PID控制小结

时间:2019-05-13 17:28:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《PID控制小结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《PID控制小结》。

第一篇:PID控制小结

PID控制小结

在PID参数进行整定时如果能够有理论的方法确定PID参数当然是最理想的方法,但是在实际的应用中,更多的是通过凑试法来确定PID的参数。

增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。增大积分时间I有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。

增大微分时间D有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤。

PID控制原理:

1、比例(P)控制 :比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。

2、积分(I)控制 :在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

3、微分(D)控制 :在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。PID控制器参数整定的一般方法:

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:

一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改; 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。书上的常用口诀:

参数整定找最佳,从小到大顺序查; 先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢。微分时间应加长; 理想曲线两个波,前高后低4比1; 一看二调多分析,调节质量不会低。

个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。PID参数怎样调整最佳(1)整定比例控制

将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。(2)整定积分环节

若在比例控制下稳态误差不能满足要求,需加入积分控制。

先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。(3)整定微分环节

若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。

第二篇:PID控制学习笔记整理

一、PID控制原理

1.综述:

PID是一种线性控制器,它根据给定值rin(t)与实际输出值yout(t)构成控制方案:

e(t)rin(t)yout(t)

重点关注相关算法是如何对偏差进行处理的。

1tde(t)u(t)kpe(t)e(t)dtTD0Tdt1U(s)1G(s)kp1TDsE(s)T1s PID控制器各校正环节的作用如下:

比例环节: 成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减小偏差。

积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数T,T越大,积分作用越弱,反之则越强。

微分环节:反映偏差信号的变化趋势,并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。2.PID控制算法分类 2.1、位置式PID控制算法

按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,即:

tkT(k0,1,2,3)kkt0e(t)dtTe(j)Te(j)j0j0de(t)e(kT)e((k1)T)e(k)e(k1)TTdt

可得离散表达式:

Tu(k)kp(e(k)T1kTDe(j)(e(k)e(k1)))Tj0ke(k)e(k1)kpe(k)kie(j)TkdTj0式中,Ki=Kp/Ti, Kd=KpTd, T为采样周期,K为采样序号,k=1, 2, ……, e(k-1)和e(k)分别为第(k-1)和第k时刻所得的偏差信号。位置式PID控制系统

算法流程:

本方法可实现D/A及A/D的功能,符合数字实时控制的真实情况,计算机及DSP的实时PID控制都属于这种情况。

2.2、增量式PID控制算法

当执行机构需要的是控制量的增量(例如驱动步进电机)时,应采用增量式PID控制。根据递推原理可得:

u(k1)kp(e(k1)kie(j)kd(e(k1)e(k2)))j0k1

增量式PID的算法:

u(k)u(k)u(k1)

u(k)kp(e(k)e(k1))kie(k)kd(e(k)2e(k1)e(k2))2.3、积分分离PID控制算法

在普通PID控制中,引入积分环节的目的主要是为了消除静差,提高控制精度。但在过程的启动、结束或大幅度增减设定时,短时间内系统输出有很大的偏差,会造成PID运算的积分积累,致使控制量超过执行机构可能允许的最大动作范围对应的极限控制量,引起系统较大的振荡,这在生产中是绝对不允许的。

积分分离控制基本思路是,当被控量与设定值偏差较大时,取消积分作用,以免由于积分作用使系统稳定性降低,超调量增大;当被控量接近给定量时,引入积分控制,以便消除静差,提高控制精度

具体实现的步骤是:

1、根据实际情况,人为设定阈值ε>0;

2、当∣e(k)∣>ε时,采用PD控制,可避免产生过大的超调,又使系统有较快的响应;

3、当∣e(k)∣≤ε时,采用PID控制,以保证系统的控制精度。

<体现的思想就是分段控制> 积分分离控制算法可表示为:

u(k)kpe(k)kie(j)Tkd(e(k)e(k1))/Tj0k

式中,T为采样时间,β项为积分项的开关系数

10其算法流程:

e(k)e(k)

