高中物理选修3-1知识点归纳总结范文大全

时间:2019-05-14 14:07:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中物理选修3-1知识点归纳总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中物理选修3-1知识点归纳总结》。

第一篇:高中物理选修3-1知识点归纳总结

高中物理选修3-1知识点归纳总结

在人教版普通高中物理课本选修3-1模块中,有很多高考物理考试中会出现的知识点需要我们去进行针对性的复习。下面是 给大家带来的高中物理选修3-1知识点,希望对你有帮助。

高中物理选修3-1知识点(一)

一、电动势

(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。

(2)定义式:E=W/q(3)单位:伏(V)(4)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。

二、电源(池)的几个重要参数

(1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。

(2)内阻(r):电源内部的电阻。

(3)容量:电池放电时能输出的总电荷量。其单位是:A;h,mA;h.高中物理选修3-1知识点(二)

一、导体的电阻

(1)定义:导体两端电压与通过导体电流的比值,叫做这段导体 的电阻。

(2)公式:R=U/I(定义式)说明:

A、对于给定导体,R一定,不存在R与U成正比,与I成反比的关系,R只跟导体本身的性质有关。

B、这个式子(定义)给出了测量电阻的方法——伏安法。

C、电阻反映导体对电流的阻碍作用

二、欧姆定律

(1)定律内容:导体中电流强度跟它两端电压成正比,跟它的电阻成反比。

(2)公式:I=U/R(3)适应范围:一是部分电路,二是金属导体、电解质溶液。

三、导体的伏安特性曲线

(1)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。

(2)线性元件和非线性元件

线性元件:伏安特性曲线是通过原点的直线的电学元件。非线性元件:伏安特性曲线是曲线,即电流与电压不成正比的电学元件。

四、导体中的电流与导体两端电压的关系

(1)对同一导体,导体中的电流跟它两端的电压成正比。(2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电流大。所以U/I反映了导体阻碍电流的性质,叫做电阻(R)(3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。

高中物理选修3-1知识点(三)

一、电功和电功率

(一)导体中的自由电荷在电场力作用下定向移动,电场力所做的功称为电功。适用于一切电路.包括纯电阻和非纯电阻电路。

1、纯电阻电路:只含有电阻的电路、如电炉、电烙铁等电热器件组成的电路,白炽灯及转子被卡住的电动机也是纯电阻器件。

2、非纯电阻电路:电路中含有电动机在转动或有电解槽在发生化学反应的电路。

在国际单位制中电功的单位是焦(J),常用单位有千瓦时(kW;h)。1kW;h=3.6×106J(二)电功率是描述电流做功快慢的物理量。

额定功率:是指用电器在额定电压下工作时消耗的功率,铭牌上所标称的功率。

实际功率:是指用电器在实际电压下工作时消耗的功率。用电器只有在额定电压下工作实际功率才等于额定功率。

二、焦耳定律和热功率

(一)焦耳定律:电流流过导体时,导体上产生的热量Q=I 2Rt 此式也适用于任何电路,包括电动机等非纯电阻发热的计算.产生电热的过程,是电流做功,把电能转化为内能的过程。(二)热功率:单位时间内导体的发热功率叫做热功率。热功率等于通电导体中电流I 的二次方与导体电阻R 的乘积。

第二篇:高中物理选修3-4知识点总结

高中物理选修3-4知识点总结

一.简谐运动

1、机械振动:

物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:

在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。

3、描述振动的物理量

描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。

(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。(2)振幅A:做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。(4)频率f:振动物体单位时间内完成全振动的次数。

(5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。周期、频率、角频率的关系是:。

(6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。

4、研究简谐振动规律的几个思路:

(1)用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

(2)用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。

(3)用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。(4)从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。

5、简谐运动的表达式

振幅A,周期T,相位,初相

6、简谐运动图象描述振动的物理量

1.直接描述量:

①振幅A;②周期T;③任意时刻的位移t。2.间接描述量:

③x-t图线上一点的切线的斜率等于V。3.从振动图象中的x分析有关物理量(v,a,F)简谐运动的特点是周期性。在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速)运动;在时间上有周期性,即每经过一定时间,运动就要重复一次。我们能否利用振动图象来判断质点x,F,v,a的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。

小结: 1.简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。2.简谐运动图象反应了物体位移随时间变化的关系。

