第一篇:高中物理知识点总结
高中物理知识点总结,捷登一站式解析
面对繁琐且难懂的物理知识点,学生们如何梳理高中物理知识点?怎样找到学好高中物理的快捷方法?学习效率低,成绩停滞不前怎么办?高中物理知识点总结,快速提分有保障,详细咨询热线55903851。郑州捷登教育1对1专业辅导帮你暑期吃透物理知识点,快速提升物理成绩!
捷登1对1物理精辅,梳理高中物理知识体系,快速补救知识短板,预科领先新学期!
1、通过知识测评、学习方法测评、学习习惯测评,帮助孩子诊断知识点薄弱环节,找到物理知识短板。
2、根据学生具体情况,梳理物理知识体系,量身定制个性化提升方案,家长和孩子挑选适合自己和满意的老师,学员可以根据自己的时间安排进行灵活上课,提升学员学习兴趣!
3、捷登1对1物理精辅,通过专业的研发团队,完备的备考方案,合理的时间规划,科学的教学方法,为高中生打造专业的暑期物理学习课程,针对学生时间安排上课,做到对高中物理知识点的不遗漏,帮助学员在暑期构建物理知识体系,夯实基础,快乐提分!
4、为保障学员对知识的消化吸收效果,捷登为每位学员配备专属的1对1教师,给孩子一个良好的学习氛围,其次,捷登为每位学员免费开放作业吧,由专门的陪读老师进行答疑解惑,学习管理师全程呵护监督,提高作业质量,此外,郑州捷登教育还为学子合理安排预习、复习,进行针对性教学!
5、梳理知识,化繁为简。很多同学都说上课是感觉挺明白,公式定理也都会背,但是一做题就容易犯晕,不知道该怎么办,平时会做的也都不会做了。郑州捷登教育暑期物理1对1精辅通过调整思路,找到做题的突破口,并对物理知识点进行总结,对物理知识点化繁为简,按照总结好的做题模型,不仅节约学员时间,还能保证较高的正确率。
6、省级优秀名师专业精辅,郑州捷登教育拥有千名郑州本土名师,多名省级优秀物理老师,多为物理学科带头人和物理教研组成员,具有多年的教学经验,90%以上获得过中级教师荣誉称号,所辅导学员平均提升25分,最高提升60分!捷登1对1专业名师不仅仅教会孩子怎样学好物理,更多的是教会孩子学好物理的一种方法,培养孩子独立思维能力和解题能力!
以上内容来自郑州捷登教育,郑州捷登教育河南本土中小学一对一个性化辅导专家,专业名师教学,夯实基础,补漏培优,学员提分100%,名校录取率98%以上。
第二篇:高中物理选修知识点总结
高中物理选修知识点总结
第一章第1节
宇宙中的地球
一、地球在宇宙中的位置
1、宇宙的概念:时间和空间的统一,天地万物的总称。
宇宙在空间上无边无际,在时间上无始无终,是运动、发展和变化的物质世界。
2、宇宙中的天体以及它们各自的特点
恒星——明亮发光,发热;相对静止。例如,太阳是距地球最近的恒星。
星云——轮廓模糊,云雾状外貌。由气体和尘埃组成,其主要成分是氢。
行星——在椭圆轨道上环绕恒星运行的、近似球状的天体。质量比恒星小,本身不
发光,靠反射恒星的光而发亮。例如地球是目前人们发现唯一存在生命的行星。
卫星——围绕行星运动的天体,例如月球(卫星)是离地球最近的自然天体。
流星体——尘粒和固体小块
彗星——扁长轨道,拖着长尾的彗星。围绕太阳公转的哈雷彗星(周期76年)
星际物质——气体和尘埃
3、天体的类型:
自然天体——主要为恒星和星云等
人造天体——人造卫星,航天飞机,天空实验室等。
宇宙中的距离相近的天体因相互吸引而相互绕转,构成不同级别的天体系统。
4、天体系统的层次
二、太阳系中的一颗普通行星
太阳系模型图
1、按离太阳由近及远的顺序依次是:
A水星,B金星,C地球,D火星,E木星,F土星,G天王星,H海王星。
小行星带位于木星和火星之间;木星是体积和质量最大的行星;地球是密度最大的行星。
2、运动特征:同向性、共面性、近圆性。
3、太阳系行星的分类:类地行星:水星,金星,地球,火星
巨行星:木星,土星
远日行星:天王星,海王星。
4、表现:地球是太阳系中一颗普通的行星。
三,存在生命的行星
1、地球的特殊性:地球是太阳系唯一存在生命的行星。
2、地球存在生命的条件:
(1)地球所处的宇宙环境条件是:a光照条件稳定,生命从低级各高级的演化没有中断。
b安全的宇宙环境:大小行星互不干扰。
(2)地球的物质条件是:a日地距离适中:适宜的温度。
b体积、质量适中:适合生物呼吸的大气。
c地球上有液体水:海洋、液态水的形成。
第一章第2节
太阳对地球的影响
一、太阳辐射与地球:
太阳的概况:太阳与其他恒星一样能发光发热,是一个巨大炽热的气体星球,主要成分是氢
(71%)和氦(27%).表面温度约为6000K。
1.太阳辐射能量来源:太阳内部的核聚变反应:
H——>1
He
+
能量
2.太阳辐射:太阳源源不断地以电磁波的形式向四周放射能量,这种现象称为太阳辐射。
3.太阳辐射对地球的影响
(1)直接为地球提供光、热资源。
