第一篇:有效借助几何图形直观地进行数学教学的策略研究
有效借助几何图形直观地进行数学教学的策略研究
摘 要:几何图形直观教学作为高中数学新课标的核心内容之一,可见其在数学课程学习中的重要地位和意义。无论是针对“图形与几何”的知识进行教学还是其他的数学知识进行教学,几何图形直观教学都应得到教师足够的重视。
关键词:几何图形;直观教学;教学效果
几何图形直观教学就是利用一些简单的图形将需要描述的问题以图形的形式表现出来,从而让问题变得清晰明了。几何图形直观教学作为高中数学新课标的核心内容之一,可见其在数学课程学习中的重要地位和意义。无论是针对“图形与几何”的知识进行教学还是其他的数学知识进行教学,几何图形直观教学都应得到教师足够的重视。教师在平时的教学活动中也应对几何直观教学有充分的认识,并在课堂中进行适当的运用,从而在教学中为学生创造更多的机会以培养学生几何直观分析能力。
一、对几何直观教学的认识
首先,对于何为“直观”,目前有很多种说法,但都有一个共同点,那就是“直观”就是在人们接触事物时,通过观察、想象、经验等手段对事物及其关系所产生的直接的感知与认识。而几何直观则是通过见到的或想到的几何图形的形象关系,从而产生的对事物的性质或数量关系的直接感知与认识。几何直观,简单地来说就是一种运用图形认识事物的能力。
几何直观是具体的,而不是大家所认为虚无的,它能与数学内容之间有着紧密的联系。我们很多重要的数学内容、概念等内容可以从两个角度进行理解,例如,数、度量、函数、解析几何、向量等内容,其都具有数学的“双重性”,一方面表现出“数的特征”,另一方面表现出“形的特征”,为了更好地去理解、掌握这些数学知识,就要求教师必须从两个角度认识它们。同时也只有这样,才能让这些内容和概念变得更加形象、直观,从而方便我们去运用它们来思考问题,形成几何直观能力,这也就是我们在课堂上经常说的“数形结合”。
二、培养几何直观能力的教学策略
1.几何直观在高中代数教学中的应用
“函数”是初中数学中最基本、最重要的概念,它的概念和思维方法渗透进高中数学的各个部分;同时,函数是用运动变化的观点来对现实世界数量关系的一种刻画,这又从本质上决定了它是对学生进行素质教育的重要材料。函数的两种表达方式――解析式和图像,二者之间常常需要对照。为了解决数形结合的相关问题,在进行有关函数的教学中,教师通常需要用到几何图形来直观地反映问题,让抽象复杂的函数问题变得更加直观易懂,从而大大提高课堂效率,起到事半功倍的效果。
2.几何图形直观地在立体几何教学中的应用
在新课程有限的课时前提下,学生通常会感觉面对的几何图形很陌生,甚至总感觉没学过。实际上,图形是变幻多样的,但很多图形都源于同一个典型几何体。日常教学中,教师要能够及时地针对一些具体典型图形进行必要的引导观察和发散式探究,这对提高学生的化归能力是大有裨益的。下面我们以一个例题为例。
例题:求以下几何体中点A到平面PBC的距离。
这是笔者在讲解关于用体积法来求空间距离时所选用的一个例题,其设计的主要目的就是为了加深学生对正方体的位置关系特征的认识,虽然很多学生知道体积法,但在真正碰到这一类需要化归才能真正熟悉的陌生的图形时,常常会出现“老虎吃天,无处下口”的感觉。这道例题要求学生能主动寻求转化,因此对于培养他们在立体几何中的化归特殊图形的意识是很有意义的。在课后,笔者要求学生针对近几年高考解答题中出现的立体几何图形进行化归,学生发现,原来正方体的用处有如此之广,这也大大增强了学生自主探究空间图形的信心和能力。
在数学教学过程中通过画图来引导学生将数学题目中所出现的数量关系与直观图形的意义对应起来,从而找到正确的解题思路和解题方法,让学生充分认识并体会示意图对解决问题的作用,学生在学习的过程中也能体会几何直观的价值。经常性地运用图形来描述文字信息,利用直观图形来表现抽象的数学概念,这样更有助于学生积累丰富的几何直观经验。
参考文献:
邹敏.初探“同课异构”在高等数学课程中的巧妙应用:以文山学院为例[J].文山学院学报,2012(6).(作者单位 江西省南昌市师范大学瑶湖校区数学
与信息科学学院10级数学四班)
编辑 薛直艳
第二篇:借助几何直观 凸显有效教学
借助几何直观 凸显有效教学
几何直观是《义务教育数学课程标准(2011版)》提出的数学课程十大核心概念之一,主要是指“利用图形描述和分析数学问题。”“借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。”从过程而言,它与文字、数字、符号、表格等相区别,主要体现在“利用图形”;从结果来说,“不同的学生具有不同的几何直观水平”,是一种静态能力与数学素养的反应。
