数字推理解题方法汇总篇(五篇材料)

时间:2019-05-13 18:05:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数字推理解题方法汇总篇》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数字推理解题方法汇总篇》。

第一篇:数字推理解题方法汇总篇

数字推理解题方法汇总篇~~~~~~~~个人总结,让数推不纠结

第一部 整体特征分析

一、项数较多或有两个括号

特点:项数较多,超过6个或者6个以上,或者是数列中有两个括号;

技巧:

1、交叉分组

2、两两分组

注意,(1)如果数列中出现两个括号,那么一定要采用交叉分组来解答。

(2)当我们两两分组不能得到规律时,可以考虑三三分组,当试题很难时会出现首尾项为一组,不过这种情况比较少见。

*************************************************************************************

例1:257,178,259,173,261,168,263,()

A.163 B.164 C.178 D.275

【分析】数列比较长,所以先交叉分组。

奇数项数列:257、259、261、263 等差数列;

偶数项数列:178、173、168、()等差数列;

显然原数列是163,选A。

例2:5,24,6,20,4,(),40,3

A.28 B.30 C.36 D.42 【分析】数列较长,交叉分组后奇数项数列变化很大,不存在什么规律,考虑两两分组,组内做四则运算。

两两分组后发现,6、20与40、3的乘积一样,也等于24×5,所以未知项为30。

*************************************************************************************

二、数列中存在分数

数列中存在分数,无非有两种情况,一种是分数的个数多于整数,一种是分数的分数少于分数,但是无论是那种情况都有对应的解题方法。

当分数的个数多于整数个数的时候,其实这就是我们常说的分数数列,在解答分数数列的时候用到的技巧主要有:约分、通分、反约分、做差、做积或者考虑前后项的关系;需要注意的是约分、通分的年代已经过去了,做差和做积的在浙江出现过,最流行的还非反约分、前后项关系莫属。

当分数的个数少于整数个数的时候,一般会有两种情况:

1、数列呈现橄榄枝型,此时应考虑多次方数列;

2、数列具有单调性,且只有一项或者两项分数,此时考虑等比数列或者递推数列,递推的规律是前两项的和或者乘积除以某个数值。

*******************************************************************************

例1:5,3,7/3,2,9/5,5/3,()

A.13/8 B.11/7 C.7/5 D.1 【分析】数列中整数和分数的个数相同,但是选项中多是分数,应采用分数数列的方法解答。先看分数的分母,分母较小,不可能是约分,前后项关系等,“9/5”的分母为5,且为第5项,所以我们就以项数为分母进行反约分有5/1,6/2,7/3,4/8,9/5,10/6,显然应该是是11/7。例2:10,6,8,7,15/2,()

A.13/2 B.7 C.29/4 D.15/2

【分析】数列中的整数比分数多,且不具有橄榄枝型,所以考虑数列的递推规律。分数的分子为2,所以数列应该是和值或者乘积除以2,由其中的10+6=16,是8的2倍,显然规律是前两项的和的1/2为第三项,即未知项为29/4。

*******************************************************************************

三、数据较小,且比较分散

如果数列的数据较小,且比较分散的时候,我们就要采用做和或者做积的方法来解答,可以是两两做和,也可以是三三做和。

所谓数列的数据较小,指的是数据均为一位数或者是两位数;比较分散,则是指数列不呈现明显的变化规律,如2、2、0、7等组成的数列。

*******************************************************************************

例1:1,2,3,4,7,6,()

A.11 B.8 C.5 D.4 【分析】数列中均为个位数,且不具有单调性,给出的选项也不大,所以采用两两做和的方法,数列经过做和后有3、5、7、11、13,是个质数数列,所以未知项为11。例2:2,2,0,7,9,9,()

A.13 B.15 C.18 D.20

【分析】数列中均为个位数,且不具有单调性,给出的选项也不大,采用两两做和的方法,有4、2、7、16、18,没有规律,然后三三做和有4、9、16、25,平方数列,所以未知项为20。