(2)维持地表温度,是促进地球上的水、大气运动和生物活动的主要动力。
(3)为人类生活、生产提供能源:直接能源:太阳辐射能;间接能源:矿物能、水能、风能、生物能
4、太阳辐射的规律:从低纬度向高纬度减少。
二、太阳活动对地球的影响
1.太阳大气层的结构:光球、色球和日冕
太阳大气结构
亮度
厚度
温度
观测条件
(最外层)
日冕
逐渐
增强
逐渐变薄
越来越低
日全食时或使用特殊仪器
(中间层)
色球
(最里层)
光球
眼睛直接可见
2.太阳活动的重要标志:黑子、耀斑
黑子:太阳光球常出现一些暗黑的斑点,叫作黑子。黑子实际上并不黑,只是因为它的温度比太阳表面其他地方低,所以才显得暗一些。其变化的周期为
年。它的多少是太阳活动强弱的主要标志。
耀斑:太阳色球有时会出现一块突然增大、增亮的斑块,叫做耀斑。活动周期也是11年,是太阳活动最激烈的显示.日
珥
注:通常,黑子数目最多的地方和时期,也是耀斑等其他形式的太阳活动出现频繁的地方和时期。这体现了太阳活动的整体性。
3.太阳活动对地球的影响
(1)电磁波扰乱地球上空电离层,影响无线电短波通讯。
(2)高能带电粒子流扰乱地球的磁场,产生“磁暴”现象。(影响飞机和船等航行)
(3)
高能带电粒子流作用于两极高空大气,产生极光(常出现在地球高纬度地区)
(4)太阳活动影响地球的自然环境,产生自然灾害(如地震、水旱灾害等)
第一章第3节
地球的运动
--------------(1)地球和地球仪
1.地球的形状和大小
(1)地球的形状:赤道略鼓、两极稍扁的椭球体。
(2)地球的大小::赤道半径:6378千米
极半径:6357千米
赤道周长:4万千米
2、经线和纬线
几个重要的经线和纬线
南(北)极圈:66°34′S(N)
南(北)回归线:23°26′S(N)低纬度:0°—
30°
中纬度:30°—
60°
高纬度:60°—
90°南北半球的分界线:赤道(0度纬线);
0°和180°东西经的分界线;180°国际日期变更线;东西半球的分界线:160°E和20°W3、经度和纬度
组成经线圈的两条经线:度数相加等于180,东西经相反。
4、经纬网及其应用
(1)
地球上任意一个点都有唯一的经纬度坐标与之对应。
如,B(40°N,40°E)
B点关于赤道的对称点坐标(40°S,40°E)
规律:纬度度数不变,南北纬相反;经度不变。
B点关于地轴的对称点坐标(40°N,140°W)
规律:纬度不变;经度度数互补,东西经相反。
B点关于地心的对称点坐标(40°S,140°W)
规律:纬度度数不变,南北纬相反;经度度数互补,东西经相反。
(2)
判定方向:
南北方向:同为南纬,度数大的在南
同是北纬,度数大的在北
既有南纬又有北纬,南纬在南北纬在北
东西方向:都是东经,度数大的在东
都是西经,度数大的在西
既有东经又有西经,东经+西经度数<180,东经在东,西经在西
东经+西经度数>180,东经在西,西经在东。
(3)计算距离
经线上差一度:111千米
纬线上差一度:111千米*cos纬度度数
第一章第3节
地球的运动
地球运动的基本形式
一、、地球的自转
1、概念:地球绕其自转轴的旋转运动
(自转轴:假想的轴线,经过地球球心,其北端始终指向北极星)
2、自转的特点
(1)方向:自西向东
地球的自转——北极上空逆时针方向旋转
地球的自转——南极上空顺时针方向旋转
(2)周期
恒星日:真正周期
23时56分4秒(以距离地球遥远的同一恒星为参照物)
太阳日:昼夜更替周期
为24h
(以太阳为参照物)
(3)速度
1)地球自转角速度角速度:单位时间转过的角度。
自转角速度:南北两极点为0之外,其他任何地点的自转角速度均为15°/小时(360°/24小时)
2)地球自转线速度线速度:单位时间转过的弧长(长度)
自转线速度:从赤道向两极递减,两极点为0
(任意纬线的线速度=1670*cos纬度(千米/小时))
二、地球的公转
1、概念:地球围绕太阳的运动
公转轨道:近似正圆的椭圆轨道,太阳位于其中一个焦点上。
2、公转的特点:
(1)方向:自西向东(和地球自转具有同向性)
(2)(真正)周期:恒星年→地球公转一周的时间单位,为365天6时9分10秒。
太阳直射点回归运动周期:回归年→为365天5时48分46秒。
(3)地球公转速度:线速度、角速度
①一年之中,平均而言
地球公转的角速度约为1°/天≈360°÷365天
地球公转的线速度约为30千米/秒≈2×3.14×1.5亿千米÷(365×24×60×60)秒
②地球公转的实际速度并不均匀,有快有慢
开普勒定律,行星围绕恒星运动的轨道是一个椭圆,半径在单位时间内扫过的面积相等
近日点(1月初)
—A距离太阳最近,此时的角速度、线速度最快
远日点(7月初)
—B距离太阳最远,此时的角速度、线速度最慢