3.根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。

7、单摆

1单摆周期公式

上述公式是高考要考查的重点内容之一。对周期公式的理解和应用注意以下几个问题:①简谐振动物体的周期和频率是由振动系统本身的条件决定的。②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。

例如图1中,三根等长的绳L1、L2、L3共同系住一个密度均匀的小球m,球直径为d,L2、L3与天花板的夹角 < 30。若摆球在纸面内作小角度的左右摆动,则摆的圆弧的圆心在O1外,故等效摆长为,周期T1=2;若摆球做垂直纸面的小角度摆动,叫摆动圆弧的圆心在O处,故等效摆长为,周期T2=.单摆周期公式中的g,由单摆所在的空间位置决定,还由单摆系统的运动状态决定。所以g也叫等效重力加速度。由可知,地球表面不同位置、不同高度,不同星球表面g值都不相同,因此应求出单摆所在地的等效g值代入公式,即g不一定等于9.8m/s2。单摆系统运动状态不同g值也不相同。例如单摆在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线的回复力变大,摆球质量不变,则重力加速度等效值g = g + a。再比如在轨道上运行的航天飞机内的单摆、摆球完全失重,回复力为零,则重力加速度等效值g = 0,周期无穷大,即单摆不摆动了。g还由单摆所处的物理环境决定。如带小电球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直的电场合力在圆弧切向方向的分力,所以也有-g的问题。一般情况下g值等于摆球静止在平衡位置时,摆线张力与摆球质量的比值。

8、受迫振动和共振Ⅰ

物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。

9、机械波 横波和纵波 横波的图象Ⅰ

机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:

一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。横波和纵波:

质点的振动方向与波的传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。

第二章、机械波 1、机械波的特点:

(1)每一质点都以它的平衡位置为中心做简振振动;后一质点的振动总是落后于带动它的前一质点的振动。(2)波只是传播运动形式(振动)和振动能量,介质并不随波迁移。横波的图象

用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。简谐波的图象是正弦曲线,也叫正弦波

简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个2、波长、波速和频率(周期)的关系

描述机械波的物理量

(1)波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。

(2)频率f:波的频率由波源决定,在任何介质中频率保持不变。(3)波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。波速与波长和频率的关系:,、波的反射和折射 波的干涉和衍射Ⅰ、.惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。、根据惠更斯原理,只要知道某一时刻的波阵面,就可以确定下一时刻的波阵面。、波的干涉和衍射

相差不多。

衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。

稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。、多普勒效应

1.多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。

2.多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。

3.多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。

4.多普勒效应的应用: ①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红衣现象”,所谓“红衣现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。7、波的反射

1.波遇到障碍物会返回来继续传播,这种现象叫做波的反射.

2.反射定律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。入射角(i)和反射角(i’):入射波的波线与平面法线的夹角i叫做入射角.反射波的波线与平面法线的夹角i’ 叫做反射角.

反射波的波长、频率、波速都跟入射波相同. 波遇到两种介质界面时,总存在反射

8、波的折射

1.波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射. 2.折射规律:

(1).折射角(r):折射波的波线与两介质界面法线的夹角r叫做折射角.

(2).折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比: 当入射速度大于折射速度时,折射角折向法线.当入射速度小于折射速度时,折射角折离法线.当垂直界面入射时,传播方向不改变,属折射中的特例. 在波的折射中,波的频率不改变,波速和波长都发生改变.、光的折射定律 折射率

光的折射定律,也叫斯涅耳定律:入射角的正弦跟折射角的正弦成正比.如果用n来表示这个比例常数,就有

折射率:光从一种介质射入另一种介质时,虽然入射角的正弦跟折射角的正弦之比为一常数n,但是对不同的介质来说,这个常数n是不同的.这个常数n跟介质有关系,是一个反映介质的光学性质的物理量,我们把它叫做介质的折射率.

i是光线在真空中与法线之间的夹角.

r是光线在介质中与法线之间的夹角.光从真空射入某种介质时的折射率,叫做该种介质的绝对折射率,也简称为某种介质的折射率

第三章、电磁波 电磁波的传播

一、麦克斯韦电磁场理论

1、电磁场理论的核心之一:变化的磁场产生电场

在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场

(2)非均匀变化的磁场产生变化电场

2、电磁场理论的核心之二:变化的电场产生磁场

麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 ◎理解:(1)均匀变化的电场产生稳定磁场

(2)非均匀变化的电场产生变化磁场 〖规律总结〗

1、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场

均匀变化的电场在周围空间产生恒定的磁场 均匀变化的磁场在周围空间产生恒定的电场 振荡电场产生同频率的振荡磁场 振荡磁场产生同频率的振荡电场

2、电场和磁场的变化关系

二、电磁波

1、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场 这个过程可以用下图表达。

2、电磁波:

电磁场由发生区域向远处的传播就是电磁波.3、电磁波的特点:

(1)电磁波是横波,电场强度E 和磁感应强度 B按正弦规律变化,二者相互垂直,均与波的传播方向垂直(2)电磁波可以在真空中传播,速度和光速相同.v=λf(3)电磁波具有波的特性

三、赫兹的电火花

赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象.,他还测量出电磁波和光有相同的速度.这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。

第四章、电磁振荡 电磁波的发射和接收

1、LC回路振荡电流的产生

先给电容器充电,把能以电场能的形式储存在电容器中。

(1)闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。

(2)由于电感线圈L中自感电动势的阻碍作用电流不会立即消失,保持原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。

接着电容器又开始放电,重复(1)、(2)过程,但电流方向与(1)时的电流方向相反。电磁波的发射和接收

有效的向外发射电磁波的条件:

(1)要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。

(2)振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。采用什么手段可以有效的向外界发射电磁波? 改造 振荡电路——由闭合电路成开放电路、电磁波的接收条件

①电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。

②调谐:使接收电路产生电谐振的过程。通过改变电容器电容来改变调谐电路的频率。③检波:从接收到的高频振荡中“检”出所携带的信号。.电磁波谱及其应用Ⅰ、光的电磁说

(1)麦克斯韦计算出电磁波传播速度与光速相同,说明光具有电磁本质(2)电磁波谱

电磁波谱 无线电波 红外线 可见光 紫外线 X射线 射线 产生机理 在振荡电路中,自由电子作周期性运动产生

原子的外层电子受到激发产生的

原子的内层电子受到激发后产生的 原子核受到激发后产生的

(3)光谱 ①观察光谱的仪器,分光镜 ②光谱的分类,产生和特征

发射光谱 连续光谱 产生 特征

由炽热的固体、液体和高压气体发光产生的 由连续分布的,一切波长的光组成 明线光谱 由稀薄气体发光产生的 由不连续的一些亮线组成

吸收光谱 高温物体发出的白光,通过物质后某些波长的光被吸收而产生的 在连续光谱的背景上,由一些不连续的暗线组成的光谱 ③ 光谱分析:

一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。

第三篇:高中物理选修3-1知识点归纳

枣阳市高级中学高二物理备课组

物理选修3-1经典复习

一、电场

1.两种电荷、电荷守恒定律、元电荷(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

222 2.库仑定律:F=kQ1Q2/r(真空中的点电荷){F:点电荷间的作用力(N);k:静电力常量k=9.0×109N•m/C;Q1、Q2:两点电荷的电量(C);r:两点电荷间的距离(m);作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q:检验电荷的电量(C)}

24.真空点(源)电荷形成的电场E=kQ/r {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=ΔEP减/q

8.电场力做功:WAB=qUAB=qEd=ΔEP减{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔEP减 :带电体由A到B时势能的减少量}

9.电势能:EPA=qφA {EPA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEP减=EPA-EPB {带电体在电场中从A位置到B位置时电势能的减少量}

11.电场力做功与电势能变化WAB=ΔEP减=qUAB(电场力所做的功等于电势能的减少量)

12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13.平行板电容器的电容C=εS/(4πkd)(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器

214.带电粒子在电场中的加速(Vo=0):W=ΔEK增或qU=mVt/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用):

类平抛运动(在带等量异种电荷的平行极板中:E=U/d)垂直电场方向:匀速直线运动L=Vot

2平行电场方向:初速度为零的匀加速直线运动d=at/2,a=F/m=qE/m =q U /m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的分布要求熟记;

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

2(6)电容单位换算:1F=10μF=10PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10J;

(8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面

二、恒定电流

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

23.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m)}

4.闭合电路欧姆定律:I=E/(r +R)或E=Ir+ IR(纯电阻电路);

E=U内 +U外 ;E=U外 + I r ;(普通适用)

枣阳市高级中学高二物理备课组

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

26.焦耳定律:Q=IRt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路和非纯电阻电路

8.电源总动率P总=IE;电源输出功率P出=IU;电源效率η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联: 串联电路(P、U与R成正比)并联电路(P、I与R成反比)2

