第一篇:小学五年级数学概念小结
小学五年级数学概念小结
体积和表面积
三角形的面积=底×高÷2。公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= axa 长方形的面积=长×宽 公式 S= a×b平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=(a×b+a×c+b×c)×2 正方体的表面积=棱长×棱长×6 公式: S=6a a 长方体的体积=长×宽×高 公式:V = abh 长方体(或正方体)的体积=底面积×高 公式:V = abh 正方体的体积=棱长×棱长×棱长 公式:V = a a a 分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价×数量=总价
2、单产量×数量=总产量 速度×时间=路程
4、工效×时间=工作总量 加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数 长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米 面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1亩=666.666平方米。体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米 重量单位
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 倍数与约数(因数)最大公因数:几个数公有的因数,叫做这几个数的公因数。公因数有有限个。其中最大的一个叫做这几个数的最大公因数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。8(或125)的倍数的特征:末3位是8(或125)的倍数。
倍数关系的两个数,最大公因数为较小数,最小公倍数为较大数。互质关系的两个数,最大公因数为1,最小公倍数为乘积。两个数分别除以他们的最大公因数,所得商互质。两个数的与最小公倍数的乘积等于这两个数的乘积。两个数的公约数一定是这两个数最大公约数的约数。1既不是质数也不是合数。奇数与偶数
偶数:个位是0,2,4,6,8的数。奇数:个位不是0,2,4,6,8的数。
偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数 偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数 相临两个自然数之和为奇数,相邻自然数之积为偶数。如果乘式中有一个数为偶数,那么乘积一定是偶数。整除
如果c|a, c|b,那么c|(a±b)如果,那么b|a, c|a 如果b|a, c|a,且(b,c)=1, 那么bc|a 如果c|b, b|a, 那么c|a 小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。纯小数:个位是0的小数。带小数:个位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414……
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654…… 利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)利率:利息与本金的比值叫做利率。加法 把两个数合并成一个数的运算
减法 已知两个加数的和与其中一个加数,求另一个加数的运算
乘法 求几个相同加数的和的简便运算 小数乘整数的意义与整数乘法意义相同 一个数乘纯小数就是求这个数的十分之几,百分之几…… 分数乘整数的意义与整数乘法意义相同
一个数乘分数就是求这个数的几分之几
除法 已知两个因数的积与其中一个因数,求另一个因数的运算
第二篇:小学五年级数学教学小结
小学五年级数学教学小结
本学期教学工作即将结束,在这繁忙而充实的一学期中,我感触较多,现将自己在教学中的点滴得失作一个反思。认真执行学校教育教学工作计划,转变思想,积极探索高效课堂教学的新思路。