线速度:近日点到远日点—由快变慢;远日点到近日点则相反
角速度:与线速度的变化一致
第一章第3节地球的运动
(3)太阳直射点的移动
地球自转的同时也在围绕太阳公转,过地心并与地轴垂直的平面称为赤道平面,地球公转的轨道平面称为黄道平面。
1.黄赤交角
(1)概念:赤道平面与黄道平面之间的交角,叫做黄赤交角。目前黄赤交角是23°26′。
(2)黄赤交角的特点:一轴两面三角度,三个基本不变
一轴:地轴
两面:黄道平面和赤道平面
三角度:黄道平面和赤道平面的交角为23°26′地轴和黄道的平面的交角为66°34′
地轴与赤道平面的交角为90°
三个基本不变:地球在运动过程中,地轴的空间指向基本不变,北极始终指向北极星附近;黄赤交角的大小基本不变,保持23°26′;地球运动的方向不变,总是自西向东。
“两个变”是指地球在公转轨道的不同位置,黄道平面与赤道平面的交线、地轴与太阳光线的相对位置是变化的。
黄赤交角的度数=南、北回归线的度数
极圈的度数=90°—黄赤交角的度数
2.太阳直射点的移动规律
黄赤交角在一定时期内是不变的,但是地球在公转轨道上的不同位置,地表接受太阳垂直照射的点在变化。(简称太阳直射点)
(1)轨迹
(2)太阳直射点的位置
直射的纬度:太阳直射点在南北回归线之间作往返性周期运动,大约1个月移动8°,与阳历的日期对应。
直射的经度:地方时为12点的经线
(2)周期:回归年;365日5时48分46秒
第一章第3节地球的运动
(4)地方时区间的计算
一、地方时
由于地球自西向东自转,则在同一纬度地区,东边的地点总是比西边的地点先看到日出,因此东边的地点的时刻总是比西边的地点的时刻要早。(早:即体现在时刻数值的“大”)
1、地方时之概念:
同一时刻,不同经度的地方具有不同的地方时。
即:因经度的不同而形成的不同时刻,叫做地方时。(经度相同,地方时必定相同)
2、地方时之表现:
经度差15°时间差1小时;经度差1°时间差4分钟
;经度差1′时间差4秒
3、地方时之计算:
所求另一地的地方时=已知某地的地方时±4分钟/1°×(两地的经度差)
须注意的原则:
(1)都是东经或者都是西经时,东边的时间早,求东边的用加号“+”号,求西边的用“-”号;既有东经又有西经时,求东经的用“+”号,求西经的用“-”号。
(2)两地的经度差确定原则:“同-,异+”
(3)所求地方时处理原则:
A】若所求地方时﹥24:00,则所求地方时-24:00,日期+1,变为明天;
B】若所求地方时﹤00:00,则所求地方时+24:00,日期-1,变为昨天。
当堂训练1:
1、当经线0°(即经过伦敦的本初子午线)为06:00时,请问10°E的地方时是多少?30°W的地方时又是多少?答案:10°E地方时是06:40.30°W的地方时是04:00.2、精彩绝伦的2012伦敦奥运开幕式于当地时间12年7月27日20:12正式开始,请问我国的CCTV(经度为120°E)什么时候会准时直播?答案:2012年7月28日凌晨04:12.3、当五华县(经度为120°E)为10月8日凌晨01:40,请问新疆吐鲁番(经度为90°E)的地方时是多少?答案:10月7日23:56.二、时区
如果如果大家都使用自己的地方时的,那么同一时刻,地方时会有n多种,异常混乱。为了便于交流,就必须解决此麻烦,所以在1884年召开的国际经度会议上,决定按统一标准划分全球时区,即分(时)区计时法。
划分方法:全球划分为24个时区,每个时区跨15个经度。
计算方法:各时区都以本时区中央经线的地方时作为本区的区时。相邻两个时区差1小时。
1、如何求中央经线?
中央经线的度数=时区数×15°
2、如何判断某经线位于哪个时区?
时区数=已知的某地经度数/15°
所得余数<7.5度,相除所得商即为时区数;所得余数>7.5度,所得商
+1
即为时区数。
3、所求的另一地区时=已知的某地区时±(两地的时区差)(与“地方时”计算的3个原则完全相同)
东8区的区时(即120°E的地方时),即“北京时间”
中时区的区时(即0°经线的地方时),为“伦敦时间”也称“世界时、国际标准时间、格林尼治时间”
第一章第3节地球的运动
--(5)日界线
一、国际日界线
(1)含义:1884年国际经度会议规定原则上以180°经线作为“今天”与
“昨天”的分界线.(2)特点:
1)属于“人为日界线”
2)位置固定不变
3)与180°经线并不完全重合,而是有几处凹凸,凹凸的原因是:照顾附近国家人们生活方便,避免通过陆地。
地球上东12区的时刻最早,西12区的时刻最迟.东12区向东进西12区,日期减1天;
西12区向西进东12区,日期加1天.当堂训练1:
有一轮船10月15日09:00(船上的挂钟)在国际日界线附近航行,10秒之后,此轮船越过了国际日界线,请问越过国际日界线后的轮船挂钟的准确时刻应是什么?