*******************************************************************************

四、数列的最后一项和选项变化较大

当数列的最后一项或者是给出的选项变化较大的时候,我们基本可以判定数列为递推数列,且为倍数、乘积或者是方递推数列。

我们在推测数列的规律的时候,可以采用局部分析法来判定,所谓局部分析法指的是通过数列中某些值来初步判定数列的规律,然后在将这个规律推广到整个数列,一般来说我们可以通过数列的两项或者三项即可推测出数列的规律。

*******************************************************************************

例1:2,3,7,16,65,321,()

A.4542 B.4544 C.4546 D.4548

【分析】数列的最后一项以及给出的选项变化很大,所以采用递推数列的方法解答,由3、7、16可以得到3×3+7=16,由2、3、7有2×2+3=7,推测7、16、65的关系为7×4+16,显然不对,那就只能是7×7+16,正确,未知项就是65×65+321,尾数为6。例2:1,2,7,19,138,()

A.2146 B.2627 C.3092 D.3865 【分析】数列的最后一项以及给出的选项变化很大,所以采用递推的方法解答。由2、7、19有2×7+5=19,同时有7×19+5=138,1×2+5=7,则未知项是19×138+5,尾数为7。

*******************************************************************************

第二部 趋势特征分析

所谓趋势特征分析,指的是分析整个数列的变化趋势,看是增加的还是减小的,通常来说,我们在分析数列的趋势的时候,会遇到以下几种情况:

一、单调增变化,有明显倍数关系

当数列呈现单调增加或者减小,且有明显倍数关系的时候,我们首先采用两两做商的方法解答。

所谓倍数关系,并非我们狭义讲的商值是整数,还包括部分小数和分数,如数列中出现2、3、6、15这样的数,我们也称其为有明显的倍数关系,同时前后项的商值为2/3时,我们也说是明显倍数关系。

*******************************************************************************

例1:2,14,84,420,1680,()A.2400 B.3360 C.4210 D.5040

【分析】数列是单调增加的,14与2,84与14有明显的倍数关系,所以先两两做商有7、6、5、4,所以未知项为1680×3=5040。例2:1,4,14,42,(),210

A.70 B.84 C.105 D.140 【分析】显然数列的中间出现括号,但是整体上数列单调增加,且1、4与14、42有明显的倍数关系,所以两两做商有4、3.5、3,所以未知项为42×2.5=105。

*******************************************************************************

二、单调变化,且变化不大

当数列呈现单调增加或者单调减小,且变化幅度不大的时候,我们通常采用两两做差的方法解答。

所谓变化不大,指的是相邻两项的数据的倍数关系在3倍或者3倍以下。当我们遇到这样的数列时,优先两两做差。

*******************************************************************************

例1:21,28,33,42,43,60,()

A.45 B.56 C.75 D.92 【分析】数列单调增加,且没有明显倍数关系,变化也不大,所以先两两做差有7、5、9、1、17,数列呈现振荡型做差有-

2、4、-

8、16,等比数列,所以未知项为-32+17+60=45。例2:3,6,9,13.5,22.5,45,()A.112.5 B.100 C.95.5 D.90

【分析】数列单调增加,且没有明显倍数关系,变化也不大,所以先两两做差有3、3、4.5、9、22.5,数列单调增加,有明显倍数关系,两两做商1、1.5、2、2.5,等差数列,所以未知项为3×22.5+45=112.5。

*******************************************************************************

第三部 数字特征分析

所谓数字特征分析指的是通过分析数字的特征来获得解题的灵感,这就需要一定的数字敏感,需要考生在备考前熟记一些常用的平方数、立方数以及多次方数,并且熟悉这些数字的变形。

通常来说,我们在解题时会遇到以下几种情况:

一、数字呈现明显的指数特征

当数字呈现明显的指数特征时,我们可以将数值转化为指数的形式,然后分析数值的指数、底数以及修正项来找到数列的规律。

所谓指数特征,并非单单指能化为指数形式的数值,也包括这些数值附近的一些数,如15、123、340等,这点需要考生在复习的时候注意。

*******************************************************************************

例1:1,4,16,49,121,()

A.256 B.225 C.196 D.169 【分析】数列中的数值都是平方数,所以采用多次方数列的方法。数列的底数为1、2、4、7、11,这个是二级等差数列,所以未知项为11+5=16的平方256。

例2:0,9,26,65,124,()

A.165 B.193 C.217 D.239 【分析】数列中除了0、9是多次方数,其他的三个周边有多次方数,26旁边有25、27,65旁边有64,124附近有125、121,分析差值情况,显然只能选项差为1的,所以将他们转化为多次方的形式,并对数列进行修正就有未知项为6的立方+1,尾数为7。

*******************************************************************************

二、数字呈现多位数的特征

当数字呈现多位数的特征时,我们可以根据数列的特征有针对性的解答,一般采用两两做差、强行分组组内做四则运算以及分析数字的特征等方法解答。此部分属于特殊题型,将专门讲解这一部分的内容。

总的来说,当我们拿到一道数字推理试题时,我们就要先看一下数列的整体特征,然后按照这三步从上到下逐次分析,必能解决70%左右的试题。下面就说说一些比较特殊的数列的解题方法吧。

第二篇:解题方法

一、积累与运用

1、根据拼音写汉字:,正确、准确的抄写,不可多抄,不可漏抄,注意标点符号的规范,若看拼音写的汉字不会写,应写上一个同音字,切不可空着。

2、填词:(以现代文语段积累中的内容为主)

(1)反义词;

(2)递进关系:题目中如果出现有“乃至、甚至、不仅„„而且„„”等词要仔细分析所选词语的表意程度的深浅

(3)修辞手法:比喻、拟人要关注待选词语和比喻、拟人对象的对应关系

3、修改病句

找准主谓宾:确定动词,动词之前发出行为的人或事物为主语,动词之后承受行为的人或事物为宾语,发现是否缺主语、缺宾语或主宾、动宾搭配不当(详细方法见病句强化训练资料)

补充:(1)句中有多个主语,只有一个谓语动词时,考虑主宾搭配不当,方法为为每个主语寻找一个合适的谓语动词

(2)当句中有多个宾语,却只有一个谓语动词时,考虑动宾搭配不当,方法为为每个宾语搭配一个合适的谓语动词

4、排序还原:①主语一致,同一句中的不同分句的主语应是同一个;

②语境一致,主句和备选句所营造的氛围或感情基调应是一致的;

③句子结构一致,当选项中各个分句的结构已经一致的时候,短句前,长句后;

④考虑逻辑顺序,找准中心句(观点句),区别材料句,按照总分总、总分或分总、时间、空间、思维的顺序排列

5、选题:分析主题,抓住关键词,然后分析主题类型

(1)类似“武汉发展”的主题,则划分小方面,每一个小的方面就是一个选题

(2)已经是个小范畴的主题或是具体的一个活动了,则在关键词的后面加上“意义、目的、原因、益处、弊端”等词构成选题。

6、活动设计题:表现形式为“以„„为内容|主题开展„„”,常见的活动方式有:

(1)亲自体验解决问题:查资料、采访、主题班会

(2)竞赛活动:演讲、诗歌朗诵、作文竞赛、书法比赛、辩论

(3)展览类:书抄报、展板、黑板报

(4)讲座类:知识座谈、讨论会、名家讲座、交流活动

(5)趣味活动类:对联、灯谜、成语接龙

7、口语交际:表态(是否同意观点),针对矛盾点提出合理解决方法或指出采取正确态度的好处,提出请求要说明目的,礼貌委婉,注意称谓

8、材料分析概括题:找出所有材料的共同点也就是都谈到的问题,一般来说在所有材料中都反复出现的词或短语就是关键词,或所有材料中信息量最小的一则就是所有材料的共同信息。