小学生的思维水平正处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。几何直观凭借图形的直观性特点将抽象的数学语言与直观的图形语言有机地结合起来,抽象思维同形象思维结合起来,充分展现问题的本质,能够帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点。培养和发展学生的几何直观能力,成为小学数学教育中的一个备受关注的问题,以下是我在教育教学过程中关于几何直观的一些思考与探究。
一、几何直观有利于把抽象的数学概念直观化,帮助学生理解概念 学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知识、建构概念、解决问题,就相当于在原有的知识基础上添砖加瓦,新知识的学习就变得更简单。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果。
我们经常借助实物、点子图、计数器、未画完整的直尺、数轴让学生直观感知,例如在一年级上册中,学生刚开始学习数学知识时,教材首先就是通过数与物(形)的对应关系,初步建立起数的基本概念,认识数,学习数的加减法;通过具体的物(形)帮助学生建立起初步的比较长短、多少、高矮等较为抽象的数学概念;通过图形的认识与组拼,在培养学生初步的空间观念的同时,也初步培养学生的数形结合的思想,帮助学生把数与形联系起来,数形有机结合。在以后的学习中,随着学生年龄的增长,思维能力的不断提高,数与形的结合就更加广泛与深入。从学生的思维活动过程来看,在这个片段中,学生经历了由具体到抽象的思维过程,经历了由一般到特殊的思维过程,把抽象的数学概念直观地呈现在学生面前,帮助学生理解和掌握数的基本概念。
二、几何直观使计算中的算式形象化,帮助学生理解算理 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。” 根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。
在低年级时,有些较复杂的实际问题用“几何直观”的方法来帮助分析题意,学生才容易理解。比如有这样一个问题,“妈妈买来一些桃,上午吃了一半,下午又吃了剩下的一半,盘里还剩下3个,妈妈原来买了多少个桃?”。一些学生对逆向思考的数量关系难以理解,教学时教师可以用正方形画图来表示问题意思,帮助学生理解题意。(如图)
有了这个直观图形的支撑,学生很容易推想原来桃子的个数,3×2=6个,6×2=12个。
在低年级的教学中,教师要有意识引导学生学会看懂图示语言,体会到示意图的既简洁又形象,容易找到解决问题的思路的优点,让学生对图示语言产生好感和画图的愿望,培养“几何直观”的意识。
再如三年级教学“平均数”时,可以利用条形统计图,直观理解移多补少的方法,理解平均数的意义。又如“两位数除以一位数”的笔算除法算理,就是让学生通过摆小棒,理解线平均分整捆的小棒,所以要从被除数的最高位除起。这样学生就能明白为什么要这样计算,而不是被动的接受,死记硬背。
在利用直观图解决数学问题时,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性。几何直观的培养应伴随推理能力的发展,贯穿在整个小学数学学习过程中。
三、应用几何直观,提高学生的能力
几何直观的思想是重要的数学思想,其实质是使数量关系和空间形象巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把这种思想更好地反映出来。通过图形的直观性质来阐明数与数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓学生的解题思路,为研究和探求数学问题开辟了一条重要的途径。
简单的排列和组合题,也可借助直观的图形,在很好的解决数学问题的同时也培养了学生的推理能力。此外在植树问题中,借助线段图向学生直观展示非封闭路线植树相关概念和类型(间隔、间隔数、两端要栽、只载一端、和两端不载)
倒推问题中借助“几何直观”来分析也很有效。五年级学习用倒推法解决的实际问题特点很明显,学生往往知道要用倒推的策略,但较复杂的倒推问题在分析时,学生却不容易理解其中的数量关系,容易导致思路的混淆。所以教会学生画倒推示意图来分析题意尤为重要。比如,“小明原来有一些邮票,今天有收集了24张,送给小军30张后,还剩52张。小明原来有多少张邮票?”