枣阳市高级中学高二物理备课组

10.欧姆表测电阻

11.伏安法测电阻

1、电压表和电流表的接法

2、滑动变阻器的两种接法 3

枣阳市高级中学高二物理备课组

注:(1)单位换算:1A=10mA=10μA;1kV=10V=10mV;1MΩ=10kΩ=10Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;半导体和绝缘体的电阻率随温度升高而减小。

(3)串联时,总电阻大于任何一个分电阻;并联时,总电阻小于任何一个分电阻;

2(4)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E/(4r);

三、磁场

1.磁感应强度是用来表示磁场的强弱和方向的物理量, B =Φ/S,是矢量,单位(T),1T=1N/(A•m)

2.安培力F=BIL(注:I⊥B); {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下

222(a)f洛=F向=mV/r=mωr=m(2π/T)r=qVB;r=mV/qB;T=2πm/qB;

(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=弦切角的二倍)

注:

(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握;

3636

(3)其它相关内容:地磁场、磁电式电表原理、回旋加速器、磁性材料 4

第四篇:高中物理选修3-1-知识点总结(共)

库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。

Q Q Fk(静电力常量——k=9.0×109N·m2/C2)

r注意1.定律成立条件:真空、点电荷

2.静电力常量——k=9.0×109N·m2/C2(库仑扭秤)3.计算库仑力时,电荷只代入绝对值

4.方向在它们的连线上,同种电荷相斥,异种电荷相吸 5.两个电荷间的库仑力是一对相互作用力

电场强度

放入电场中某点的电荷受到的电场力与它所带电荷量的比值,叫做这一点的电场强

度,简称场强。EF 国际单位:N/C q电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。即如果Q是正电荷,E的方向就是沿着PQ的连线并背离Q;如果Q是负电荷,E的方向就是沿着PQ的连线并指向Q。(“离+Q而去,向-Q而来”)

电场强度是描述电场本身的力的性质的物理量,反映电场中某一点的电场性质,其大小表示电场的强弱,由产生电场的场源电荷和点的位置决定,与检验电荷无关。数值上等于单位电荷在该点所受的电场力。

1V/m=1N/C

三、点电荷的场强公式

EFQk2 qr 1

五、电场线

1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,曲线上某点的切线方向表示场强的方向。

2、电场线的特征 1)、电场线密的地方场强强,电场线疏的地方场强弱 2)、静电场的电场线起于正电荷止于负电荷,孤立的正电荷(或负电荷)的电场线止无穷远处点

3)、电场线不会相交,也不会相切 4)、电场线是假想的,实际电场中并不存在 5)、电场线不是闭合曲线,且与带电粒子在电场中的运动轨迹之间没有必然联系

几种典型电场的电场线

1)正、负点电荷的电场中电场线的分布

特点:a、离点电荷越近,电场线越密,场强越大

b、以点电荷为球心作个球面,电场线处处与球面垂直,在此球面上场强大小处处相等,方向不同。

2)、等量异种点电荷形成的电场中的电场线分布 特点:a、沿点电荷的连线,场强先变小后变大

b、两点电荷连线中垂面(中垂线)上,场强方向均相同,且 总与中垂面(中垂线)垂直

c、在中垂面(中垂线)上,与两点电荷连线的中点0等距离 各点场强相等。

3)、等量同种点电荷形成的电场中电场中电场线分布情况 特点:a、两点电荷连线中点O处场强为0 b、两点电荷连线中点附近的电场线非常稀疏,但场强并不为0 c、两点电荷连线的中点到无限远电场线先变密后变疏 4)、匀强电场

特点:a、匀强电场是大小和方向都相同的电场,故匀强电场的电场线是平行等距同向的直线

b、电场线的疏密反映场强大小,电场方向与电场线平行

第一章 第4节 电势能和电势

一、电势差:电势差等于电场中两点电势的差值。电场中某点的电势,就是该点相对于零势点的电势差。

(1)计算式 UABAB

(2)单位:伏特(V)

(3)电势差是标量。其正负表示大小。

二、电场力的功

WABqUAB

电场力做功的特点:电场力做功与重力做功一样,只与始末位置有关,与路径无关.1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能.注意:系统性、相对性

