高斯错误修改总结

时间:2019-05-13 02:16:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高斯错误修改总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高斯错误修改总结》。

第一篇:高斯错误修改总结

A list of error messages and possible solutionsand possible solutions不收敛错误 Errors in solvent calculations

ERROR MESSAGES IN OUTPUT FILES-Syntax and similar errors:End of file in ZSymb.-

Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l101.exeSolution: The blank line after the coordinate section in the.inp file is missing.(输入文件空行丢失)

Unrecognized layer “X”.-(不识别层X)

Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l101.exeSolution: Error due to syntax error(s)in coordinate section(check carefully).If error is “^M”, it is caused by DOS end-of-line characters(e.g.if coordinates were written under Windows).Remove ^M from line ends using e.g.emacs.To process.inp files from command line, use sed-i 's/^M//' File.inp(Important: command does not work if ^M is written as charactersRdChkP: Unable to locate IRWF=0 Number= 522.-

Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l401.exe or-FileIO operation on non-existent file.-[...] Error termination in NtrErr:-

NtrErr Called from FileIO.Solution: Operation on.chk file was specified(e.g.geom=check, opt=restart), but.chk was not found.Check that:-%chk= was specifed in.inp-.chk has the same name as.inp-.chk is in the same directory as.inpThe combination of multiplicity N and M electrons is impossible.-(多重性)Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l301.exeSolution: Either the charge or the multiplicity of the molecule was not specified correctly in.inp.-(电荷和多重性指定错误)Memory and similar errors: Out-of-memory error in routine RdGeom-1(IEnd= 1200001 MxCore= 2500)-Use %mem=N MW to provide the minimum amount of memory required to complete this step-Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l101.exe or-Not enough memory to run CalDSu, short by 1000000 words.-

Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l401.exe or-

[...] allocation failure:-(表示配分失败)

Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l1502.exeSolution: Specify more memory in.inp(%mem=Nmb).Possibly, also increase pvmem value in run script.Especially solvent calculations can exhibit allocation failures and explicit amounts of memory should be specified.-galloc: could not allocate memory.-(无法分配内存)

Solution: The %mem value in.inp is higher than pvmem value in run script.Increase pvmem or decrease %mem.Convergence problems: Density matrix is not changing but DIIS error= 1.32D-06 CofLast= 1.18D-02.-(收敛问题)The SCF is confused.Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/linda-exe/l502.exelSolution: Problem with DIIS.Turn it off completely, e.g.using SCF=qc, or partly by using SCF=(maxconventionalcycles=N,xqc), where N is the number of steps DIIS should be used(see SCF keyword).[...] Convergence failure--run terminated.Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/linda-exe/l502.exeSolution: One SCF cycle has a default of maximum 128 steps, and this was exceeded without convergence achieved.Possible solution: In the route section of input file, specify SCF=(MaxCycle=N), where N is the number of steps per SCF cycles.Alternatively, turn of DIIS(e.g.by SCF=qc)(see SCF keyword).-

Optimization stopped.--Number of steps exceeded, NStep= N-[..] Error termination request processed by link 9999.-

Error termination via Lnk1e in /global/apps/gaussian/g03.e01/g03/l9999.exe Solution: Maximum number of optimization steps is twice the number of variables to be optimized.Try increasing the value by specifying OPT=(MaxCycle=N)in.inp file, where N is the number of optimization steps(see OPT keyword).Alternatively, try to start optimization from different geometry.-

Hydrogen X has 2 bounds.Keep it explicit at all point on the-

potential energy surface to get meaningful results.Solution: In UAO cavity model, spheres are placed on groups of atoms, with hydrogens assigned to the heavy atom, they are bound to.If assignment fails(e.g.because heavy atom-H bond is elongated), cavity building fails.Possible solutions: a)use cavity model that also assigns spheres to hydrogens(e.g.RADII=UFF)or b)Assign a sphere explicity on problematic H atom(use SPHEREONH=N, see SCRF keyword)-

cp: cannot stat $JOB.inp: No such file or directory Solution: The.inp file is not in the directory from where the job was submitted(or its name was misspelled during submission.If error reads: cp: cannot stat $JOB.inp.inp, the.inp file was submitted with extension).-ntsnet: unable to schedule the minimum N workers Solution: The value of %N proc Linda=N in the.inp file is higher than the number of nodes asked for during submission.Make sure these values match.Connection refused [...] died without ever signing in-