画出这种方框加箭头的图更加容易理解,思路一目了然。我们可以看出几何直观通过数形结合的思想在小学数学的很多知识领域的可以帮助学生启迪思路,理解数学。
几何直观,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,充分展现问题的本质,帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点发展学生的思维。实践证明,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化,有助于提升学生解决问题的能力,同时还有助于培养学生的符号意识、模型思想,提升学生的数学素养。
总之,教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透几何直观思想的教学,使学生逐步形成数形结合思想,并使之成为学习数学、解决数学问题的工具,这是我们小学数学教学努力追求的目标。
第三篇:小学数学“几何图形”教学策略
小学数学“几何图形”教学策略
四川省资阳市雁江区中和镇中心小学 苏桂英
2011版《数学新课程标准》中指出:“图形与几何”应该帮助学生建立空间观念,注重培养学生的几何直观与推理能力。空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;能够想象出空间物体的方位和相互之间的位置关系;依据语言描述画出图形。那么如何通过有效的教学手段和学生的活动来实现这些目标呢?以2011版《新课标》为标准,结合自身的教学实践,我从以下几个方面来谈谈自己的看法:
一、情境激趣,引发思考
由于小学生具有好动的天性,好奇是小学生获取知识的内在动力。所以要使小学生积极地投入思考,就要设法引导他们对所学的数学知识产生兴趣。兴趣是打开成功之门的钥匙。而情境的创设,对“图形与几何”领域的学习,具有十分重要的作用。
大部分的知识可以联系生活的实际,让学生感受到数学在生活中的作用。在教学中要善于创设情境,设置悬念,诱发学生学习欲望,促进大脑思考,引发问题。如在教学“平行四边形的面积”时,导入的时候,利用多媒体课件播放运载“嫦娥一号”探月卫星的火箭成功发射的录像,然后教师提问:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢?再利用课件出示拼成的模型,让学生观察火箭模型是由哪些图形拼成的。最后教师引导提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求? 比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?这样的一个情境导入,符合学生的年龄特点,感受到了学习新知识的必要性,自然就兴趣盎然地投入到探究实践活动之中。
二、引导学生通过观察比较,发现几何特征
观察是学生获得空间和图形知识的主要途径之一,教学中要组织多种多样的观察活动,例如辨认图形的观察,对演示实验或操作的观察,这样有关物体的空间观念就容易得出。
空间观念的形成,光靠观察其实还是不够的,老师还必须引导学生进行动手操作,让他们在体验中感受,相互比较。让学生看一看,摸一摸,折一折,量一量,画一画等,动脑思维,掌握了图形的特征。如:在认识物体时,摸一摸物体有多少个面,多少条棱,多少个顶点,每个面都是什么形状,折一折,看一看长方体和正方体的表面是什么样的。量一量每条边有多长。在实物中摸到了,认识了,就形成了一个清晰的感知,形成了空间观念。空间观念的形成,还有赖于适时地比较和分类的数学方法和策略。利用这些方法,让学生更加理解图形的基本概念和图形的特征。如:在教学“四边形”时,对四边形进行分类的环节,组织学生以小组为单位先交流,依据四边形的特点进行分类。之后在全班交流过程中,学生对不同四边形的特点有了进一步的了解,也更清楚四边形之间的区别与联系,并用集合图进行有效的整理。在头脑中有了比较清晰的轮廓,在比较中有助于发现各几何图形的特征。