2、电势能的变化与电场力做功的关系

W电AB=E电A-E电B=-(E电B-E电A)=-E电 1)、电荷在电场中具有电势能。2)、电场力对电荷做正功,电荷的电势能减小 3)、电场力对电荷做负功,电荷的电势能增大 4)、电场力做多少功,电荷电势能就变化多少。5)、电势能是相对的,与零电势能面有关(通常把电荷在离场源电荷无限远处的电势能规定为零,或把电荷在大地表面上电势能规定为零。)6)、电势能是电荷和电场所共有的,具有系统性 7)、电势能是标量

3、电势能大小的确定

电AA点(电势能为零的点)

电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功

三、电势

1.电势:置于电场中某点的试探电荷具有的电势能与其电量的比叫做该点的电势。是描述电场的能的性质的物理量。其大小与试探电荷的正负及电量q均无关,只与电场中该点在电场中的位置有关,故其可衡量电场的性质。E=WE电q 单位:伏特(V)标量

1:电势的相对性:某点电势的大小是相对于零点电势而言的。零电势的选择是任意的,一般选地面和无穷远为零势能面。

2:电势的固有性:电场中某点的电势的大小是由电场本身的性质决定的,与放不放电荷及放什么电荷无关。

3:电势是标量,只有大小,没有方向.(负电势表示该处的电势比零电势处电势低.)4:计算时EP,q, 都带正负号。

3.顺着电场线的方向,电势越来越低。

4.与电势能的情况相似,应先确定电场中某点的电势为零.(通常取离场源电荷无限远处或大地的电势为零.)

三、等势面

1、等势面:电场中电势相等的各点构成的面。

2、等势面的特点

a: 等势面一定跟电场线垂直,在同一等势面的两点间移动电荷,电场力不做功; b:电场线总是由电势高的等势面指向电势低的等势面,任意两个等势面都不会相交;

c:等差等势面越密的地方电场强度越大。

第一章 第5节 电势差 电场力的功

一、电势差:电势差等于电场中两点电势的差值

UABAB

二、电场力的功

WABqUAB

电场力做功的特点:电场力做功与重力做功一样,只与始末位置有关,与路径无关.第一章 第6节 电势差与电场强度的关系

一、场强与电势的关系?

结论:电势与场强没有直接关系!

二、匀强电场中场强与电势差的关系

UEdUEdE

匀强电场中两点间的电势差等于场强与这两点间沿电场方向距离的乘积

U d在匀强电场中,场强在数值上等于沿场强方向每单位距离上降低的电势.④电场强度的方向是电势降低最快的方向.推论:在匀强电场中,沿任意一个方向上,电势降落都是均匀的,故在同一直线上间距相同的两点间的电势差相等。

第一章 第7节 静电现象的应用

研究带电粒子在电场中的运动要注意以下三点: 1.带电粒子受力特点

2.结合带电粒子的受力和初速度分析其运动性质 3.注意选取合适的方法解决带电粒子的运动问题

一、带电粒子在电场中的加速

1、在真空中有一对带电平行金属板,板间电势差为U,若一个质量为m,带正电电荷量为q的粒子,在静电力的作用下由静止开始从正极板向负极板运动,计算它到达负极板时的速度。

二、带电粒子在电场中的偏转

2、如图所示,一个质量为m,电荷量为+q的粒子,从两平行板左侧中点以初速度v0沿垂直场强方向射入,两平行板的间距为d,两板间的电势差为U,金属板长度为L,(1)若带电粒子能从两极板间射出,求粒子射出电场时的侧移量。(2)若带电粒子能从两极板间射出,求粒子射出电场时的偏转角度。

带电粒子的分类(1)基本粒子

如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电微粒

如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.

第五篇:高中物理选修3-2知识点总结新课标人教版

李哲万岁 选修3-2知识点

56.电磁感应现象Ⅰ

只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。57.感应电流的产生条件Ⅱ

1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中B·Ssin(是B与S的夹角)看,磁通量的变化可由面积的变化S引起;可由磁感应强度B的变化B引起;可由B与S的夹角的变化引起;也可由B、S、中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。58.法拉第电磁感应定律 楞次定律Ⅱ

①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

BLv——当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小

为。

如图所示。设产生的感应电流强度为I,MN间电动势为,则MN受向左的安培力FBIL,要保持MN以v匀速向右运动,所施外力F'FBIL,当行进位移为S时,外力功WBI·L·SBILv·t。t为所用时间。

