第一篇:勾股定理的应用方法小结
勾股定理的应用方法小结
绵竹市紫岩雨润中学
岳关芬
谈到勾股定理,学数学的学生以及经常使用数学知识的科研技术人员都非常的熟悉。它的具体内容就是:在直角三角形中,两直角边的平方和等于斜边的平方。这个重要的结论为我们解决直角三角形中线段长度的计算带来很大的方便。
但是作为一名从事数学教学工作的教师,在教学的过程当中,仍然发现有许多学生在涉及到这个方面的问题是,还是不明白该如何入手解决问题。所以在此把自己总结的一些经验与大家分享,共同学习。
在直角三角形中:
(一):直接变式法
已知两条边的具体的值,求第三边。例1:已知:在⊿ABC中:∠C=90°
(1)AC=4, BC=3 , 求AB的长。
(2)AB=13,AC=12,求BC的长
小结:像这个题,他就是勾股定理的一个直接的应用。
(二)设未知数法
已知一条边具体的值,同时已知另外两边的关系,求边长。例2:已知:在⊿ABC中:∠C=90°,(1)AC + BC= 7, AB=5 ,求AC ,BC的长。
(2)AB –AC =8, BC=12,求AB ,AC 的长。
小结:像这两个小题,它需要根据勾股定理结合条件
把它转化成带有一个未知数的方程来解决问题。以(1)为例,设AC = x,则
BC=7-x,那么x+(7-x)= 25,就可以找出线段的值。
变式训练:
已知:小红用一张举行纸片惊醒折纸。已知该纸片的宽AB为8厘米,长BC为10厘米,当小红折叠时,顶点D落在边BC上的点F处(折痕为)。想一想,此时CE有多长?
(三)面积法
已知两直角边的长,求斜边上的高。2例3:已知:在⊿ABC中:∠C=90°,AC =3, BC=4,求AB边上的高CD。
小结:这个题目先利用勾股定理求出斜边,再结合三角形的面积求可以求出斜边上的高。
变式训练
已知;在在⊿ABC中:∠C=90°,AC=7,BC=24,P是⊿ABC内的一点,并且P到三角形三边的距离相等,求这个距离。
(四)构建等式法
例4:已知:铁路上A,B两点相距25㎞,C, D为两村庄,已知:AD⊥AB于A,BC⊥AB于B,已知:AD=15㎞,BC=10㎞。现在要在铁路AB上修建一个土特品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多远处?
小结:这个题目单独利用直角三角形ADE没有办法解决问题,恰好⊿ADE和⊿BCE都是2222直角三角形,并且相等的边DE和CE,于是设AE=x,BE=25-x,得15+x=10+(25-x).即可找出线段的长。变式训练:
已知:在正方形ABCD中,E为BC的中点,折叠正方形,使点A与点E重合,压平后折痕为MN,则提醒ADMN与BCMN的面积之比为________.
第二篇:《 勾股定理的应用方法小结》
谈谈勾股定理及其逆定理的应用
绵竹市紫岩雨润中学
岳关芬
谈到勾股定理及它的逆定理,它是中学数学中最重要的定理之一,是几何学中的明珠,充满了魅力,我国把它又称为毕达哥拉斯定理。这是由于,他们认为最早发现直角三角具有“勾²+股²=弦²”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯。勾股定理揭示了直角三角形三边的数量关系。具体内容就是:在直角三角形中,两直角边的平方和等于斜边的平方。逆定理揭示了从三角形三边的数量关系来判断三角形是否是直角三角形。具体的内容是:在三角形中,如果较小两边的平方和等于第三边的平方,那么三角形是直角三角形。它们不但是解直角三角形的重要依据,是每年中考的必考知识点之一,而且在实际生活中的应用十分的广泛。