Sign in timed out after 0 worker connections.Did not reach minimum(N), shutting downSolution: Error appears if you run parallel calculations but did not add this file to your $HOME directory:.tsnet.config containing only the line: Tsnet.Node.lindarsharg: ssh(see also guidelines for submission).Suggested solutions 1/ Change the SCF converger to either SD, Quadratic or Fermi 2/-lower the symmetry of optimize with and optimize with the “nosymm” keyword I solved the problem using a variation on the first suggestion.Normally the scf took less than 80 cycles to converge.So i used scf=(Maxconventionalcycles=100,xqc)which resulted in a good compromise between using scf=qc and optimisation speed.In the case of the DIIS error the scf always took more than 100 cycles before the error, so by adding scf=(Maxconventionalcycles=100,xqc)the scf switched to qc after 100 cycles in the standard DIIS mode.l9999错误是优化圈数不够,把out文件保存成gjf,修改后接着优化。这样比较省事。或者在原来输入文件opt中加入maxcyc=500,把优化圈数加大到500 L1002错误贋势基组不对,换基组,或者用guess=Indo L9999 Optimization stopped.--Wrong number of Negative eigenvalues: Desired= 1 Actual= 3--Flag reset to prevent archiving.这是你原来贴的出错信息。

显然,gaussian检测了虚频个数,发现是3个而非1个——过渡态有且只有一个虚频,从而终止,显示出错。

加上noeigentest的意思是在优化过程中不必每步都去检测虚频个数,而是按照最可能的方式继续寻找下去,到跑完为止,所以如果你对过渡态的初始构型不是非常有把握的情况下,加上noeigen是比较不错的选择。

但你现在继续出状况,却没有贴新的出错信息,我没法猜这次是什么问题。。同时你那个命令行# b3lyp/6-31++g(d,p)opt=(ts,calcfc,noeigen)freq test 改成#p b3lyp/6-31++g(d,p)opt=(ts,calcfc,noeigen)freq 也就是任何时候#后面都要加一个p,结尾那个test不要写,被人笑话的。

Inaccurate quadrature in CalDSu 错误解决方法

已有 3175 次阅读 2012-7-4 16:27 |个人分类:Gaussian|系统分类:科研笔记

Inaccurate quadrature in CalDSu 错误解决方法

g09/g03 输出文件最后几行大致如下: Spurious integrated density or basis function: NE= 149 NElCor= 0 El error=2.83D-03 rel=1.89D-05 Tolerance=1.00D-03 Shell 67 absolute error=2.30D-02 Tolerance=1.20D-02 Shell 67 signed error=2.30D-02 Tolerance=1.00D-01 Inaccurate quadrature in CalDSu.Error termination via Lnk1e in /home/soft/g03/l502.exe at Mon Feb 23 09:42:55 2009.Job cpu time: 0 days 0 hours 0 minutes 3.1 seconds.File lengths(MBytes): RWF= 13 Int= 0 D2E= 0 Chk= 13 Scr= 1 解决方法

1.对某些分子,可以设置guess=indo。(Guess=indo的意思是:使用Gaussian98的默认初始猜测:对第一行元素是INDO,第二行元素是CNDO,第三行及以后的元素是Huckel。如果不写Guess=indo,则使用Gaussian03的默认初始猜测:全部使用Huckel初始猜测。Guess=indo的用处:使比较差的初始构型,能比较顺利地通过初始猜测。)2.对于对称分子,设置scf(dsymm)强制使用密度对称。3.对于对称分子,设置全局nosymm,降低对称性。4.使用scf(novaracc)也可能会产生或消除这个错误。

5.加上int(untrafine),不过这个改变了积分网格,这个计算出的能量不能与同类计算直接比较。

6.最佳解决方法:加关键词int(NoXCTest)网格问题(G09默认的精度检测方法不适用,加上Int=NoXCTest), Skip tests of numerical accuracy of XC quadrature(g09手册)。需要检测结果波函数是否正确。可同时加guess=indo。

Error in internal coordinate system.可在opt中加入cartesian 例如:

%chk=TS3-D-itm3-eoc-4.chk %mem=45000MB %NProcShared=8 #B3LYP/6-31G** iop(5/13=1)iop(2/11=1)#scf=(maxcycle=200)#opt=(cartesian,TS,calcfc,noeigen,maxcycle=200)freq #geom=allcheck