而在t时间内,电流做功W'I··t,据能量转化关系,W'W,则I··tBILv·t。

∴BIv,M点电势高,N点电势低。

此公式使用条件是B、I、v方向相互垂直,如不垂直,则向垂直方向作投影。

n·,t公式 n/t。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率/t有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

公式二: Blvsin。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(lB)。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直于B方向上的投影)。公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积ntBBB叫磁感应强度的变化率, 若是S, 此式中的ttt恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直S不变, 磁感应强度发生变化, 由BS, 此时n的面积发生变化, 则B·S, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。

严格区别磁通量, 磁通量的变化量B磁通量的变化率

, 磁通量B·S, 表示穿过研究平面的磁t1

李哲万岁

感线的条数, 磁通量的变化量21, 表示磁通量变化的多少, 磁通量的变化率慢, 公式Blv一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?

如图1所示, 一长为l的导体杆AC绕A点在纸面内以角速度匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B, 求AC产生的感应电动势, 显然, AC各部分切割磁感线的速度不相等, vA0,vCl, 且AC上各点的线速度大小与半径成正比, 所以AC切割的速度可用其平均切割速v表示磁通量变化的快tvAvCvCl, 故222

1Bl2。2(超经典的,我们有次考试考到过关于这个、)12BL——当长为L的导线,以其一端为轴,在垂直匀强磁场B的平2面内,以角速度匀速转动时,其两端感应电动势为。

如图所示,AO导线长L,以O端为轴,以角速度匀速转动一周,所用时间t2,描过面积SL,(认为面积变化由0增到L)则磁通变化222

B·L。

BL21BL2且用右手定则制定A端电势高,O端电势低。在AO间产生的感应电动势t2/2 mn·B·S·——面积为S的纸圈,共n匝,在匀强磁场B中,以角速度匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势m。如图所示,设线框长为L,宽为d,以转到图示位置时,ab边垂直磁场方向向纸外运动,切割磁感线,速度为v·d(圆运动半径为宽边d的一半)产生感应电动势 2d1BL·vBL··BS·,a端电势高于b端电势。

cd边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势1BS。c端电势高于e端电势。2bc边,ae边不切割,不产生感应电动势,b.c两端等电势,则输出端M.N电动势为mBS。

李哲万岁

如果线圈n匝,则mn·B·S·,M端电势高,N端电势低。

参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值m,如从图示位置转过一个角度,则圆运动线速度v,在垂直磁场方向的分量应为vcos,则此时线圈的产生感应电动势的瞬时值即作最大值m.cos.即作最大值方向的投影,n·B·S·cos(是线圈平面与磁场方向的夹角)。

当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。总结:计算感应电动势公式:

BLv如v是即时速度,则为即时感应电动势。如v是平均速度,则为平均感应电动势。

n12t是一段时间,为这段时间内的平均感应电动势。BL

2tto,为即时感应电动势。n·B·S·cos(是线圈平面与磁场方向的夹角)

·BS·线圈平面与磁场平行时有感应电动势最大值mn ·B·S··cos瞬时值公式,是线圈平面与磁场方向夹角n 注意:公式中字母的含义,公式的适用条件及使用图景。

区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在t内迁移的电量(感应电量)为

qItRtnnt, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。因RtR此, 当用一磁棒先后两次从同一处用不同速度插至线圈中同一位置时, 线圈里聚积的感应电量相等, 但快插与慢插时产生的感应电动势、感应电流不同, 外力做功也不同。②楞次定律: 1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。产生即磁通量变化感应电流建立感应电流磁场阻碍磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。这样一个复杂的过程,可以用图表理顺如下:

(这个不太好理解、不过很好用 口诀:增缩减扩,来拒去留)

李哲万岁

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

(1)阻碍原磁通的变化(原始表述);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:

条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

(“因电而动”用左手,“因动而电”用右手)59.互感 自感 涡流Ⅰ

互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势。这种现象叫互感。

自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。所产生的感应电动势叫做自感电动势。自感系数简称自感或电感, 它是反映线圈特性的物理量。线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

自感现象分通电自感和断电自感两种, 其中断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题, 如图2所示, 原来电路闭合处于稳定状态, L与LA并联, 其电流分别为IL和IA, 方向都是从左到右。在断开S的瞬间, 灯A中原来的从左向右的电流IA立即消失, 但是灯A与线圈L构成一闭合回路, 由于L的自感作用, 其中的电流IL