我国伟大的数学家华罗庚将勾股定理称为茫茫宇宙星际交流的“语言”因为数学是一切有智慧生物的共同语言,所以我们有更多的理由要学好它。学习勾股定理时,应抓住三大关键,一是勾股定理及其逆定理的证明方法,二是勾股定理及其逆定理的应用,三是怎样寻找勾股数。对于第二个问题,又应抓住四个方面,一:是勾股定理在几何计算中的应用。二:是勾股定理在几何证明中的应用。三:是勾股定理及其逆定理的综合应用。四:是勾股定理在代数证题中的应用。在初中数学中常常提到的数学思想方法有数形结合思想、分类讨论思想、转化思想、方程思想、整体思想.在勾股定理的应用中,渗透了上述四种数学思想。
作为一名长期从事中学数学教学工作的教师,在教学的过程当中,我经常发现有许多学生在涉及到计算直角三角形中线段的长以及判断三角形的形状等问题时,还是不明白该如何入手解决问题。在此,我主要想谈谈在这两类问题上,怎样正确快速的应用勾股定理和它的逆定理解决问题。所以把自己总结的一些经验与大家一起分享,共同学习。一:怎样应用勾股定理在直角三角形中求线段的长: 1:
直接把勾股定理变式计算线段的长
已知两条边的具体的值,求第三边。例1:已知:在⊿ABC中:∠C=90°
(1)AC=4, BC=3 , 求AB的长。
(2)AB=13,AC=12,求BC的长
分析:根据题意可知:ACBCAB,直接带值进行计算就可以了。小结:像这个题,他就是勾股定理的一个直接的应用。
变式训练:
已知:在⊿ABC中:∠C=90°AB=13,AC=12,求以阴影部分的面积。
2:
结合勾股定理设未知数计算线段的长
已知一条边具体的值,同时已知另外两边的关系,求边长。例2:已知:在⊿ABC中:∠C=90°,(1)AC + BC= 7, AB=5 ,求AC ,BC的长。
222(2)AB –AC =8, BC=12,求AB ,AC 的长
分析:以(1)为例,设AC = x, 则 BC=7-x.又因为x+(7-x)= 25, 就可以找出线段的值。
小结:像这两个小题,它可以根据勾股定理再结合已知条件,把它转化成带有一个未知数的方程来解决问题。变式训练:
已知:小红用一张矩形纸片进行折纸。已知该纸片的宽AB为8厘米,长BC为10厘米,当小红折叠时,顶点D落在边BC上的点F处(折痕为AE)。想一想,此时CE有多长?
3: 应用三角形面积的不同表示方法求线段的长
已知两直角边的长,求斜边上的高。
例3:已知:在⊿ABC中:∠C=90°,AC =3, BC=4,求AB边上的高CD。
分析:先根据ACBCAB,求出AB的长,再根据三角形的面积
2222211ACBCABCD,就可以计算出斜边上的高CD 22
小结:这个题目先利用勾股定理求出斜边,再结合三角形面积不同的表示方法就可以求出斜边上的高。
变式训练
已知;在⊿ABC中:∠C=90°,AC=7,BC=24,点P是⊿ABC内的一点,并且点P到三角形三边的距离相等,求这个距离。
4:两次应用勾股定理构建等式计算线段的长
已知两个直角三角形有一条公共边或相等边,求线段的长
例4:已知:铁路上A,B两点相距25㎞,C, D为两村庄,已知:AD⊥AB于A,BC⊥AB于B,已知:AD=15㎞,BC=10㎞。现在要在铁路AB上修建一个土特品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多远处?
小结:这个题目单独利用直角三角形ADE没有办法解决问题,恰好⊿ADE和⊿BCE都是直角三角形,并且有相等的边DE和CE,于是设AE=x,BE=25-x,根据DE=CE222215+x=10+(25-x).即可找出线段的长。
变式训练:
已知:在正方形ABCD中,E为BC的中点,折叠正方形,使点A与点E重合,压平后折痕为MN,则梯形ADMN与BCMN的面积之比为________.5:应用全等三角形的知识计算线段的长
在一个直角三角形已知边和其它相等的角,计算线段的长
例:已知:在⊿ABC中:∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求:AC的长?
