某极板上。当粒子落到极板上时动能为 ____________________。
分析粒子在电场或磁场中的运动,关键是把电学问题转化成力学问题。把粒子的受力分析清楚后,判断粒子做什么形式的运动,然后用动力学规律来解决问题。本题需要用到动能定理来解决问题,这里需要明确洛伦兹力不做功,以及电场力对粒子的做功情况。
根据“粒子恰能直线穿过电场和磁场区域”可知此时电场力和磁场力平衡,即电场力的大小就等于qvB,“今将磁感强度增大到某值”,粒子将向磁场力方向偏转而做曲线运动,这种曲线运动既不是圆周运动,也不是平抛运动,求它的末动能我们可以根据动能定理。接下来分析各力的做功情况:洛伦兹力不做功,而电场力做负功,因为电场力是恒力,功的大小就等于电场力和沿电场线的位移d/2 的乘积。由动能定理-qvBd/2=E k-mv /2,所以当粒子落到极板上时动能为 mv/2-qvBd/2
5.如图所示为电磁流量计示意图。直径为 d 的非磁性材料制成的圆形导管内,导电液体从左向右流动,磁感强度为 B 的匀强磁场垂直液体流动的方向而穿过一段圆形管道。则 a 点电势 b 点电势;若测得管壁内 a、b 两点间的电势差为 U,则管中液体的流量 Q = ___________。(单位时间内流过导管横截面的液体体积叫做流量)
2
2
新课程目标明确指出,学习终身发展必备的物理基础知识和技能,了解这些知识与技能在生活、生产中的应用,关注科学技术的现状及发展趋势。能运用物理知识和科学探究方法解决一些问题。电磁流量计在实际中获得广泛应用,而它的基本原理我们用磁场的知识就可以解决。
导电液体中有大量的自由离子,当液体从左向右流动时,自由离子随之而发生定向移动,在磁场中将会受到洛伦兹力的作用。由左手定则可知,正电荷受磁场力向上,负电荷受力向下,这样a处有多余的正电荷,b处有多余的负电荷,所以a点电 势高。这样ab间就建立了电场,电场线由a指向b,因此自由离子同时又受电场力的作用。当电场力和磁场力平衡时,ab间电势差恒定,为U。设液体流动速度为v,有qvB=qU/d,而流量Q为单位时间内流过导管横 截面的液体体积,即流量Q等于流速v和导管横截面积的乘积,Q=vπd/4=πUd/(4B)
6.如图,两光滑的平行金属轨道与水平面成θ 角,两轨道间距为 L,一金属棒垂直两轨道水平放置。金属棒质量为 m,电阻为 R,轨道上端的电源电动势为 E,内阻为2r。为使金属棒能静止在轨道上,可加一方向竖直向上的匀强磁场,求该磁场的磁感应强度
B 应是多大?
本题综合性较强,需要运用闭合电路欧姆定律、安培力和平衡条件等知识点来求解。总的思路是把电学问题转换成力学问题。做这类题的关键是做好受力分析,画出同一平面内的受力图。这要求学生能看懂三维立体图,明确磁感强度 B 垂直于导线。
沿斜面方向合力为零,则有 mg sin θ = F B cos θ(1)由安培力公式 F B = BIL(2)由全电路欧姆定律 I = E /(R + r)(3)联立(1)、(2)、(3)可得
B = mg(R + r)tan θ / EL
第五篇:恒定电流和磁场知识点总结
恒定电流
一、电流:电荷的定向移动行成电流。
1、产生电流的条件:(1)自由电荷;(2)电场;
2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;
注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;
3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A(3)常用单位:毫安mA、微安uA;
二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;
1、定义式:I=U/R;
2、推论:R=U/I;
3、电阻的国际单位时欧姆,用Ω表示;
三、闭合电路:由电源、导线、用电器、电键组成;
1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示;
2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压;
3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;
4、电源的电动势等于内、外电压之和;
E=U内+U外 U外=RI E=(R+r)I
四、闭合电路的欧姆定律:
闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;
1、数学表达式:I=E/(R+r)
2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;
3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;
五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;
补充:
1.电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。
R=pl/S(电阻的决定式)P只与导体材料性质有关。R与温度有关。
二极管:单向导电性;正极与电源正极相连。2.串联特点:①总电压等于各部分电压之和。
②电流处处相等
③总电阻等于各部分电阻和
④总功率等于各部分功率和 3.并联特点:①总电压等于各支路电压
②总电流等于各支路电流和
③总电阻的倒数等于各支路电阻倒数之和
④总功率等于各支路功率和 4.伏安法:(1)限流式;(2)分压式。5.电动势:(1)定义:非静电力对电荷所做的功与被移送的电荷量之比。
(2)物理意义:反映电源提供电能的本领。
(3)公式:E电动势=W其/q
E=U外+U内(4)电动势只与电源性质有关
(5)电动势、内阻是电源性质的衡量指标。电动势以大为好,内阻以小为好。6.闭合电路欧姆定律:
7.外阻与路端电压成正比。
8.测量电源电动势与内阻的方法:伏安法、伏箱法、安箱法。
9.外接、内接的原则:观察分压、分流效果哪个明显。小外偏小、大内偏大。
10.表头改装电压表须串联大电阻,表头改装电流表须并联小电阻
11.纯电阻电路:电能全部转化为热能的电路。
12.电源总功率:EI=IU外+IU内
13.I=Q/t=nqvS………………………S指电荷通过的截面;V指电荷定向移动的速度
磁场
一、磁场:
1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;
2、磁铁、电流都能能产生磁场;
3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;
4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;
二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;
1、磁感线是人们为了描述磁场而人为假设的线;
2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;
3、磁感线是封闭曲线;
三、安培定则:
1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;
2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;
3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;
四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);
五、磁感应强度:磁感应强度是描述磁场强弱的物理量。
1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL
2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)
3、磁感应强度的国际单位:特斯拉 T,1T=1N/A·m
六、安培力:磁场对电流的作用力;
1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。
2、定义式F=BIL(适用于匀强电场、导线很短时)
3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。
七、磁铁和电流都可产生磁场;
八、磁场对电流有力的作用;
九、电流和电流之间亦有力的作用:(1)同向电流产生引力;(2)异向电流产生斥力;
十、分子电流假说:所有磁场都是由电流产生的;
十一、磁性材料:能够被强烈磁化的物质叫磁性材料:
(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;
十二、磁场对运动电荷的作用力,叫做洛伦兹力
1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;
(1)洛仑兹力F一定和B、V决定的平面垂直。(2)洛仑兹力只改变速度的方向而不改变其大小(3)洛伦兹力永远不做功。
2、洛伦兹力的大小
(1)当v平行于B时:F=0(2)当v垂直于B时:F=q·v·B