一、课堂教学,师生之间学生之间交往互动,共同发展。课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能充分发展作为教学改革的基本指导思想。把数学教学看成是师生之间学生之间交往互动,共同发展的过程,课前准备不流于形式,变成一种实实在在的研究,教学之中,我根据不同的课型,运用多种教学手段去吸引学生,用多种教学方法去感染学生,促使他们喜爱数学,愿意学习数学。教学之后,我基本做到每单元进行单元测试、反思,及时总结自己在教学工作中的得失,以便在后面的教学中发挥优点,克服不足,同时,积极和同组教师相互切磋,通过自己的努力学生的学习氛围有所加强,学习兴趣有所提高,基本会积极主动的学习.教育教学并非是一朝一夕就能完成的。需要教师不断学习、不断修炼,提高文化水平与做人境界,这将是一个长期而非常有价值的努力过程。我在总结成绩的同时,不断反思教学,不断地将公开课上的精华延伸运用于日常教学实践。
努力处理好数学教学与现实生活的联系,努力处理应用意识与解决问题的重要性,重视培养学生应用数学的意识和能力。重视培养学生的探究意识和创新能力.我做到:常思考,常研究,常总结,以创新求发展,进一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新能力”,以课堂教学研究与运用为重点,努力实现教学高质量,课堂高效率。
二、创新评价,激励促进学生全面发展。全面考察学生的学习状况,激励学生的学习热情,促进学生全面发展的手段,也作为教师反思和改进教学的有力手段。对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。抓基础知识的掌握,抓课堂作业的堂堂清,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么能力。有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展。
三、抓好常规,保证教育教学任务的完成。坚持以教学为中心,强化管理,进一步规范教学行为,并力求常规与创新的有机结合,促进教师严谨、扎实、有效、科学的良好教风及学生严肃、勤奋、求真、善问的良好学风的形成。我从点滴入手,了解学生的认知水平,查找资料,精心备课,努
力创设宽松愉悦的学习氛围,激发兴趣,教给了学生知识,更教会了学生们求知、合作、竞争,培养了学生正确的学习态度。良好的学习习惯及方法,使学生“学”得有趣,“学”得实在,“学”有所得,我努力向40分钟要质量。
四、教育教学情况在教学工作中,我注意做到以下几点:
1、深入细致的备好每一节课。在备课中,我认真研究教材认真备课。每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣的教具,课后及时对该课用出总结,力求准确把握重点,难点.并注重参阅各种杂志,制定符合学生认知规律的教学方法及教学形式。注意弱化难点强调重点。教案编写认真,并不断归纳总结提高教学水平.2、认真上好每一节课。上课时注重学生主动性的发挥,发散学生的思维,增强上课技能,提高质量。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生学得容易,学得轻松,觉得愉快,注意精神,培养学生多动口动手动脑的能力。注重综合能力的培养,有意识的培养学生的思维的严谨性及逻辑性,在教学中提高学生的思维素质.保证每一节课的质量.3、认真及时批改作业,布置作业有针对性,有层次性。对学生的作业批改及时,认真分析并记录学生的作业情况,将他们在作业过程出现的问题做出分类总结,进行透彻的讲评,并针对有关情况及时改进教学方法,做到有的放矢。注意听取学生的意见,及时了解学生的学习情况,并有目的的对学生进行辅导。
4、坚持听课,注意学习组里老师的教学经验,努力探索适合自己的教学模式.本学年听课十九节,对自己的教学促进也很大.5、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了对后进生的辅导的力度。对后进生的辅导,并不限于学生知识性的辅导,更重要的是学生思想的辅导,提高后进生的成绩,首先解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。
总体而言,这学期的教学有得有失,对于“得”我会把它当作自己的财富,对于“失”会在今后的教学中努力去改善,所以今后更应该多学习,多总结,努力提高自身素质,使自己走上一个新台阶!
一份耕耘,一份收获。良好的成绩将为我今后工作带来更大的动力。不过也应该清醒地认识到工作中存在的不足之处。教学工作苦乐相伴,我将一如既往地勤勉,务实地工作,我
将本着“勤学、善思、实干”的准则,一如既往,再接再厉,教者:赵旭军 把工作搞得更好。
第三篇:小学五年级数学教学小结
小学五年级数学学科小结
博里中心小学李建华