2.4、抗积分饱和PID控制算法

积分饱和现象

所谓积分饱和现象是指若系统存在一个方向的偏差,PID控制器的输出由于积分作用的不断累加而加大,从而导致u(k)达到极限位置。此后若控制器输出继续增大,u(k)也不会再增大,即系统输出超出正常运行范围而进入了饱和区。一旦出现反向偏差,u(k)逐渐从饱和区退出。

进入饱和区愈深则退饱和时间愈长。此段时间内,系统就像失去控制。这种现象称为积分饱和现象或积分失控现象。

执行机构饱和特性

抗积分饱和算法

在计算u(k)时,首先判断上一时刻的控制量u(k-1)是否己超出限制范围。若超出,则只累加负偏差;若未超出,则按普通PID算法进行调节。

这种算法可以避免控制量长时间停留在饱和区。2.5、梯形积分PID控制算法

在PID控制律中积分项的作用是消除余差,为了减小余差,应提高积分项的运算精度,为此,可将矩形积分改为梯形积分。

梯形积分的计算公式为:

dte(t)0ti0ke(i)e(i1)2T

2.6、变速积分PID控制算法

变速积分的基本思想是,设法改变积分项的累加速度,使其与偏差大小相对应:偏差越大,积分越慢;反之则越快,有利于提高系统品质。

设置系数f(e(k)),它是e(k)的函数。当∣e(k)∣增大时,f减小,反之增大。变速积分的PID积分项表达式为:

k1ui(k)kie(i)fe(k)e(k)Ti0

系数f与偏差当前值∣e(k)∣的关系可以是线性的或是非线性的,例如,可设为:

1Ae(k)Bfe(k)A0变速积分PID算法为:

e(k)BBe(k)AB

e(k)AB

k1u(k)kpe(k)kie(i)fe(k)e(k)Tkde(k)e(k1)i0

这种算法对A、B两参数的要求不精确,参数整定较容易

2.7、不完全微分PID控制算法

在PID控制中,微分信号的引入可改善系统的动态特性,但也易引进高频干扰,在误差扰动突变时尤其显出微分项的不足。若在控制算法中加入低通滤波器,则可使系统性能得到改善

不完全微分PID的结构如下图。左图将低通滤波器直接加在微分环节上,右图是将低通滤波器加在整个PID控制器之后

不完全微分算法:

uD(k)KD(1a)(e(k)e(k1))uD(k1)

KDkpTD/TsTfTsTfTs为采样时间,Ti和Td为积分时间常数和微分时间常数,Tf为滤波器系数

2.8、微分先行PID控制算法

微分先行PID控制的特点是只对输出量yout(k)进行微分,而对给定值rin(k)不进行微分。这样,在改变给定值时,输出不会改变,而被控量的变化通常是比较缓和的。这种输出量先行微分控制适用于给定值rin(k)频繁升降的场合,可以避免给定值升降时引起系统振荡,从而明显地改善了系统的动态特性

结构图如下:

2.9、带死区的PID控制算法

在计算机控制系统中,某些系统为了避免控制作用过于频繁,消除由于频繁动作所引起的振荡,可采用带死区的PID控制算法,控制算式为:

0

0

式中,e(k)为位置跟踪偏差,e0是一个可调参数,其具体数值可根据实际控制对象由实验确定。若e0值太小,会使控制动作过于频繁,达不到稳定被控对象的目的;若e0太大,则系统将产生较大的滞后

控制算法流程:

0e(k)e(k)e(k)ee(k)e

注:<我们电子设计竞赛里,在简易倒立摆控制装置中就采用了带死区的PID控制算法,当时并不知道这个名称,这也就是在现场测试的时候为什么老师会问我们摆能够保持倒立静止不动,而不是靠左右抖动来控制平衡,就是因为我在里面设置了死区:好像是5度的角度> 仿真测试例程和图像见参考文档《先进PID控制及其MATLAB仿真》

3.PID控制体会(2013·12·17)

具体接触到实际中的应用有过两次的体会:

一是利用数字PID控制算法调节直流电机的速度,方案是采用光电开关来获得电机的转动产生的脉冲信号,单片机(MSP430G2553)通过测量脉冲信号的频率来计算电机的转速(具体测量频率的算法是采用直接测量法,定时1s测量脉冲有多少个,本身的测量误差可以有0.5转加减),测量的转速同给定的转速进行比较产生误差信号,来产生控制信号,控制信号是通过PWM调整占空比也就是调整输出模拟电压来控制的(相当于1位的DA,如果用10位的DA来进行模拟调整呢?效果会不会好很多?),这个实验控制能力有一定的范围,只能在30转/秒和150转/秒之间进行控制,当给定值(程序中给定的速度)高于150时,实际速度只能保持在150转,这也就是此系统的最大控制能力,当给定值低于30转时,直流电机转轴实际是不转动的,但由于误差值过大,转速会迅速变高,然后又会停止转动,就这样循环往复,不能达到控制效果。根据实测,转速稳态精度在正负3转以内,控制时间为4到5秒。实验只进行到这种程度,思考和分析也只停留在这种深度。

二是利用数字PID控制算法调节直流减速电机的位置,方案是采用与电机同轴转动的精密电位器来测量电机转动的位置和角度,通过测量得到的角度和位置与给定的位置进行比较产生误差信号,然后位置误差信号通过一定关系(此关系纯属根据想象和实验现象来拟定和改善的)转换成PWM信号,作为控制信号的PWM信号是先产生对直流减速电机的模拟电压U,U来控制直流减速电机的力矩(不太清楚),力矩产生加速度,加速度产生速度,速度改变位置,输出量是位置信号,所以之间应该对直流减速电机进行系统建模分析,仿真出直流减速电机的近似系统传递函数,然后根据此函数便可以对PID的参数进行整定了。

两次体会都不是特别清楚PID参数是如何整定的,没有特别清晰的理论指导和实验步骤,对结果的整理和分析也不够及时,导致实验深度和程度都不能达到理想效果。

以后的学习要保持咬定青山不放松的劲头,不把一件事情弄透彻绝不放手!PID控制的学习可以继续进行,看看如何通过仿真来更加深入的理解其过程。然后趁着于立佳学长正在进行这项工作,我可以等待他把调节更加深入之后来求教。

**********************************************2013年12月17日星期二

第三篇:增量式PID算法小结

增量式PID算法小结

一、PID 算法简介

顾名思义,P 指是比例(Proportion),I 指是积分(Integral),D 指微分(Differential)。比例P:比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。偏差一旦产生,控制器立即就发生作用即调节控制输出,使被控量朝着减小偏差的方向变化,偏差减小的速度取决于比例系数Kp,Kp越大偏差减小的越快,但是很容易引起振荡,尤其是在迟滞环节比较大的情况下,Kp减小,发生振荡的可能性减小但是调节速度变慢。但单纯的比例控制存在稳态误差不能消除的缺点。这里就需要积分控制。

积分 I:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。实质就是对偏差累积进行控制,直至偏差为零。积分控制作用始终施加指向给定值的作用力,有利于消除静差,其效果不仅与偏差大小有关,而且还与偏差持续的时间有关。简单来说就是把偏差积累起来,一起算总帐。

微分 D:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

它能敏感出误差的变化趋势,可在误差信号出现之前就起到修正误差的作用,有利于提高输出响应的快速性,减小被控量的超调和增加系统的稳定性。但微分作用很容易放大高频噪声,降低系统的信噪比,从而使系统抑制干扰的能力下降。

增量式PID算法: Ki=Kp*Ts/Ti;Kd=Kp*Td/Ts;Kp为比例项系数 ;Ki为积分项系数 ;Kd为微分项系数;Ti为积分时间常数;Td为微分时间常数 ;Ts 为采样周期常数 上述公式进一步推倒:

Δu(k)= Ka * e(k)+ Kb * e(k-1)+ Kc * e(k-2);Ka=Kp*(1+Ts/Ti+ Td/Ts)Kb=(-1)*(Kp)*(1+2Td/TS)Kc=Kp*(Td/TS)代码如下:

float PID_Dispose(flaot D_value){ static flaot Ek = 0;static flaot Ek_1 = 0;static flaot Ek_2 = 0;Ek_2 = Ek_1;Ek_1 = Ek;Ek = D_value;return((float)(Ka*Ek + Kb*Ek_1 +Kc*Ek_2));} D_value定义为float 类型(据情况而定),此变量是设定值与系统输出量的差值。PID 调试一般原则

a.在输出不振荡时,增大比例增益 P。b.在输出不振荡时,减小积分时间常数 Ti。c.输出不振荡时,增大微分时间常数 Td。

第四篇:三菱PLC实现智能PID控制及其应用

龙源期刊网 http://.cn

三菱PLC实现智能PID控制及其应用 作者:徐华军

来源:《沿海企业与科技》2005年第05期

[摘 要]以三菱PLC为核心的温度控制系统,采用了专家智能PID控制方法,利用专家系统知识库输出修正PID参数以及改变PID控制方式。实践表明该方法简单易行、适应性好、鲁棒性强。

[关键词]PLC;智能PID;专家系统;温度控制

[中图分类号]TP315

[文献标识码]A

第五篇:用三菱PLC实现PID控制变频器

用三菱PLC-FX2N与F940变频器设计一个带PID控制的恒压供水系统

控制要求:

(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100小时轮换一次,手动时不切换。

(2)两台水泵分别由m1、m2电动机拖动,电动机同步转速为3000转/min,由km1、km2控制。(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警。(4)采用plc的pid调节指令。

(5)变频器(使用三菱fr-a540)采用plc的特殊功能单元fx0n-3a的模拟输出,调节电动机的转速。(6)水压在0~10kg可调,通过触摸屏(使用三菱f940)输入调节。

(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等。(8)变频器的其余参数自行设定。

软件设计:

1.fx2n-48mrplc 的i/o分配:根据控制要求及i/o分配,其系统接线图如图所示。

plc输入,x1:1号泵水流开关;x2:2号泵水流开关;x3:过压保护。

plc输出,y1:km1;y2:km2;y4:报警器;10:变频器stf。

2.触摸屏画面设:根据控制要求及i/o分配,制作触摸屏画面。

触摸屏输入:m500:自动起动。m100:手动1号泵。m101:手动2号泵。m102:停止。m103:运行时间复位。m104:清除报警。d300:水压设定。

触摸屏输出:y0:1号泵运行指示。y1:2号泵运行指示。t20:1号泵故障。t21:2号泵故障。d101:当前水压。d502:泵累计运行的时间。d102:电动机的转速。

3.plc的程序:根据控制要求,画出fx2n-48mr的程序梯形图、plc程序如下图所示。

此主题相关图片如下,点击图片看大图:

plc的程序简述:plc得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(d160),将压力的数据寄存器d160的值除以25以校正压力的实际值(由特殊功能模拟模块fx0n-3a的资料可知:因0-10kg对应的是数值是0-250,所以压力与数值的关系是1:25)。在该系统中我们规定了电动机同步转速为3000转/min,所以同步转速的设定低于3000转/min对电机的保护是有好处的。这里我们把转速设定为不能超过1250转/min,则数值与通过pid程序运算的mv(输出)值d150(即电动机转速量)的关系为1:5(由特殊功能模拟模块fx0n-3a的资料可知:因数值是0-250对应的是0-1250转/min,则数值与转速的关系是1:5)。所以电动机的转速实际值校正数d102=d150×5÷10(其中除以10是因为所有实数参与pid的sv设定值>d500,pv当前值>d160,运算都是以1000%加入的。所以要得到mv输出值>d150的实际数值需要除以10)。因该系统中电机的转速是与压力成正比的,转速加大;压力也加大!(这里要注意:动作方向【s3】+1,当前值pv,d500设定值sv,d160;即bit=1,选择逆动作)所以将压力数字量寄存器d160用于pid程序的pv(当前)数字量做为时刻检查管内的当前压力状况。