答案:①10月14日09:10(自西向东越线);
或②10月16日09:10(自东向西越线)。
二、00:00日界线
(1)含义:将地方时为00:00的经线作为作为“今天”与
“昨天”的分界线.(2)特点:
1)属于“自然日界线”
2)其位置每分每秒都在变,自E向W移动
3)一定与经线完全重合4)每分每秒与国际日界线同时存在当堂训练2:
若120°E为10月15日09:00,请问:
1)00:00日界线是哪个经度?
15°W
2)10月15日跨越的经度范围是什么?
15°W→向东→180°
[国际日界线]
10月14日跨越的经度范围又是什么?
180°[国际日界线]→向东→
15°W
10月15日与14日的范围之比是
?:?
190°:
165°=13:11
小结
1、一般情况,全球同时存在2个不同日期;但因00:00日界线每分每秒都在自E向W移动,故2个不同日期的范围也在每分每秒都在变化着;
2、也存在2种特殊情况:
①当00:00日界线为0°经线,此时“今天”
:“昨天”=1:1;
②当00:00日界线与180°经线(国际日界线)重合,可认为全球此刻处于同一日期.或者180°经线是n点今天就占n个小时,昨天占24-n小时。
北京时间08:00时,全球两日平分;北京时间20:00时,全球位于同一日。
第一章第3节地球的运动
--(6)昼夜交替与晨昏线
一、昼夜更替
1、昼夜现象的原因:地球既不发光也不透明
2、昼夜更替产生原因是:①地球自转;②地球既不发光,也不透明;
③同一时间内,太阳只照亮地球的一半;
3、昼夜更替周期是:太阳日,即24小时
4、昼半球是(向着太阳的一面,即白天);夜半球是(背着太阳的一面,即黑夜);
昼半球
:夜半球=(1
:
1);
昼半球与夜半球的分界线(圈)是(晨昏线(圈))。
二、晨昏线(圈)
1、定义:晨线:顺地球自转方向,由夜进入昼的分界线;
昏线:顺地球自转方向,由昼进入夜的分界线.2、判断晨昏线(圈)的方法:
自转法
a.顺地球自转的方向由夜进入昼的是晨线,由昼进入夜的是昏线
b.逆地球自转方向由夜进入昼的是昏线,由昼进入夜的是晨线
地方时法:赤道上地方时是6点的为晨线,18点的为昏线
3.晨昏线(圈)特点:
1】永远平分地球(昼:夜=1:1),永远平分赤道
2】所在平面过地心,因而是一个与赤道等大的圆
3】晨昏线(圈)永远与太阳光线垂直
4】晨线与赤道相交的点的地方时永远为06:00;而昏线与赤道相交的点的地方时永远为18:00
5】晨昏线(圈)只有在二分日与经线圈重合;而其他时间则与经线圈斜交。
6】晨线上必定同时迎来日出;而昏线上必定同时迎来日落。
7】移动方向和自转相反
4、晨昏线与经线、纬线的关系:
(一)晨昏线与经线
(1)在春、秋分日时,晨昏线与经线重合,即晨昏线要过南北极点。
(2)其余任何时候,晨昏线都与经线斜交(即晨昏线不经过南北极点),其夹角范围为0~23°26′。在二至日时,其夹角最大,为23°26′。
晨昏线与经线相交,其夹角等于此时太阳直射点的纬度值。
(二)晨昏线与纬线
(1)不与晨昏线相交的纬线,是出线极昼极夜的纬度。
(2)与晨昏线有一个切点的纬线
如图1:切点为D,则:
D为晨线和昏线的分界点。D点的纬度+折射点的纬度=90°
D点所在的经线的地方时为0点或者12点(距D点近的极点是极昼,则点所在经线为0点;距D点近的极点是极夜,则D点所在经线为12点)
(3)纬线与晨昏线有两个交点,一个和晨线,一个和昏线,两个交点为昼弧和夜弧的分界点。与晨线交点所在的经线的地方时,为该纬线日出的时间;与昏线交点所在的经线的地方时,为该纬线日落的时间。
三、地转偏向力:物体水平运动的方向产生偏向。
地球上水平运动的物体,无论朝哪个方向运动,都会发生偏向,在北半球偏右,在南半球偏左。赤道上经线是互相平行的,无偏向。第一章第3节地球的运动
-(7)地球公转的地理意义(昼夜长短与正午太阳高度)
太阳直射点的移动,使地球表面接受太阳辐射的能量,因时因地而变化。这种变化可以用昼夜长短(太阳辐射的时间)和正午太阳高度(太阳辐射的强度)的变化来描述。
一、昼夜长短
(1)昼夜长短随纬度和季节变化。
地球昼半球和夜半球的分界线叫晨昏线(圈)。晨昏线把所经过的纬线分割成昼弧和夜弧。由于黄赤交角的存在,除二分日时晨昏线通过两极并平分所有纬线圈外,其它时间,每一纬线圈都被分割成不等长的昼弧和夜弧两部分(赤道除外)。地球自转一周,如果所经历的昼弧长,则白天长;夜弧长,则白昼短。昼夜长短随纬度和季节变化的规律见下表:
(2)昼夜长短的计算
昼长=昼弧所跨完整经度÷15°/h
夜长=夜弧所跨完整经度÷15°/
h
昼长+夜长=24小时
日出时刻=12:00—(昼长/2)h
日落时刻=12:00
+(昼长/2)h
日出+日落=24小时
(3)小结:
1、同一纬线上的所有地方在同一天的昼长、夜长、日出时刻、日落时刻肯定彼此一样!