一学期来我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。从各方面严格要求自己,结合本班的实际,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。
我担任的是五(2)班的数学,在这个有49个学生,而优生却少得可怜,学困生先,根据我所任教班级的实际情况,优生少得可怜,中差生却比比皆是。面对这样一个班,我没有退路,因此,在教学过程中,首先做到:课前做到认真备课,多方面去搜集相关资料。为提高每节课的教学质量,本人除注重研究教材,把握好基础、重点难点外,还采用多媒体教学。通过培养学生学习数学的兴趣,调动学生学习的积极性、主动性,提高课堂的教学质量,按时完成教学任务。
认真上课,注重学习教育教学教学理论,同时积极参加数学组活动,经常听其他老师的课,从中吸取教学经验,取长补短,提高自己的教学的水平和业务能力。每节课都以最佳的精神状态站在讲台,以和蔼、轻松、认真的形象去面对学生。严格按照小学数学教学大纲进行教学,让学生掌握好学科知识。还注意渗透德育教育,结合现实生活中的实际,多方面、多角度去培养学生良好的品德和高尚的人格。
关心学生,尤其是学困生,教学时我以平常的心态对待每一个学生,学困生生也是孩子,他们应享有同其它学生同样的平等和民主,也应享受到优秀学生在老师那儿得到的爱,我作为一个教育者,在对待学困生时应该具有自我调控的能力。厚爱学困生,我真正做到以情动人:首先做到“真诚”二字,即我在学生面前不敢有丝毫虚伪与欺哄,做到言出必行;其次做到“接受”,即能感受差生在学习过程中的各种心理表现和看法,如对学习的畏惧、犹豫、满足、冷漠,错误的想法和指责等,信任中差生,鼓励他们自由讨论。最后做到“理解”二字,即通过学生的眼睛看事物。由于我能善意理解他们,高兴地接受他们,因此促进了学困生不同程度的进步和发展。
教育是爱心事业,为培养高素质的下一代,我时刻从关注学生身心健康,根据学生的个性特点去点拔引导,对于个别差生,利用课间多次辅导,多次交谈,鼓励其树立正确的学习态度,积极面对人生,而对优生,教育其戒骄戒躁努力向上,再接再厉,再创佳绩。通过对现实生活中的典范,让学生树立正确的人生观,自觉地从德、智、体、美、劳全方面去发展,树立崇高远大的理想,为振兴中华而努力学习。
第四篇:五年级数学上册概念总结
1、在除法中商的一些变化规律。
①、给被除数扩大或缩小M(M≠0)倍,除数不变,那么商就随之扩大或缩小M倍。
②、如果给除数扩大M(M≠0)倍,被除数不变,那么商就随之缩小M倍。
③、如果给除数缩小M(M≠0)倍,被除数不变,那么商就随之扩大M倍。
2、小数的基本性质。
在小数的末尾添上0或去掉0,小数的大小不变。
3、除数是整数的小数除法的计算法则。
①、先按照整数的计算法则去除。②、除到的商的小数点一定要和被除数的小数点对齐。
4、商不变的性质
给被除数和除数同时扩大或缩小相同的倍数(0除外),商保持不变。
5、除数是小数的小数除法的计算法则。
①、先把除数变成整数 ②、运用商不变的性质对被除数进行变化
③、然后按照除数是整数的小数除法的计算法则去除。
6、关于解答小数除法中除数大于或小于1时,商和被除数的大小规律问题。(被除数≠0)
①、当除数大于1时,除到的商小于被除数。
②、当除数小于1时,除到的商大于被除数。(除大商就小;除小商就大)
7、关于解答小学范围内带余除法中求余数的问题。
8、小学范围内求取近似值的三种方法 ①、四舍五入法
在取近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉.如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进“1”,这种取近似数的方法叫做四舍五入法 ②、进一法
进一法是去掉多余部分的数字后,在保留部分的最后一个数字上加1。这样求取近似值的方法叫做进一法。③、去尾法
去尾法是去掉多余部分的数字,而保留部分不变。这样求取近似值的方法叫做去尾法。
9、循环小数
一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,把这样的小数就叫循环小数。在循环小数里,我们把依次不断的重复出现的数字就叫做这个循环小数的循环节。循环节从小数部分第一位开始的循环小数叫做纯循环小数;循环节不是从小数部分第一位开始的循环小数叫做混循环小数。
10、有限小数和无限小数
小数部分位数有限的小数叫做有限小数;小数部分位数无限的小数叫做无限小数。
11、轴对称图形
在平面内,如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做这个图形的对称轴。
12、作已知平面图形的轴对称图形的方法。(找轴标点画点连线)简称八字用法