Error in internal coordinates

created: 2009-07-31 14:38:48

This topic covers how to solve the “Error in internal coordinates” problem.Some times Gaussian quits at the Berny optimization stage with the “Error in internal coordinates” message.This happens as Berny optimization by default uses redundant internal coordinates.Cartesian coords are easy to define and use but can be strongly coupled to one another.Interal coords describe molecular properties(bond lengths, angle...)naturally and thus involve less coupling.There are a few types of redundant internal coords which can accelerate opt process.But when a molecule has flat geometry, it could be hard to calculate the reverse matrix of redundant internal coords.Therefore, it is better to switch back to Cartesian(opt=(...,Cartesian,...))or use “nosymm”.GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization.NTrRot=-1 NTRed= 29 NAtoms= 10 NSkip= 5 IsLin=F Error in internal coordinate system.Error termination via Lnk1e in /home/cast/program/g09/l103.exe at Tue Nov 23 13:44:47 2010.本人计算时出现如上错误,哪位达人知道是怎么回事?我觉得我的结构应该没问题 加上关键词OPT=Cartesian!

第二篇:高斯_数学论文

高斯(C.F.Gauss,1777.4.30~1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。

在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。

7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。

在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+„+100899。

当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。

1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”

慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。

为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、„„,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。

1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。

高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

第三篇:数学史讲稿——高斯

伟大的数学家——高斯

高斯(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿、欧拉并列,同享盛名。【生平与贡献】

高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于哥廷根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。

高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

1784年,18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

1785年,在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。1799年,高斯完成里他的博士论文,这篇论文给出了一个重要的代数定理:任意一个多项式都有(复数)根。这结果称为“代数学基本定理”。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

1801年,高斯的《算术研究》一书发表。本书总结了高斯的数论研究,奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的著作,高斯第一次介绍同余的概念,二次互反律也在其中。1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为谷神星。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它8度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法他当时没有公布——就是最小二乘法。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数,并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1816年左右, 高斯得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1820到1830年间,高斯为了测绘汗诺华公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。1835年高斯在天文台里设立磁观测站,并且组织磁协会发表研究结果,引起世界广大地区对地磁作研究和测量。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。【几个故事】

幼年聪慧

很多伟大的数学家在少年时就表现出数学方面的特别才能,然而高斯的早慧确是令人惊讶的。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98„„),同时得到结果:5050。这一年,高斯只有9岁。

非欧几何

公元前3世纪,欧几里得从一些被认为是不证自明的事实出发,通过逻辑演绎,建立第一个几何学公理体系-欧几里得几何学。这个理论受到后世数学家的普遍称颂,被公认为数学严格性的典范,但人们感到欧氏几何中仍存在某种瑕疵,其中最使数学家们关注的是欧氏公理系统中的所谓“第五公设”(即平行公理)。大家普遍认为,这条公理所说明的事实(通过直线外一点能且仅能作一条平行直线)并不像欧几里得的其他公理那样显而易见,它似乎缺少作为一条公理的自明性。因此,尽管人们并不怀疑平行公理本身,但却怀疑它作为公理的资格。

人们试图用其他公设来证明第五公设,但都以失败告终。到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。人们知道,这其实就是数学中的反证法。但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。例如,在这种几何里,三角形的内角和小于180度。最后,罗巴切夫斯基得出两个重要的结论:第一,第五公设不能被证明。第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。这种几何学被称为罗巴切夫斯基几何。这是第一个被提出的非欧几何学。罗巴切夫斯基的新思想不仅是对欧几里得几何学2000年权威的冲击,而且是对常识的挑战,其所导致的思想解放对现代数学和现代科学有着极为重要的意义。他生前并没有得到他的当代人的赞赏,相反遭到嘲弄。直到他去世后,由于高斯对他的学说予以肯定,他的思想才得到普遍的理解和承认。

其实,最早产生非欧几何基本思想的是德国数学家高斯。高斯早在15岁时就开始考虑第五公设问题,并亲自做了实地测量,来讨论我们生存的空间存在非欧几何性质的可能性。然而高斯深知传统思想的顽固,为了避免受人的攻击和耻笑,一直将自己的发现秘而不宣。他对待新思想的这种保守立场使他在有生之年未能给予非欧几何以根本的推动。几乎与罗巴切夫斯基同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在并将他的结果呈给高斯。但高斯说:“我不能赞扬你,因为赞扬你就是赞扬我自己”。这使鲍耶感到非常气愤和沮丧,甚至怀疑高斯剽窃了他的成果。

高斯的谨慎是他一贯的风格。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。他自己曾说:“宁可发表少,但发表的东西是成熟的成果”。据说他发表的成果是他写出来的十分之一,而他写出来的成果是他想到的十分之一。他的想法实在多到来不及记录下来了!