2、南北半球相应纬度(如30°N与30
°S)的昼长、夜长、日出时刻、日落时刻肯定相反!
3、赤道上永远昼长=夜长=12h,且永远地方时06:00日出,永远地方时18:00日落;
4、昼半球中分线地方时定为12:00;夜半球中分线地方时定为00:00
二、正午太阳高度
(1)正午太阳高度的变化。
①太阳光线对于地平面的交角,叫做太阳高度角,简称太阳高度(用H表示)。同一时刻正午太阳高度由直射点向南北两侧递减。因此,太阳直射点的位置决定着一个地方的正午太阳高度的大小。在太阳直射点上,太阳高度为90°,在晨昏线上,太阳高度是0°。
②正午太阳高度变化的原因:由于黄赤交角的存在,太阳直射点的南北移动,引起正午太阳高度的变化。
③正午太阳高度的变化规律:正午太阳高度就是12点时的太阳高度。一日内最大的太阳高度,它的大小随纬度不同和季节变化而有规律地变化。
(2)正午太阳高度的计算公式
:H
=
|当地纬度±直射点纬度|四、四季更替。
气候四季包含的月份。春(3、4、5月)、夏(6、7、8月)、秋(9、10、11月)、冬(12、1、2月)。西方四季:春分、夏至、秋分、冬至为起点。比我国天文四季晚一个半月。五、五带划分。
以地表获得太阳热量的多少来划分热带、温带、寒带。热带:南北回归线之间有太阳直射机会,接受太阳辐射最多。
温带:回归线与极圈之间,受热适中,四季明显。
寒带:极圈与极点之间,太阳高度角低,有极昼、极夜现象。
总结应用:日照图的判读
1.判断晨昏线
(1).特点:北极在上,南极在下;晨昏线成直线形态,且只能见其局部(即只能见到晨线或昏线)
(2).特点:极点为中心的半球图;晨昏线成弧线形态,且只能见半条晨线和半条昏线。
2.确定某地的地方时
①晨线与赤道交点所在经线上的地方时为6时;昏线与赤道交点所在经线上的地方时为18时;
②平分昼半球的经线上的地方时为12时;和正午经线相对的另一经线地方时为0时;
③经度每相差15°,地方时相差1小时;同一经线上的各点地方时相同。
3.判断节气:北极圈内,白天范围、黑夜范围各占一半(即昼夜平分),春分日3月21日、秋分日9月23日。北极圈位于昼半球(即极昼),夏至日6月22日;北极圈位于夜半球(即极夜),冬至日12月22日:南极圈内,白天范围、黑夜范围各占一半(即昼夜平分),春分日3月21日、秋分日9月23日。南极圈位于昼半球(即极昼),12月22日;南极圈位于夜半球(即极夜),6月22日。
4.确定太阳直射点位置
(1)平分昼半球那条经线所在的经度(地方时12:00的经线),即为太阳直射点的经度。
(2)直射的纬度取决于日期。
5.确定昼夜长短
D点昼长应为18小时,夜长6小时;
解释:D点所在的纬线,其昼弧所占的比例是:四分之三;
因此,D点的昼长=昼弧所占的比例×24小时
夜长=夜弧所占的比例×24小时
昼长+夜长=24小时
6.判断太阳出没时刻
(在上图中,D点3时日出,21时日落)
日出时刻=12-昼长/2
日落时刻=12+昼长/2
7.正午太阳高度计算
正午太阳高度,直射点为90°,由直射点向南向北正午太阳高度逐渐降低。晨昏线上太阳高度为零。各地正午太阳高度等于90°减去该地地理纬度与太阳直射点地理纬度的差。
第一章第4节
地球的圈层结构
想一想:夏季,如果让你挑选西瓜,你会采用什么样的方法呢?我们能不能根据地球内部产生的震动来研究地球的内部结构呢?