三、小组合作,自主探究
小组合作学习是数学课堂中一种很有效的教学方法,有助于学生的智慧和个性的发挥。使学生在宽松、和谐、合作、民主的课堂氛围中主动学习,相互交流,合作竞争。既培养了学生主动学习的探究意识,又使学生得到了丰富的情感体验。
在“图形与几何”教学中,采用小组合作学习为主的教学组织形式,不仅使学生之间相互交流,完善自我认知,而且可以学会参与,学会倾听,学会尊重他人。例如:在《圆的周长》的教学中,可以从生活中拿出三个圆形物体,通过发挥小组的集体智慧,设法通过一根绳子绕圆形物体一周,量出其周长,然后再量出它的直径,教师引导同学们用它们的周长除以它们的直径,通过三个不同大小的圆的周长与直径的比值来比较,都发现了一个共同点,它们的比值都是比3多一点。最后教师引出圆周率的概念,任何圆的周长与直径的比值都是一个固定的数,就是圆周率,它是一个无限不循环的小数3.1415926535„„。
四、感悟数学思想方法
数学思想方法蕴涵在数学知识形成、发展和应用的过程中,是基础知识的灵魂,是数学知识和方法在更高层次的抽象与概括,如抽象、分类、归纳、演绎、模型等。在空间与图形领域,要充分利用知识本身的特点,深入挖掘蕴涵在数学形成过程中的数学思想方法,在操作、实践中感悟数学思想。
例如,在教学《圆的面积》时,探索圆的面积公式,将圆转化成学过的图形——长方形,探索出长方形的长是圆长πr,宽就是圆的半径。通长长方形的面积=长×宽,推导出圆的面积公式为πr²,这就是转化思想。
圆是第一、二阶段学习的平面图形中唯一的一个曲线图形,是学生第一次了解π这个无理数,是学生第一次正式接触并运用极限的数学思想来解决曲线的长度和圆形的面积等问题,因此对圆的周长以及面积的探索体会数学思想。具体说来,在测量圆周长是,化曲为直,这是转化思想;探究周长与直径的关系,这是函数思想;在以往的教学中,我们很多老师以为学生学习习近平面图形无非就是让学生记住公式,会进行计算,在练习题的设计上也体现出这一点。因此,教学的时候,对于公式的探究常常是蜻蜓点水,一带而过。有的老师即使在课堂设计时有考虑让学生探究,一旦上起课来,苦于没找到更好的与学生交流的办法,也就半 途而废了。这种把主要精力放在套用公式进行计算上,以至于将这部分内容简单地处理为计算问题,是不利于学生灵活运用多种策略和方法解决实际问题,不利于学生感悟数学思想方法的。
小学数学中图形与几何的教学内容十分丰富,教学策略也灵活多变。只要我们从学生的实际出发,敢于实践,勇于创新,随着课程改革的不断推进,关于图形与几何的教学也将日臻完善。
第四篇:《小学数学有效教学策略的研究》
《小学数学有效教学策略的研究》
实验方案
一.课题提出
《国家数学课程标准》明确阐述了数学教育应使学生“获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能”,这标志着数学教育正发生着“从知识本位到学生发展本位,从封闭性到开放性,从强求统一到注重差异”的重大变革。
如何在《国家数学课程标准》思想的指导下,探求适宜小学生终身发展的数学教育方面的有效教学策略,使学生在学习数学的过程中,“紧密联系生活实际,从生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。”,最大效能地实现《国家数学课程标准》提出的多元的教育目标,是当前我所从事的小学数学教学工作必须面临的现实问题。