高斯的墓

高斯的墓碑上刻着一个十七角星的几何图案。这个起因于高斯在大学二年级发现正17边形的尺规作图成果。高斯在古典语文和数学方面都具有极高天赋,当时他正徘徊在选择文学还是数学作为终身职业的人生选择路口上。在这个关键的时刻,他发现了用直尺和圆规作出正17边形的方法,用代数的方法解决二千多年来的几何难题。而且他还得出了更漂亮的结果,给出了能用直尺和圆规作出来的正多边形的边数公式。正是这个发现让他最终选择了数学作为自己的终身职业。他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。【历史的评价】

高斯和阿基米德、牛顿一样是人类历史上最伟大的数学家之一,被人们尊敬为“数学王子”。美国的着名数学家贝尔,在他著的《数学工作者》一书里曾经这样批评高斯:“在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。” 这种批评何尝不是对高斯才华的至高赞扬!

高斯一生勤奋好学,多才多艺,喜欢音乐和诗歌,懂多国文字。62岁时学习俄文并在极短时间内达到可以用俄文写作的程度。晚年他还一度学习梵文。在慕尼黑博物馆的高斯画像上有这样一首题诗:

他的思想深入数学,空间,大自然的奥秘,他测量了星星的路径,地球的形状和自然力。

高斯是一个伟大的人

第四篇:数学学家高斯

数学学家高斯

高斯(Gauss,1777—1855),著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。

还在少年时代,高斯就显示出了他的数学才能。据说,一天晚上,父亲在计算工薪账目,高斯在旁边指出了其中的错误,令父亲大吃一惊。10岁那年,有一次老师让学生将1,2,3,…连续相加,一直加到100,即1+2+3+…+100。高斯没有像其他同学那样急着相加,而是仔细观察、思考,结果发现:

1+100=101,2+99=101,3+98=101,…,50+51=101一共有50个101,于是立刻得到:

1+2+3+…+98+99+100=50×101=5050

老师看着小高斯的答卷,惊讶得说不出话。其他学生过了很长时间才交卷,而且没有一个是算对的。从此,小高斯“神童”的美名不胫而走。村里一位伯爵知道后,慷慨出钱资助高斯,将他送入附近的最好的学校进行培养。

中学毕业后,高斯进入了德国的哥廷根大学学习。刚进入大学时,还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后,决定研究数学。卡斯特纳本人并没有多少数学业绩,但他培养高斯的成功,足以说明一名好教师的重要作用。

从哥廷根大学毕业后,高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长,并保留这个职位一直到他逝世。

高斯18岁时就发明了最小二乘法,19岁时发现了正17边形的尺规作图法,并给出可用尺规作出正多边形的条件,解决了这个欧几里得以来一直悬而未决的问题。为了这个发现,在他逝世后,哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学,高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础,该书不仅在数论上是划时代之作,就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数,提出所有复数都可以用平面上的点来表示,所以后人将“复平面”称为高斯平面,高斯还利用平面向量与复数之间的一一对应关系,阐述了复数的几何加法与乘法,为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域,而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。

高斯一生共有155篇论文。他治学严谨,把直观的概念作为入门的向导,然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎,他的许多数学思想与结果从不轻易发表,而且,他的论文很少详细写明思路。所以有的人说:“这个人,像狐狸似的,把沙土上留下的足迹,用尾巴全部扫掉。”

数学家华罗庚

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。

1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。

青山碧水

学校在暑假里组织老师们集体游览风景名胜,回来以后,老师们很高兴,畅谈游览印象。

语文老师说,我的印象可以概括成一句话:

青山、碧水,劲松、千峰秀。

外语老师说,受你的启发,我的印象也可以概括成一句话:

秀峰、千松劲,水碧、山青。

外语老师受到的启发真不小,把语文老师那句赞美词整个儿倒过来读,就成了外语老师的赞美词。当然这也是一种绝妙的创造,因为不是任何一句话都能倒过来读的。

数学老师说,受你们两位的启发,我的印象同样可以概括成一句话:

864197532。

“这是什么话!”语文老师和外语老师大为惊讶,异口同声,喊了起来。

数学老师笑着说,“不明白我的意思?写下来就知道。”

只见数学老师不慌不忙,在纸上把三句话写出来,再画一道横线,添一个加号,成为一道加法算式:

外语老师往数学老师肩上拍一掌,说:“还是算式谜?”

语文老师抢过笔来,一面研究算式,一面问道:“还是每个汉字表示一个数字,不同汉字表示不同数字?”