不会立即消失, 而是在回路中逐断减弱维持暂短的时间, 在这个时间内灯A中有从右向左的电流通过, 此时通过灯A的电流是从IL开始减弱的, 如果原来ILIA, 则在灯A熄灭之前要闪亮一下;如果原来ILIA, 则灯A是逐断熄灭不再闪亮一下。原来IL和IA哪一个大, 要由L的直流电阻RL和A的电阻RA的大小来决定, 如果RLRA,则ILIA, 如果RLRA,ILIA。

2、由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现

李哲万岁

象。在自感现象中产生感应电动势叫自感电动势。

由上例分析可知:自感电动势总量阻碍线圈(导体)中原电流的变化。

3、自感电动势的大小跟电流变化率成正比。自LI t L是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L越大。单位是亨利(H)。

如是线圈的电流每秒钟变化1A,在线圈可以产生1V 的自感电动势,则线圈的自感系数为1H。还有毫亨(mH),微亨(H)。涡流及其应用

1.变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流

2.应用:

(1)新型炉灶——电磁炉。

(2)金属探测器:飞机场、火车站安全检查、扫雷、探矿。60.交变电流 描述交变电流的物理量和图象Ⅰ

一、交流电的产生及变化规律:

(1)产生:强度和方向都随时间作周期性变化的电流叫交流电。

矩形线圈在匀强磁场中,绕垂直于匀强磁场的线圈的对称轴作匀速转动时,如图5—1所示,产生正弦(或余弦)交流电动势。当外电路闭合时形成正弦(或余弦)交流电流。

图5—1(2)变化规律:

(1)中性面:与磁力线垂直的平面叫中性面。

线圈平面位于中性面位置时,如图5—2(A)所示,穿过线圈的磁通量最大,但磁通量变化率为零。因此,感应电动势为零。

图5—2 当线圈平面匀速转到垂直于中性面的位置时(即线圈平面与磁力线平行时)如图5—2(C)所示,穿过线圈的磁通量虽然为零,但线圈平面内磁通量变化率最大。因此,感应电动势值最大。

李哲万岁

m2·N·B·l·vN·B··S(伏)(N为匝数)

(2)感应电动势瞬时值表达式:

若从中性面开始,感应电动势的瞬时值表达式:em·sint(伏)如图5—2(B)所示。感应电流瞬时值表达式:iIm·sint(安)

若从线圈平面与磁力线平行开始计时,则感应电动势瞬时值表达式为:em·cost(伏)如图5—2(D)所示。感应电流瞬时值表达式:iIm·cost(安)

二、表征交流电的物理量:

(1)瞬时值、最大值和有效值:

交流电在任一时刻的值叫瞬时值。

瞬时值中最大的值叫最大值又称峰值。

交流电的有效值是根据电流的热效应规定的:让交流电和恒定直流分别通过同样阻值的电阻,如果二者热效应相等(即在相同时间内产生相等的热量)则此等效的直流电压,电流值叫做该交流电的电压,电流有效值。正弦(或余弦)交流电电动势的有效值和最大值m的关系为:交流电压有效值U0.707Um;

交流电流有效值I0.707Im。

m20.707m

注意:通常交流电表测出的值就是交流电的有效值。用电器上标明的额定值等都是指有效值。用电器上说明的耐压值是指最大值。

(2)周期、频率和角频率

交流电完成一次周期性变化所需的时间叫周期。以T表示,单位是秒。

交流电在1秒内完成周期性变化的次数叫频率。以f表示,单位是赫兹。

周期和频率互为倒数,即T1。f我国市电频率为50赫兹,周期为0.02秒。角频率:22f 单位:弧度/秒 T交流电的图象:em·sint图象如图5—3所示。em·cost图象如图5—4所示。

李哲万岁

61。正弦交变电流的函数表达式Ⅰ

u=Umsinωt i=Imsinωt 62.电感和电容对交变电流的影响Ⅰ

①电感对交变电流有阻碍作用,阻碍作用大小用感抗表示。

低频扼流圈,线圈的自感系数L很大,作用是“通直流,阻交流”; 高频扼流圈,线圈的自感系数L很小,作用是“通低频,阻高频”. ②电容对交变电流有阻碍作用,阻碍作用大小用容抗表示 耦合电容,容量较大,隔直流、通交流