①、找出对称轴
②、在已知平面图形上标上点(可以记作A、B点……)
③、画出关于对称轴对称的A、B点…… ④、连接A、B点……
13、一般判断轴对称图形的方法
①、直观观察法,凭自己的生活经验判断出那些是轴对称图形;
②、对折的方法,看对折后的两部分是否完全重合,如果两部分完全重合,这个图形就是
轴对称图形。
14、整数与自然数的概念。
余数=被除数-除数×商 0、1、、3、4……叫自然数。-
1、-2、0、1、2……叫整数。
所有的自然数都是整数,而所有的整数不一定是自然数。
15、整除
自然数A除以自然数B,(B≠0)得到的商是自然数而无余数,我们便说自然数A能被自然数B整除,或自然数B能整除自然数A。
16、倍数与因数
如果数A能被数B整除,那么我们便说A是B的倍数,B是A的因数,倍数和因数是相互依存的。一定要记住我们只在自然数(0除外)范围内研究倍数与因数。
17、⑴.2的倍数的特点,个位上是0.2 4.6.8的数都是2的倍数。是2的倍数的数叫偶数 不是2的倍数的数叫奇数。
⑵.5的倍数的特点,个位上是0或5的数都是5的倍数。
⑶.2和5共同的倍数的特点,个位上是0的数一定是2或5的倍数。
⑷.3的倍数的特点,如果把一个数的各个数位上的数字加起来的和能被3整除,那么这个数就是3的倍数。
⑸.9的倍数的特点.如果把一个数的各个数位上的数字加起来的和能被9整除,那么这个数一定是9的倍数。
18、求一个数倍数的方法。
⑴.先用这个数分别乘以自然数1.2.3.4.5……
(2)所得的积便是这个数的倍数。
19、求一个数因数的方法。
⑵.把这个数写成两个自然数相乘的形式,一直写到没有为止。⑶.那么这两个自然数便是这个数的因数。
20、一个数最小的因数是1,最大因数是它本身,一个数因数的个数是有限的。一个数最小的倍数是它本身,一个数没有最大的倍数,一个数倍数的个数是无限的。一定要记住一个数最大的因数和最小的倍数相等。
21、质数和合数。
只有1和它本身两个因数的数叫质数,一个数除了1和它本身两个因数外,还有别的因数的数叫合数。1既不是质数也不是合数。
22、最小的自然数是0、最小的偶数是
2、最小的奇数是
1、最小的质数是
2、最小的合数是4。23、100以内质数表
97
24、自然数的两种分类方式。
⑴自然数按照是不是2的倍数可以分为【偶数】和【奇数】。⑵自然数按照因数的个数可以分为【质数】 【合数】 【1】。
25、分解质因数。
把一个合数写成几个质数相乘的形式就叫分解质因数,其中每个质数叫做这个合数的质因数。
26、分解质因数的方法。
1、先写上短除符号,∟。
2、从最小的质数开始试除.3、一直除到最后的商是质数为止。
4、然后把所有的除数和最后的商相乘。
27、单位化聚的方法及进率(大化小×,小化大÷)
1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米= 100平方厘米 1平方厘米=100平方毫米 1平方米=10000平方厘米 1时= 60分 1分=60秒 1时 =3600秒 1天=24时 1吨=1000千克 1千克=1000克 1吨=1000000克
28、平面图形的周长和面积公式。
⑴.长方形的周长=(长+宽)×2=长×2+宽×2=长+长+宽+宽
面积=长×宽 长=面积÷宽 宽=面积÷长
⑵.正方形的周长= 边长×4 边长=周长÷4 正方形的面积=边长×边长
⑶.平行四边形的面积=底×高 底=面积÷高 高=面积÷底
⑷.三角形的面积=底×高÷2 底=面积×2÷高 高=面积×2÷底
⑸.梯形的面积=(上底+下底)×高÷2 上底=面积×2÷高-下底
下底=面积×2÷高-上底 高=面积×2÷(上底+下底)
上下底之和=面积×2÷高
29、计算钢管根数的公式.总根数=(顶层根数+底层根数)×层数 ÷2 层数=底层根数+1-顶层根数 30、分数和分数单位.把单位1平均分成若干份,表示其中一份或几份的数就叫分数。把单位1平均分成若干份,表示其中一份的数就叫分数单位。
31、真分数和假分数
分子小于分母的分数,就叫真分数。真分数永远小于1。
分子大于或等于分母的分数就叫假分数。假分数大于或等于1.真分数小于假分数。假分数永远大于真分数。
由整数和真分数合成的分数叫带分数。带分数永远大于1.32、把整数化成指定分母的分数的方法。
①.分母不变.②.用整数乘以分母的结果作为新分子。
33、把整数化成指定分子的分数的方法。
①、分子不变.②、用分子除以整数的结果作为新分母。
34、假分数化带分数的方法.①.用分子除以分母.②.所得的商是带分数的整数部分,余数是带分数的分子,分母不变。
35、带分数化假分数的方法。