4.变频器设置:

(1)上限频率pr1=50hz;(2)下限频率pr2=30hz;(3)基底频率pr3=50hz;(4)加速时间pr7=3s;(5)减速时间pr8=3s;(6)电子过电流保护pr9=电动机的额定电流;(7)起动频率pr13=10hz;(8)du面板的第三监视功能为变频繁器的输出功率pr5=14;(9)智能模式选择为节能模式pr60=4;(10)设定端子2~5间的频率设定为电压信号0~10v,pr73=0;(11)允许所有参数的读/写pr160=0;(12)操作模式选择(外部运行)pr79=2;(13)其他设置为默认值。

5.系统调试:

(1)将触摸屏rs232接口与计算机连接,将触摸屏rs422接口与plc编程接口连接,编写好fx0n-3a偏移/增益调整程序,连接好fx0n-3a i/o电路,通过gain和offset调整偏移/增益。(2)按图设计好触摸屏画面,并设置好各控件的属性,按图所示编写好plc程序,并传送到触摸屏和plc。(3)将plc运行开关保持off,程序设定为监视状态,按触摸屏上的按钮,观察程序触点动作情况,如动作不正确,检查触摸屏属性设置和程序是否对应。(4)系统时间应正确显示。

(5)改变触摸屏输入寄存器值,观察程序对应寄存器的值变化。(6)按图连接好plc的i/o线路和变频器的控制电路及主电路。(7)将plc运行开关保持on,设定水压调整为3kg。

(8)按手动起动,设备应正常起动,观察各设备运行是否正常,变频器输出频率是否相对平稳,实际水压与设定的偏差。

(9)如果水压在设定值上下有剧烈的抖动,则应该调节pid指令的微分参数,将值设定小一些,同时适当增加积分参数值。如果调整过于缓慢,水压的上下偏差很大,则系统比例常数太大,应适当减小。(10)测试其他功能,是否跟控制要求相符。

下载PID控制小结word格式文档
下载PID控制小结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    PID含义说明

    PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。这三种算法是: 比例- 来控制当......

    PID调节心得(大全)

    鉴于最近一直在研究算法,所以颇有些心得体会,整理了一下,觉得比较实用的一些PID的原理,及具体的调节方案,供大家参考学习,调节这个参量的值,需要耐心和经验,但是更多的是我们得静下......

    先进PID控制及MATLAB仿真第3章专家PID学习心得及疑问

    先进PID控制及MATLAB仿真第3章专家PID学习心得及疑问 因为课题需要,刚开始学习专家控制器matlab仿真,用的是刘金锟 先进PID控制及MATLAB仿真。有一些问题想和大家交流,向大家请......

    基于单片机的数字PID控制直流电机PWM调压调速器系统(★)

    题目: 基于单片机的数字PID控制直流电机PWM 调压调速器系统 目录 一、PID简介··································(6) 二、设计原理··......

    数字PID控制器设计

    数字PID控制器设计 设计任务: 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制......

    基于PID的电阻炉温度控制系统

    基于PID的炉温控制系统 摘要:在科学实验中,温度是极为普遍又极为重要的热工参数之一。为了保证科学实验正常安全的进行,提高实验的精确性,介绍了用AT89S51单片机为主要元件组......

    AB PLC PID控制器总结

    - 针对AB PLC里的PID控制器的研究 首自信热轧作业区张余海借鉴热轧1580的稀油泵站的出口压力控制,期望压力为4.0bar,电机为异步变频电机,变频器为AB变频器,PLC和变频器的通讯......

    关于西门子S7-200 PID编程学习心得

    关于西门子S7-200 PID编程学习心得 1. 注意区分输入端接的是电压信号还是电流信号;输出端是电流信号还是电压信号。在模拟模块上不同信号下的接线方式。 2. 了解信号输入元件......