(一)地震波
1、概念:当地震发生时,地下岩石受到强烈冲击产生弹性震动,并以波的形式向四周传播。
(1)当地震发生时,陆地上的人们有什么感觉?先上下颠簸,后左右摇晃
(2)当地震发生时,在海洋中航行的人会怎样呢?只能感觉到上下颠簸
2、地震波的分类:
纵波(P):质点的震动方向与波的传播方向一致。横波(S):质点的震动方向与波的传播方向垂直。
地震波在地球内部的传播速度与其通过的介质性质有密切关系。若介质是均质的,地震波则匀速传播;介质性质发生变化,地震波波速随之变化。
地震波
传播速度
传播介质
穿过不连续面速度变化
横波
慢
固体
穿过莫霍界面横纵波速度均增大;穿过古登堡界面横波消失,纵波速度突然下降。
纵波
快
固体、液体、气体
3、地震波波速变化图
地震波在通过性质完全不同的两种介质的分界面时,波速会发生明显变化,会出现不连续面。
地震波穿过33千米处莫霍界面是,横纵波速度均增大;穿过2900千米处古登堡界面时,横波消失,纵波速度突然下降。
4、地震波波速与地球内部构造图
以两个不连续面为界,将地球内部分为地壳、地幔、地核三个圈层
(二)地球的内部圈层
地壳和上地幔顶部(软流层以上),有坚硬的岩石组成,合称为岩石圈。
地球的外部圈层示意图
(三)地球的外部圈层
大气圈
包围着地球,由气体和悬浮物组成,主要成分氮和氧。
水圈
连续而不规则的圈层。它包括地下水、地表水、大气水、生物水等,水圈的水处于不断的循环运动之中。
生物圈
地表生物及其生存环境的总称,占有大气圈的底部、水圈的全部和岩石圈的上部。它是大气圈、水圈和岩石圈相互渗透相互影响的结果
第三篇:高中物理电学知识点总结
高中物理电学知识点总结
作者: 钱耀辉(高中物理 甘肃天水物理一班)评论数/浏览数: 7 / 3833 发表日期: 2010-07-31 16:31:03 一.电场
1.两种电荷、电荷守恒定律、元电荷: 2.库仑定律:F=kQ1Q2/r2(在真空中)3.电场强度:E=F/q(定义式、计算式)4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=UAB/d 6.电场力:F=qE 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd 9.电势能:EA=qφA
10.电势能的变化ΔEAB=EB-EA
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式)13.平行板电容器的电容C=εS/4πkd 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt/2,Vt=(2qU/m)15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
二、恒定电流 1.电流强度:I=q/t 2.欧姆定律:I=U/R 3.电阻、电阻定律:R=ρL/S 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR 5.电功与电功率:W=UIt,P=UI 6.焦耳定律:Q=I2Rt 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
21/2 9.电路的串/并联 串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)10.欧姆表测电阻(1)电路组成(2)测量原理(3)使用方法(4)注意事项 11.伏安法测电阻电流表内接法: 电流表外接法:
三、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A 2.安培力F=BIL;
3.洛仑兹力f=qVB(注V⊥B);质谱仪
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,四、电磁感应
1.感应电动势的大小计算公式: 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,2)E=BLV垂(切割磁感线运动)3)Em=nBSω(交流发电机最大的感应电动势)4)E=BL2ω/2(导体一端固定以ω旋转切割)2.磁通量Φ=BS 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
第四篇:高中物理知识点总结:自由落体运动
一.教学内容
2.自由落体运动特点:初速度为0,只受重力。(空气阻力很小时,也可把空气阻力忽略)
② ③ ④,粗略计算 取4.自由落体运动是匀变速直线运动的一个特例。因此初速度为0的匀变速直线运动的规律对自由落体运动都适用。
(二)竖直上抛运动
1.竖直上抛运动:将物体以一定的初速度沿着竖直向上的方向抛出(不计空气阻力)的运动。
当 为正时,表示物体运动方向向上,同理,当 为负时,表示物体运动方向向下。当S为正时表示物体在抛出点上方,同理当S为负时表示物体落在抛出点下方。
所以:上升到最高点的时间: 物体上升的最大高度
从上升到回到抛出点的时间由 所以下降时间
(2)将竖直上抛运动看成前一段的匀减速直线运动和后一段的自由落体运动。(3)将竖直上抛运动看成整体的初速度方向的(竖直向上的)匀速直线运动和竖直向下的自由落体运动的合成。三.重难点分析
(一)对自由落体运动的理解
1.自由落体运动的重点和关键在于正确理解不同物体下落的加速度都是重力加速度g,同学们在学习的过程中,必须摒弃那种因受日常经验影响而形成的“重物落得快,轻物落得慢”的错误认识。2.由于自由落体运动是、。(2)a、运用斜面实验测出小球沿光滑斜面向下的运动符合 的值不变,说明它们运动的情况相同。c、不断增大斜面的倾角,得出。
(2)物体从抛出点开始到再次落回抛出点所用的时间为上升时间或下降时间的2倍:。
(3)物体在上升过程中从某点到达最高点所用的时间,和从最高点落回到该点所用的时间相等。