①.用带分数的整数部分乘以分母加分子的结果作为假分数的分子。②.分母不变。
36、关于解答带分数中借位的问题。
先看整数部分减少几,然后用减少的数乘以分母加上分子的结果作为借位后分数的分子。
37、说意义。(M分之N)
①.表示把N平均分成M份,表示取其中一份的数。
②.表示把单位1平均分成M份,表示其中N份的数。
38、在分数里,分母表示把单位1分成多少份的数,而分子表示取了多少份的数。
39、分数的基本性质.给分数的分子和分母同时乘以或除以一个不为0的数,分数的大小不变。40、公因数和最大公因数.几个数公有的因数,叫这几个数的公因数,其中最大的叫做这几个数的最大公因数。
41、用找因数的方法求几个数的最大公因数.①.求出这几个数各自的因数。
②.找出公有的因数,最后找出最大公因数。
42、用短除法求几个数的最大公因数。
①.先写上短除符号,∟
②.用这几个数的公因数去除。一直除到最后的商只有公因数1为止。③.把所有的除数相乘。
43、分解质因数求最大公因数的方法。
1、先把这几个数进行分解质因数。
2、找出公有的质因数。
3、把所有的公有的质因数相乘;所得的积便是它们的最大公因数。
44、几个数公有的倍数叫做这几个数的公倍数,其中最小的叫做最小公倍数。
45、用找倍数的方法求最小公倍数。
1.先求出这几个数各自的倍数。2.找它们的公倍数。
3.在公倍数里找出最小公倍数。
46、用短除法求最小公倍数的方法。
1.先写上短除符号。
2.用这两个数的公因数去除,一直除到最后的商只有公因数1为止。3.把所有的除数和最后的商相乘。
47、用分解质因数的方法求最小公倍数。
1.先把这几个数进行分解质因数.2.找出公有的和各自独有的质因数
3.把所有的公有的和各自独有的质因数相乘。
48、约分。
把一个分数化成同它原来大小相等,但分子和分母都比较小的分数,就叫约分。
49、约分的方法。
1.求分子和分母的最大公因数。2.用分子和分母同时除以最大公因数。50、通分。
把异分母分数化成同它原来大小相等的同分母分数就叫通分。
51、通分的方法。
1.先求出这几个分数分母的最小公倍数。
2.然后把这几个分数化成以最小公倍数作分母的分数。
52、通分子的方法。
1、先求出这几个分数分子的最小公倍数。
2、然后把这几个分数化成以最小公倍数作分子的分数。
53、最大公因数和最小公倍数的几种特例。
1.如果两个数有整除或倍数和因数关系时,最大公因数是较小的数,最小公倍数是较大的数。2.两个连续的非零自然数,最大公因数是1.最小公倍数是两数之积。3.1和任何非零自然数,最大公因数是1.最小公倍数是两数之积。4.两个不同的质数,最大公因数是1.最小公倍数是两数之积。
54、分数的大小比较。
1.分母相同的分数,分子越大分数值就越大。2.分子相同的分数,分母越大分数值反而越小。
55、用短除法求三个数最小公倍数的方法。
1.先写上短除符号。
2.先用这三个数的公因数去除,一直除到这三个数的公因数只有1为止。
3.然后再用其中任意两个数的公因数去除,一直除到任意两个数的公因数只有1为止。4.最后把所有的除数和最后的商相乘。
56、面积应用题的类型
①平均量×面积=总量 ②总量÷面积=平均量 ③大面积÷小面积=数量
57、解方程的公式。
加数=和-另一个加数 被减数=减数+差 差=被减数-减数 减数=被减数-差 因数=积÷ 因数 被除数= 除数×商 除数=被除数÷商 商=被除数÷除数
58、行程应用题计算公式
路程和=速度和×相遇时间 相遇时间=路程和÷速度和 速度和=路程和 ÷ 相遇时间
59、小数化分数的方法.1.先看这个小数的小数部分有几位小数,就在1后面添上几个0作分母。2.去掉小数点后做分子。3.能约分的一定要约成最简分数。60、分数化小数的方法
1.用分数的分子除以分母(如果是带分数,先把带分数化成假分数)2.所得的商就是所要化的小数。61、同分母分数加减法的方法。
1.分母不变,分子相加减。2.能约分的一定要约分。62、异分母分数加减法的方法。
①.先通分,化成同分母的分数。②.再按照同分母分数加减法的方法计算。63、判断一个分数是否能化成有限小数的方法。
一个最简分数,它的分母只含有质因数2或5,再没有其它的质因数,那么这个分数就一定能化成有限小数。64、互质数
公因数只有1的两个数就叫互质数。互质数说的是两个数之间的关系。65、最简分数。
分子和分母是互质数的两个数叫最简分数。
咸阳市三原县陂西镇大门小学:赵小军
第五篇:浅谈小学数学概念教学
浅谈小学数学概念教学
在数学教学中,概念是学好数学法则、定律、性质、公式等数学知识的基础和关键,是培养学生数学能力的前提,是解答数学实际问题的重要条件.因此,把握数学概念的教学十分重要.一、依据掌握概念的心理过程进行教学