9、材料选择题:指明每一则材料的主旨内容,符合主题要求的就是合适的材料。

10、图表分析:首先了解图表调查的内容或目的(题目中会告知),然后横向比较、纵向比较得出各自结论(展现在草稿纸上),接着结合题目中告诉的图表内容或目的将横纵向结论提炼整合起来为最终结论,将最终结论同横纵向结论相比较进行检查

二、文言文阅读

(1)解释加点字:提倡首选组词法,即首先联系这个词或字在现代汉语中的意思,当组词法无法译出该词时,则选用意译法,尤其关注词类活用、通假字、使动、意动、一词多用等现象。

(2)翻译句子一定做到逐字翻译,表意流畅,语气正确。

(3)分析人物形象时可以根据分值确定要点的个数,从文中找到人物的所有行为,逐一分析,然后进行整合,切不可将同一要点反复陈述。

三、现代文阅读一

(一)常见加点词语品析

答题格式:A.回答可以还是不可以(一般情况不可以,特别是书上的原文时);

B.比较删去前后意义上的差别(删去某词后句子的意思是„„,有这个词句子的意思是„„);

C.删去后语境有何变化(选用:①体现语言的准确、严密、生动;②与事实不符;③太绝对了;④是作者的一种猜测)

加点词类型:

1、表推测,说明结论或说明对象的特点、某方面的作用不确定,体现了说明文语言的准确、严谨。

2、从时间上限制,说明结论或说明对象的特点、某方面的作用在一定的时间段成立,在别的时间段不一定也是如此,在体现了说明文语言的准确、严谨

3、从范围上限制,说明结论或说明对象的特点、某方面的作用在某一范围内成立,在别的范围不一定如此,体现了说明文语言的准确、严谨

4、表信息来源,说明结论或说明对象的特点、某方面的作用是根据某一方面的信息总结得出的,在其他方面不一定也成立,体现了说明文语言的准确严谨。

5、表约数,说明数量无法确切获得,是估计得出的,体现说明文语言的准确严谨。

6、表程度,表明说明对象的作用大小(比如处于首位)

(二)筛选题:从文中确定关键词或中心句作答

(三)选择题:一定将每个选项涉及的内容都还原到文中去,不凭印象作答

(四)分析句子在文中的作用

答题格式:此句用何种方法表明了此句的说明对象的何种特征(说明文常用方法:举例子、列数字、打比方、作比较、引名言等);

此句用何种论证方法表明了何种论点或观点,对中心论点起到了何种作用,在文中起到了总结,总起,过渡、强调,使形象、通俗易懂等作用(议论文)。

四、现代文阅读二

(一)筛选信息:除特殊要求外,一般不能用原文回答。筛选信息的过程其实是概括的过程。

概括的操作思路是:

1、依据中心句进行概述总括。

一篇文章内容的具体化,通常表现为围绕某个中心展开叙述、议论或说明,因此,抓住了中心句,就把握了具体的要旨,一般来说,中心句往往表现为评价性、议论性的语句,还要注意文中的过渡句或过渡段。

2、通过提炼要点、关键词句进行概述总括。

有的文章中,很难找到提示具体内容要旨的中心句,那就需要把有关的要点提炼出来。

3、通过辨认相关性进行概述总括。

任何一篇文章的具体内容,都是由局部构成的一个整体,从局部之间的关系入手,即辨认语句之间或语段之间的相关性,是进行概述总括的重要途径。例如朱自清的《春》,全文共有10个自然段,除了①②自然段为“盼春”,⑧⑨⑩自然段为“送春”,③至⑦自然段为“绘春”。为什么说③至⑦自然段为“绘春”呢?③自然段写春草,④自然段写春花,⑤自然段写春风,⑥自然段写春雨,⑦自然段为写迎春。将其统而摄之,我们不难发现作者从各个侧面描写着春天,所以我们可以将③至⑦自然段内容概括为“绘春”。