(4)物体上抛时的初速度与物体又落回原抛出点时的初速度大小相等,方向相反。
(5)在竖直上抛运动中,同一个位移对应两个不同的时间和两个等大反向的速度。
【典型例题分析】
[例1] 某物体做自由落体运动,把下落总高度分为三段,从起点计时通过三段的时间之比为
则三段高度之比为()
B.。C.D.∴ 选D [例2] 如图所示,长悬挂在一长
米的中空圆筒B竖直立在地面上,在它正上方的细杆A,A上端距B下端10米,在剪断A悬线的同时,B以
向上匀速,题目中要求A与B在空中相遇的时间,即从A的下表面与B的上表面接触开始计时,到A的上表面与B的下表面接触结束的这段时间,∴
秒
【模拟试题】 秒。
A.加速度变化的运动可以是直线运动 B.加速度不变的运动一定是直线运动
C.加速度减小的运动是减速运动,加速度增加的运动是加速运动 D.当运动物体的加速度改变时,速度也同时改变,因此向右运动的物体,有向左的加速度时,运动方向立即向左。
时刻两物相遇 D.时刻两物体相遇
A.5m、5m B.3m、5m C.3m、4m D.1m、4m A.①② B.①④ C.③④ D.②④ 的速度跑完了余下的则速度v的大小为()
路程,若全程的平均速度是,B.C.D.,则 和A.当质点做匀加速直线运动时,C.当质点做匀速直线运动时,B.当质点做匀减速直线运动时,动时,D.当质点做匀减速直线运,到C点时速度为,则AB与BC两段距离之比为()
A.B.1:2 C.1:3 D.9.如图所示,质点做匀加速运动,由A点到C点,在A点的速度为在C点的速度,在BC段的加速度为
。加速度比较,应该是()
A.C.10.金属片和小羽毛在抽成真空的玻璃筒内下落的实验说明()A.同一地点真空中物体下落快慢与重力大小无关。B.物体越重下落越快
C.同一地点,不论有无空气,物体下落快慢均与重力无关。D.同一地点,无空气阻力时下落快慢与高度有关。
11.从一座塔顶自由落下一石子,忽略空气阻力。如果已知重力加速度大小,再知下列哪项条件即可求出塔顶高度()
A.石子落地时速度 B.第 末和第 末速度
C.最初 内下落高度 D.最后 内下落高度
12.飞机以初速度为的角)。经过
,加速度(速度方向与水平面所成,飞机的高度下降 m。
13.五辆汽车每隔一定的时间,以同一加速度从车站沿一笔直公路出发,当最后一辆开始启动时,第1辆汽车已离站320m,此时第3辆汽车离站距离是 m。14.研究“匀变速直线运动”的实验中,打点计时器在纸带上打出一系列的点如图所示,每两点之间有4个记时点,其中OA=0.9cm,OB=2.4cm,OC=4.5cm,OD=7.2cm,求纸带加速度,A点的瞬时速度是
15.一矿井深125m,在井口每隔一段时间落下一个小球,当第11个小球刚从井口落下时,第1个小球恰好到达井底,则相邻两个小球下落的时间间隔是 s;此时第3个小球与第5个小球相距 m。(g取
图象,试回答:
(1)质点在AB、BC、CD段的过程各做什么运动?(2)5秒内质点位移;
17.汽车A在红绿灯前停住,绿灯亮时A开动,以 后做匀速直线运动。在绿灯亮的同时,汽车B以8m/s的速度从A车旁边驶过,之后B车一直做匀速直线运动。问:从绿灯亮时开始,经多长时间后两辆车再次相遇?。
;<0">
15.0.5;35 16.(1)AB段是匀加速运动;BC段是匀速运动;CD段是匀减速运动
(2)
17.所用时间为18.(1)C;(2)6.0
19.20.;56.25m
第五篇:高中物理学习方法 高中物理知识点总结
一 高中物理学习方法 一)掌握研究物理问题的基本方法
1.掌握观察实验的方法。要在演示实验和分组实验中注意引导学生掌握有意观察。并养成综合分析观察习惯。
在观察实验现象时善于根据观察的目的发现现象的特征,这才是有意观察,然而不是所有的学生都会有意观察。测试表明,未经过训练的学生中能够有意观察实验现象的约占10%—15%。例如:教师在课堂上做了一个试管装水烧小金鱼的实验,让同学们观察,学生们看到水开了,小金鱼还活着。然后教师发给学生每人一只试管,让学生自己做这个实验,结果85%—90%的学生将小金鱼烧死了。这说明只有少数学生观察中有意识地发现了现象的特征,火在试管上端烧上端的水开了,试管下端水温度不高,所以鱼才能活。此实验证明水是热的不良导体。可见有意观察是需要培养训练的。每次观察实验现象均要求学生说出看到了什么,说明什么,学生逐步养成有意观察的习惯。同时又要引导学生观察实验现象的全过程,不仅看结果,还要注意观察现象如何随时间变化,注意现象出现的条件,边看边想,养成综合分析的观察习惯。
2.掌握实验方法,提高实验的技能技巧。
实验是研究物理问题的基本方法,有计划地进行实验设计思路和实验技能技巧的训练是非常重要的。
在中学物理教材中,实验可分为物理量测量和规律的探索与验证两类。无论对科学家做过的但现在不能再现的探索性实验,还是现在可做的演示实验、分组实验,我在教学中都注意实验原理的分析和实验设计思路的剖析,以便加强对学生进行设计思路和方法的训练。尽量创造条件让学生根据研究课题的需要独立设计实验,上好实验设计方案讨论答辩课。在分组实验中,注意总结有独到见解和实验操作巧妙的学生的经验,用以启发提高其他学生的实验技能技巧。
我将设计实验的基本方法归纳为下面几种:(1)平衡法。用于设计测量仪器。用已知量去检验测量另一些物理量。例如天平、弹簧秤、温度计、比重计等。(2)转换法。借助于力、热、光、电现象的相互转换实行间接测量,例如打点计时器的设计,电磁仪表、光电管的设计等。(3)放大法。利用迭加,反射等原理将微小量放大为可测量,例如游标尺、螺旋测微器、库仑扭秤、油膜法测分子直径等。
3.掌握理想化模型法。将复杂的物理过程、物理现象中最本质具有共性的东西抽象出来,将其理想化、模型化,略去其次要因素和条件,研究其基本规律,这是研究物理问题的重要思想方法。在中学物理中应用的理想化模型归纳起来有以下几种:
①实体物理模型:质点、系统、理想气体、点电荷、匀强电场、匀强磁场。
②过程模型:等温、等容、等压过程;匀速、匀变速直线运动;抛体运动;简谐振动;稳恒电流等等。