数学概念教学必须适合学生掌握概念的心理过程,这个过程一般有两种形式,即概念的形成和概念的同化.因此,我们在概念教学过程的设计和实施时,应以它为依据.1.概念的形成
概念的形成是指从大量的同类事物的不同例证中发现该类事物的本质属性,这种获得概念的形式叫做概念的形成.概念形成的过程,简单地概括为“具体―抽象”的过程.概念的形成主要依赖于辨别和概括这两种心理活动,而辨别与概括又贯穿于“感知―表象―概括―概念系统”这一发展过程中.所以,我们要按学生的认知规律组织教学,增强辨别不同正、反例证的能力.例如,一位教师为了丰富学生对三角形的感性认识,准备了3厘米长的小棒3根,及4厘米、2厘米、8厘米长的小棒各一根.教师请学生先用8厘米长的小棒去围三角形,学生发现随便配上哪两根小棒都不能围成三角形.“为什么呢?”“这根小棒太长了,另外两根小棒太短了”.“如果把它们换掉,你们能将它们围成三角形吗?”学生互相讨论,结果围成了各种三角形.在实践活动中,学生初步感知三角形的特征后,师生共同抽象出三条线段围成封闭的图形是三角形的两个本质属性,然后概括出三角形的概念:由三条线段围成的图形叫做三角形.再通过变式练习,深化了学生对三角形的认识.2.概念的同化
概念的同化是利用学习者认知结构中原有的有关概念,以定义的方式直接向学习者揭示概念的本质属性,这种使学习者掌握概念的方式叫概念的同化.采用概念同化的方式学习概念,前提是学生已积累了许多初级概念,它不同于概念形成过程中的辨别、抽象、分析和概括,一般适用于高年级教学.利用概念同化的方式掌握概念,它是由概念到概念,比较抽象.所以,我们要采取“加强与表象联系”、“强化新概念的本质属性”等方法,教会学生辨析新旧概念的异同.例如,建立比较小数大小的概念时,可以联系整数大小的比较及学生所熟悉的元、角、分等知识进行教学.教师可先出示654与543.8321与8436,让学生回忆比较整数大小的方法,再出示例题,比较2.35元和2.41元的大小.引导学生思考:2.35元和2.41元的整数部分完全相同,2.35元的十分位是3,表示3角;2.41元的十分位是4,表示4角,所以2.35元0.059米.这两道例题都是借助学生已有的知识,帮助学生建立起比较小数大小的概念.二、使用知识迁移的理论方法进行教学
知识迁移是指先前学习的知识对以后学习的知识所产生的影响和作用.知识迁移的理论有:形式训练理论、共同因素理论和概括化理论.为了加强新旧知识之间的联系,教师要注意知识间异同点的揭示,提高学生对知识的概括水平,实现正迁移,防止负迁移,发挥迁移规律在数学概念教学中的作用.例如,教学“平行四边形的面积公式”时,第一步,复习长方形的面积公式:长 × 宽;第二步,将平行四边形沿一条对角线或沿一顶点作对边的高,将它分成两部分,然后拼成等积的长方形;第三步,根据等积概括出平行四边形面积公式:底 × 高.这条思路和经验,为学习三角形面积公式的迁移作了铺垫.那么,在“三角形面积公式”教学时,教师只要适当提示,学生就会根据已有的知识和经验,将平行四边形转化为两个等面积的三角形,通过与平行四边形面积公式建立联系,自然地推导出三角形面积公式,实现知识、经验的迁移.三、抓住概念的内涵和外延进行教学
学生掌握数学概念大致有三种水平:第一种是形式主义地掌握概念,第二种是概括地掌握概念,第三种是创造性地掌握概念.因此,我们在概念教学中必须抓好概念的内涵和外延这一关键,实现概括地或创造性地掌握概念.1.概念的内涵
概念的内涵是指概念所反映的对象的本质属性.本质属性是指对这一类事物有决定意义的属性.它必须具备两个条件:第一,这类事物本身必须具备这种属性,否则就不是这类事物;第二,能把这类事物与其他事物区别开来.譬如,长方体有许多属性,但它的本质属性只有两点:第一,它是个六面体;第二,它六个面都是长方形(有时有两个相对面是正方形).也就是说,长方体必须具备这两个属性,否则它就不是长方体.显然,这两个属性能把长方体与正方体等其他多边形体区分开来.2.概念的外延
概念的外延是指这一概念所反映的对象的总和.譬如,分数这个概念的外延是真分数、假分数(带分数);平行四边形这个概念的外延是一般平行四边形、长方形、菱形、正方形等对象的总和.概念的内涵和外延,两者之间的关系是相互制约、相互依存的,但它们又是统一的、不可分割的两个方面.因此,我们必须明确掌握概念的内涵和外延这两个方面.例如,角、直角、锐角、钝角、平角、周角等概念教学.角:其内涵是从一点引出两条射线所组成的图形,它的外延有直角、锐角、钝角、平角、周角.直角:内涵指角的两条边成90°的角,它的外延就是90°的角.锐角:内涵指角的两条边所成的角小于90°,它的外延是指适合0°