本课题试图通过“小学数学有效教学策略”的研究与
第五篇:浅谈小学数学几何图形概念的教学策略
小学数学几何图形概念的教学策略
小学数学的几何图形概念教学是小学概念教学中的一块重要内容,也是学生学习中的一个难点之一。笔者也一直关注这部分内容的教学,时刻研究、探索行之有效的教学策略,通过多年的执教经历渐渐摸索出一些方法:发挥直观经验的作用,帮助学生建构概念;抓住几何图形特点,促进学生获得概念;构建概念的网络体系,实现概念的结构化和系统化,取得了较好的教学效果。
空间图形的教学可以帮助学生更好地认识、理解和把握人类赖以生存的空间,帮助学生获得必需的知识和必要的技能,发展学生的空间观念,培养学生的创新思维和实践能力,促进学生全面、持续、和谐地发展。在空间图形的教学中我们要发现生活素材、创设生活情境、采撷生活实例、激活生活经验,为学生提供丰富的现实情境,增强学生空间与图形的经验;组织探究活动,提供“做”的空间,指导“做”的方法,使学生亲历“做数学”的过程;倡导“自主探索、合作交流”的学习方式,使学生更好的理解人类生存的空间,为学生持续发展打好坚实的基础。
传统意义上的几何教学重视了“静”而轻视了“动”,课堂上单一的把几何知识理性的、简单的传递给学生。而今课堂上各式“活动”、“操作”、“动画”„„,一味强调“动”的作用却又忽略了“静”的效能。兵法有云:“一张一弛,为将之道”。当静静的观察、静静的倾听、静静的思考与有效的“动”相结合时,方为几何教学中的上上策。“动”“静”之间方现“几何”教学的本色。
几何直观作为一种重要的基本能力,不仅用于“图形与几何”领域,更可用于描述和分析“非图形与几何”领域的问题,因此,在日常教学中,教师要培养学生的几何直观意识与能力,最终提升几何直观素养,积累几何直观的思考经验.然而,教师如何培养学生主动用几何直观的方法去分析问题,主动地“以形助数”,这才是教学中真正的挑战.笔者试在这方面作一探究,以期抛砖引玉.一、表征问题,体验简洁性 在教学过程中,教师要让学生感受到图形可以帮助他们刻画和描述问题,使问题变得直观、简单.同时还要关注学生表征问题的过程,以及表征之后的反思与感悟.没有反思和感悟,学生可能获得了几何的方法,却未必获得“几何直观”的能力.“空间与图形”内容主要研究物体及几何图形的形状、大小、位置和变换,将该部分内容学深、学透,对发展学生空间观念、培养学生创新能力有着非常重要的作用.这部分内容的学习,也有助于学生全面、持续地发展,对学生未来的学习有着不可忽视的影响力和支撑力.笔者在实施空间与图形教学的过程中,试着运用以下几种方法贯穿于空间与图形教学的始终,有效提高了学生分析问题和解决问题的能力,取得了较好的教学效果.1.做:即动手操作,重视动手操作,是发展学生思维、培养学生数学能力最有效途径之一.现代教育心理学研究表明,小学生的思维正处在从具体形象思维向抽象逻辑思维发展阶段,而新编小学数学教材的特点之一,就是重视直观教学,增加了学生的实践活动和动手操作内容.2.在教学中“做”:在教学形体的概念与特点时,笔者让学生试着去做教学形体的模型,讲到长方形就做长方形,讲到正方体就做正方体,在做中摸索和研究形体,从而在实践中获得形体的有关知识.3.在练习中“做”:解决实际问题时,“做”的方法更是解决问题的良药,如在教学长方体时,常常遇到诸如“哪些图形沿虚线折叠后能围成长方形”的问题,快速而简易做模拟图进行验证,是学生获取正确答案的最有效方法。