③结构模型:分子电流、原子模式结构、磁力线、电力线。
掌握此研究方法时要特别注意指出理想化模型不是实际存在的事物,是有条件、有范围、有局限性的抽象,所以在运用时就要十分注意其规律的适用范围和运用条件。
4.掌握等效思想方法。等效方法是研究物理问题的又一重要方法。中学物理教材中体现出的等效思想方法有下面几种:
①作用效果等效:力的合成与分解,速度、加速度的合成与分解;功与能量变化关系;电阻、电容的串、并联计算。
②过程等效:将变速直线运动通过平均速度等效为匀速直线运动;将变加速直线运动通过平均加速度等效为匀变速直线运动;交流电有效值的定义;抛体运动等效为两个直线运动的合成等等
总之,在学习掌握物理概念和规律的时候,还要将研究问题的重要思想方法揭示出来,以帮助指导学生掌握这些正确的思考方法。
5.掌握数学方法的应用。研究物理问题离不开数学工具,数学方法在物理上的应用很多,如比例,一次、二次函数方程,三角函数、指数、对数及正、负号,数学归纳法,求极值等等。
值得突出提出的是函数图像在物理上的应用,用图象描述物理过程和物理规律,在力学中有:S-t图,V-t图,振动图象。热学中有:P-V图,P-T图。电学中有:I-V图。可以用图象处理实验数据,导出表示物理规律的函数式;可依据物理图象求解物理量,对物理问题进行判断论证。
以上所述为研究处理问题的五种基本方法。在平时章节教学中分散训练,贯彻始终,总复习时可分专题总结归纳,以达到条理清晰的目的。
(二)物理学习过程中的具体方法指导
掌握学习物理的正确方法才能提高学习效率和学习能力。在平时老师教学中采用“单元自学研讨式”教学法。力图使课堂教学结构的设计有利于调动学习的主动性和学法的训练。“单元自学研讨式”教学方法在下面四个环节上下功夫,对学生进行有计划的训练和指导,使自身掌握正确学习方法,不断提高自学能力。
1.自学质疑。按照老师下发的单元教学计划,在指定的时间内进行自学,将自学中的疑难问题写在质疑小本上交给老师。初期为了帮助学生质疑,在课堂上专门安排提问题竞赛,促进思考。
2.讨论研究。依据的自己疑点及大纲要求确定适当的讨论题目,各抒己见,通过互相争辩加强对基本概念和规律的理解。对于可以通过实验研究的课题,根据研究课题设计实验方案(方案中包括原理、器材选择、实验步骤、记录表格和数据处理方法),经过讨论和完善后,按自己设计的实验方案动手实验,并分析实验记录,处理实验数据,得出实验结论。这不仅发挥学自己的想象力、创造力,而且对自己进行了科学研究方法的训练。
3.教师精讲。此课将引导学生按照知识的逻辑关系整理单元知识(其中包括:概念、规律、方法),指导自己理解重点、难点知识,归纳总结掌握规律概念需要注意的问题。
4.习题。针对分析解答各部分习题的关键,精选例题,用小组竞赛的方法,进行分析解决问题的思路方法和技巧的训练。
2.掌握自我评价的方法,善于在自己生活的集体中找到评价的参照物。如回答下面问题:①非智力因素(学习态度、兴趣、意志力、心理承受力、心理调节能力)如何?②知识掌握程度(了解、理解、还是掌握?自己属于哪一层?有何障碍?)如何?③能力(观察、思维动手能力)如何?
以上是掌握物理学习方法的一些做法,我相信只要处理好学会和会学的辩证关系,重视学法指导。对提高学习质量会有成效。
其它的方法也是同理
二 物理定理、定律、公式表
一、质点的运动(1)------直线运动 1)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:
(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定} 4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 7.非弹性碰撞Δp=0;0r0,f引>f斥,F分子力表现为引力(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;(5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质 1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)} 注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻 电流表内接法:
电压表示数:U=UR+UA 电流表外接法:
电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件RxRx 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。 十二、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。注: (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料 十三、电磁感应 1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。 十四、交变电流(正弦式交变电流) 1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总 3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2 4.理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2; I1/I2=n2/n2; P入=P出 5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕; 6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T); S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。