分析:首先构造直角三角形,过点D向AB边做垂线DE,再结合条件得出CD=DE ,AC=AE,找出BE的长,最后利用Rt⊿ABC中ACBCAB解决问题.二:怎样应用勾股逆定理判断三角形的形状及计算图形的面积
1:判断三角形的形状
例:已知:在三角形中,a, b, c分别是它的三边,并且a+b=10, ab=18, c=8.判断三角形的形状。
分析:首先根据条件结合完全平方公式得出a+b的值,再检验a+b与c的大小,就可以得出结论。变式训练:
已知:在⊿ABC中: AB=13,BC=10, BC边上的中线AD=12.求证:⊿ABC是等腰三角形
22222
得2:与勾股定理结合计算图形的面积
例:已知:在四边形ABBCD中,∠ABC=90°,AB=3, BC=4, AD=12,CD=13.求:四边形ABCD的面积
分析:由于这种图形是不规则的四边形,所以要通过构造直角三角形再利用三角形的面积的和或差进行计算。
我们今天学习勾股定理,不但要学会利用它进行计算、证明和作图,更要学习和了解它的历史,了解其中体现出来的“形数结合”、“形数统一”的思想方法,这对我们今后的数学发展和科学创新都将具有十分重大的意义。
第三篇:勾股定理证明方法
勾股定理证明方法
勾股定理的种证明方法(部分)
【证法1】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点p.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180º―90º=90º.又∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形.∴∠ABC+∠CBE=90º.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90º.即∠CBD=90º.又∵∠BDE=90º,∠BCp=90º,BC=BD=a.∴BDpC是一个边长为a的正方形.同理,HpFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,∴.【证法2】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作Qp‖BC,交AC于点p.过点B作BM⊥pQ,垂足为M;再过点
F作FN⊥pQ,垂足为N.∵∠BCA=90º,Qp‖BC,∴∠MpC=90º,∵BM⊥pQ,∴∠BMp=90º,∴BCpM是一个矩形,即∠MBC=90º.∵∠QBM+∠MBA=∠QBA=90º,∠ABC+∠MBA=∠MBC=90º,∴∠QBM=∠ABC,又∵∠BMp=90º,∠BCA=90º,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.【证法3】(赵浩杰证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB=∠CFD=90º,∴RtΔCJB≌RtΔCFD,同理,RtΔABG≌RtΔADE,∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE
∴∠ABG=∠BCJ,∵∠BCJ+∠CBJ=90º,∴∠ABG+∠CBJ=90º,∵∠ABC=90º,∴G,B,I,J在同一直线上,【证法4】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD.过C作CL⊥DE,交AB于点M,交DE于点
L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积=.同理可证,矩形MLEB的面积=.∵正方形ADEB的面积
=矩形ADLM的面积+矩形MLEB的面积
∴,即.勾股定理的别名
勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。
在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.前任美国第二十届总统加菲尔德证明了勾股定理(1876年4月1日)。
证明
这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(ElishaScottLoomis)的pythagoreanproposition一书中总共提到367种证明方式。
有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。
第四篇:勾股定理证明方法(精选)
勾股定理证明方法
勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。
在《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。
中国古代的数学家们最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
上中间的那个小正方形组成的。
每个直角三角形的面积为ab/2;
中间的小正方形边长为b-a,则面积为(b-a)2。
于是便可得如下的式子:
4×(ab/2)+(b-a)2=c
2化简后便可得: a2+b2=c2
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加
刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法
古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
第五篇:勾股定理的应用
1、勾股定理的应用
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题
2、如何判定一个三角形是直角三角形(1)先确定最大边(如c)(2)验证c与a+b则△ABC不是直角三角形。
3、勾股数 满足c=a+b的三个正整数,称为勾股数 如(1)3,4,5;(2)5,12,13;
(3)6,8,10;(4)8,15,17(5)7,24,25(6)9, 40, 412、三角形的三边长为abcba2)(22+=+,则这个三角形是()
A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形
3.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()
(A)25(B)14(C)7(D)7或25
6.将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是()(A)钝角三角形
(B)锐角三角形(C)直角三角形(D)等腰三角形.7.如图小方格都是边长为1的正方形,则四边形ABCD的面积是()
(A)25(B)12.5(C)9(D)8.54、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱 形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取 值范围是().
A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降 至B′,那么BB′().
A.小于1mB.大于1mC.等于1mD.小于或等于1m11、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后 分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少 海里
222222是否具有相等关系(3)若c2=a2+b2,则△ABC是以∠C为直角的直角三角形;若c2≠a2+b2