4、通过牵头接尾进行概述总括。

牵头,就是抓住具体内容的起始;接尾,就是连接具体内容的终结。通过牵头接尾进行概述总括,其内容的要旨就浮出水面了。

5、若问某一文段大意。

找中心句,注意段首句、段尾句。(如无中心句)归纳段意的答题格式:本段(概括或具体)写了“谁——干什么”。(或“什么——怎么样”)

6、按事情发展的阶段分析。

(1)以写人为主的文章:

①按人物成长的阶段分析;

②按人物所在的不同地点分析;

③按表现人物不同性格特征的不同条件分析;④按人物感情的变化分析。

(2)以写景状物为主的文章:

①按人物观察景物的观察点的变化,即空间变化分析;

②按不同时间的不同景致的变化,即时间变化分析。

(二)题型:回答某个词语的含义或解释文中某个行为产生的原因,方法:既要结合语境答出其字面含义,还要答出精神实质。

(三)分析景物或环境描写作用,方法:指出此句为描写某人或某物的(何种)生长或生活环境,衬托出了某人或某物的何种特点,说明此句起到了铺垫作用。此类题目一定要从内容和结构上分析。具体作用为:

社会环境描写作用:交代时代背景、社会习俗、思想观念和人与人之间的关系。

自然环境(包括人物活动的地点、季节、气候、时间和景物、场景)作用:交代时间背景、渲染气氛、表现人物某性格、烘托人物某心情、推动情节的发展、深化主题。

(四)品味加点词,方法三部曲:解释词义,表现了谁的什么情感或特点,有没有使用修辞手法,如有,其作用是什么(比喻手法则为本体体现了喻体的什么特点,拟人手法则为被比拟事物体现了比拟事物的什么特点,对比、反问、排比等突出或强调该对象的××特征,增强了气势),若此句为作者的评价型语句还需加上体现了作者的什么感情的分析语句:(联系上下文、主题、作者意图,蕴涵有什么道理、思想、感情等)肯定了/褒扬了/赞美了/歌颂了或批判了/讽刺了/否定了/反驳了,或者给了我们„„的印象、启示,道理等。

(五)点评句子,方法:具体分析使用了什么修辞手法或写作手法,(内容上)怎样表现了某人或某物的什么特点或感情,(语言上)产生了怎样的效果(要从三方面考虑)

(1)结构上,常起(选用A承上启下,过渡;B总领全文,开启下文;C总结上文的作用);

(2)写作手法上,常有(选用A开篇点题;B为后文设伏笔;C作铺垫;D深化中心;E点明主旨(画龙点睛);F、衬托;G、渲染;H呼应、照应;I对比;J象征;K先抑后扬;L预示性作用等特点)。

(3)内容上(语面的象征义、喻指义;表现的人物思想性格;点明全文思想意义)

(六)题干中如出现此类表述时,请一定结合具体的句子进行分析:请具体分析„„、怎样在字里行间体现„„

(七)评价文中人物的行为,方法:先指出这个行为是什么,再说明这种行为的意义(利或弊)或指出正确的行为应是什么,答题格式为:①评价;②由文中××(言或行)表现该人物××的精神(品质、性格、思想、个性)。

(八)说明文章的寓意,方法:联系文本,联系生活,即人生应像文中的某物或某人一样具备什么样的精神,总之要上升到人生价值和意义的高度。

(九)问在文中某一具体情境下你的感受、体验、做法。

A、指出这一具体情境下蕴含着的思想意义,道理;B、结合文中具体的事例谈你的感受、体验、做法,并说明理由;C、总结你的观点。

(十)问阅读后的体会、体验、启示、见解:要注意观点正确、健康,注意言之有理。

按总分总的顺序答题:

A、你从文中得到的收获、体会,明白的道理,可找出文中能表现作者情感的句子和文章主题的句子回答。

B、结合文中和生活中具体的事例、材料加以举例说明,阐明理由

C、所以我们应该怎样怎样。

五、作文

1、作文技巧要牢记,提示变成“为什么”,材料中间找原因,原因排队成文章,事例之后要分析,分析方法很简单,假设、因果都可以,开头、结尾和文中,反复点题很要紧。

2、作文审题是首先将提示语变成“为什么”或“怎么样”的问题,然后分析材料提供了什么原因或条件来回答这个问题,作文中一定要有事例支撑,一定要结合观点分析事例,最后还可以联系实际。

3、作文基本结构:(1)首段点题(2)事例论证(3)例后分析(4)例问过渡(5)事例论证

(6)例后分析(7)联系实际(选用)(8)结尾点题

4、升级技巧:事例写如何,论证写原因

第三篇:数学经典解题方法

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

第四篇:解题方法

1.函数思想:

把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。

2.数形结合思想:

把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。

3.分类讨论思想:

当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。

4.方程思想:

当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。

另外,还有归纳类比思想、转化归纳思想、概率统计思想等数学思想,例如利用归纳类比思想可以对某种相类似的问题进行研究而得出他们的共同点,从而得出解决这些问题的一般方法。转化归纳思想是把一个较复杂问题转化为另一个较简单的问题并且对其方法进行归纳。概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题

第五篇:一般数学解题方法

初中数学解题方法之我见

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程根的判别,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以讨论二次方程根的符号,解对称方程组,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

下载数字推理解题方法汇总篇(五篇材料)word格式文档
下载数字推理解题方法汇总篇(五篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    公务员复习行测秘笈:行测判断推理解题法宝及通用方法

    本次公务员文集上传了所有公务员复习秘笈,包括行测和申论。大家直接搜索"公务员复习行测秘笈:"或者"公务员复习申论秘笈:"即可搜索到所有资料秘笈,每一份都是极品资料,看完如果上......

    2015年国家公务员考试数字推理

    江苏中公教育:http://js.offcn.com/ 2015年国家公务员考试数字推理 1.0.25,0.5,2,( ),2,0.5 A.1 B. 4 C.0.25 D.0.125 2.6,7,9,15,,159,879 A.21 B.35 C.67 D.39 3.53,61,6......

    公务员考试材料数字推理解析

    公务员考试材料数字推理解析.txt有没有人像我一样在听到某些歌的时候会忽然想到自己的往事_______如果我能回到从前,我会选择不认识你。不是我后悔,是我不能面对没有你的结局......

    判断推理方法总结

    一、判断推理: 解题思路:1.根据图形特征找相应的变化规律: 元素相同看位置平移:1.步数(恒等、递增);2方向:上下左右逆顺时针 旋转:1.角度(45、90、180);2.方向:顺逆时针 翻转:上下(横轴)、......

    阅读理解解题方法

    如何做语文阅读理解题(一) 考点分类 具体题型 答题技巧 筛选信息: 1. 考查文章的线索/本文的线索是什么?/关键看文章标题,标题往往就是线索;其次看文章反复出现的关键词语,这个词就......

    长篇阅读 解题方法

    长篇阅读解题方法 新题型长篇阅读的考试时间,大概为15分钟。 从四级大纲样卷来看,长篇阅读主要考查段落信息匹配。段落信息匹配题有4个特点:1.绝对乱序;2.绝对同义转换;3.通常超......

    高中数学解题基本方法

    一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简.何时配方,需要我们适当预测,并且合理运用“裂项”与“添项......

    初一数学题解题方法

    初一数学题解题方法一:配方法 配方就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式,通过配方解决数学问题的方法叫配方法。其中,用......