高频旁路电容,容量很小,隔直流、阻低频、通高频 63.变压器Ⅰ

变压器是可以用来改变交流电压和电流的大小的设备。

理想变压器的效率为1,即输入功率等于输出功率。对于原、副线圈各一组的变压器来说(如图5—6),原、副线圈上的电压与它们的匝数成正。即 U1n1 U2n2电流强度与它 因为有U1·I1U2·I2,因而通过原、副线圈的们的匝数成反比。即 I1n2 I2n1

注意:1.理想变压器各物理量的决定因素

输入电压U1决定输出电压U2,输出电流I2决定输入电流I1,输入功率随输出功率的变化而变化直到达到变压器的最大功率(负载电阻减小,输入功率增大;负载电阻增大,输入功率减小)。

2.一个原线圈多个副线圈的理想变压器的电压、电流的关系 U1:U2:U3:…=n1:n2:n3:… I1n1=I2n2+I3n3+…

因为P入P出,即U1·I1U2·I2,所以变压器中高压线圈电流小,绕制的导线较细,低电压的线圈电流大,绕制的导线较粗。

上述各公式中的I、U、P均指有效值,不能用瞬时值。(3)电压互感器和电流互感器

电压互感器是将高电压变为低电压,故其原线圈并联在待测高压电路中;电流互感器是将大电流变为小电流,故其原线圈串联在待测的高电流电路中。

(二)解决变压器问题的常用方法

思路1 电压思路。变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=……

思路2 功率思路。理想变压器的输入、输出功率为P入=P出,即P1=P2;当变压器有多个副绕组时P1=P2+P3+…… 思路3 电流思路。由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+……

思路4(变压器动态问题)制约思路。

(1)电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”.李哲万岁

(2)电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”.(3)负载制约:①变压器副线圈中的功率P2由用户负载决定,P2=P负1+P负2+…;②变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2;③总功率P总=P线+P2.动态分析问题的思路程序可表示为:

UUn211I2RnPP1P2(I1U1I2U2)1I1U1U1U负载22IP1 UI122决定决定决定决定思路5 原理思路。变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt相等;当遇到“有

”型变压器时ΔΦ1/Δt=ΔΦ2/Δt+ΔΦ3/Δt,此式适用于交流电或电压(电流)变化的直流电,但不适用于稳压或恒定电流的情况.64.电能的输送Ⅰ

由于送电的导线有电阻,远距离送电时,线路上损失电能较多。

在输送的电功率和送电导线电阻一定的条件下,提高送电电压,减小送电电流强度可以达到减少线路上电能损失的目的。

线路中电流强度I和损失电功率计算式如下:

IP输U出P损I2·R线

2U出注意:送电导线上损失的电功率,不能用P损R线求,因为U出不是全部降落在导线上。

下载高中物理选修3-1知识点归纳总结范文大全word格式文档
下载高中物理选修3-1知识点归纳总结范文大全.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中物理知识点总结

    高中物理知识点总结,捷登一站式解析面对繁琐且难懂的物理知识点,学生们如何梳理高中物理知识点?怎样找到学好高中物理的快捷方法?学习效率低,成绩停滞不前怎么办?高中物理知识点总......

    高中物理学习方法 高中物理知识点总结

    一 高中物理学习方法 一)掌握研究物理问题的基本方法 1.掌握观察实验的方法。要在演示实验和分组实验中注意引导学生掌握有意观察。并养成综合分析观察习惯。 在观察实验现象......

    高中物理电学知识点总结

    高中物理电学知识点总结 作者: 钱耀辉 (高中物理 甘肃天水物理一班 ) 评论数/浏览数: 7 / 3833 发表日期: 2010-07-31 16:31:03 一.电场 1.两种电荷、电荷守恒定律、元电荷: 2.......

    高中物理知识点总结:自由落体运动

    一. 教学内容 2. 自由落体运动特点:初速度为0,只受重力。(空气阻力很小时,也可把空气阻力忽略) ② ③ ④ ,粗略计算 取4. 自由落体运动是匀变速直线运动的一个特例。因此初速度为0......

    高中物理静电场知识点总结

    静电场--知识点 一、库伦定律与电荷守恒定律 1.库仑定律 (1)真空中的两个静止的点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在他们......

    高中物理会考知识点总结

    高中物理会考知识点总结 第1章力 一、力:力是物体间的相互作用。1、力的国际单位是牛顿,用N表示; 2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3、力的示......

    高中物理所有知识点总结

    高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0F外; ③在某一方向上的合力为零。 动量守恒的应用:核......

    选修三知识点总结

    选修三知识点总结 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新......