数学老师说,“对,老规矩。不过今天这道式子格外精巧,每一行的九位数里都是从1到9,一个数字不漏。”

答案很快求了出来,是:

123456789+864197532=987654321。

游览秀丽山川,令人心旷神怡,领略生活的自然美。

好诗、好词、好文章,来自生活,精心提炼加工以后,高于生活,可以从中体会语言美。

数字、图形和数学题,同样来自生活,通过科学的抽象概括,揭示生活中的内在规律,蕴涵一种和谐的数学美。

渡河难题

春秋战国时期,楚国和晋国由于连年打仗,伤亡惨重,结下了冤仇,弄得 量过人民相互之间也都不信任了。在历次战争中,楚国失败的次数较多,所以,一般晋国人都害怕楚国人报复。

有一次,三个楚国商人和三个晋国商人一起到齐国去经商。齐国的主顾要 求六个人同时到达,说是这样才好接待拍板成交,少了任何一个都不答应。因 此,他们只好结伴同行,一路上勾心斗角。

一天傍晚,他们来到了大河边,河水很深,他们又都不会游泳,河上也没 有桥梁,幸好岸边有一只小船,可是船太小了,一次最多只能渡过两个人,这 些商人,人人都会划船,为了防止发生意外,无论在河的这一岸还是那一岸,或者在船上,都不允许楚国的商人数超过晋国商人数。

请问怎样才能将这六个人全部渡过河去?需要多少次?

【11次.

渡河过程;

1、先去两个楚国人

2、回来一个楚国人

3、再去两个楚国人

4、回来一个楚国人

5、去两个晋国人

6、回来一个晋国人和一个楚国人

7、去两个晋国人

8、回来一个楚国人

9、去两个楚国人

10、回来一个楚国人

11、两个楚国人一起渡河】

一壶酒

在元代数学家朱世杰著的数学书《四元玉鉴》中,有这样一首诗:我有一 壶酒,携着春游走。遇店添一倍,逢友饮一斗。店友经三处,没了壶中酒。借 问此壶中,当原多少酒?

诗的大意是:我带着壶酒春游,途中每逢酒店必定掏钱,把壶中的酒就增 添一倍,每逢遇见朋友必定倒酒小就酌,喝掉1斗。一路上,共有三次遇酒店,见朋友,结果壶中的酒全都没有了。请问,这壶里原来有多少酒呢?

【答案:7 8斗。

寿

两百多年前,清代乾隆皇帝五十年的时候,他在乾清宫中摆下了千叟晏3900多位老人应邀参加宴会。其中有一位老人的年纪特别大,这位老寿星有多大岁数呢?

乾隆皇帝说了,但不是明说,而是出了一道对联,这幅对联的上联:花甲重开,外加三七岁月。

大臣纪昀在一旁凑热闹,也说了一说这位老寿星的岁数,当然也不是明说,而是对出了下联:古稀双庆,又多一个春秋。

你知道对联里讲些什么吗?老者到底有多大?

阿拉伯数字是怎样来的

阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。

阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。

公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。

印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。

阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。

印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:„9、8、7、6、5、4、3、2、1‟,用这九个数字及阿拉伯人称作sifr(零)的记号„0‟,任何数都可以表示出来。”

14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。

西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。

在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。

第五篇:高斯的故事

高斯的故事

约翰·卡尔·弗里德里希·高斯(C.F.Gauss,1777年4月30日-1855年2月23日),德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是历史上最重要的数学家之一,并有“数学王子”的美誉。生于布伦瑞克,1792年进入Collegium学习,在那里他独立发现了二项式定理的一般形式、数论上的“二次互反律”、素数定理、及算术-几何平均数。1795年高斯进入哥廷根大学,1796年得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。1855年2月23日去世。高斯在历史上影响巨大,可以和阿基米德、牛顿、欧拉并列。

高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

当然,这也是一个等差数列的求和问题。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E.T.贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。

1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时─虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。

1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。

高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,计算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。当时,24岁的高斯得悉后,只花了几个星期,通过以前的三次观测数据,用他的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。尽管两年前高斯就因证明了代数基本定理获得博士学位,同年出版了他的经典著作《算术研究》,但还是谷神星的轨道使他一举名震科坛。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中。

高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。

在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。

高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。

为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。

1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代。在这本书中,高斯不仅把19世纪以前数论中的一系列孤立的结果予以系统的整理,给出了标准记号的和完整的体系,而且详细地阐述了他自己的成果,其中主要是同余理论、剩余理论以及型的理论。同余概念最早是由L.欧拉提出的,高斯则首次引进了同余的记号并系统而又深入地阐述了同余式的理论,包括定义相同模的同余式运算、多项式同余式的基本定理的证明、对幂以及多项式的同余式的处理。19世纪20年代,他再次发展同余式理论,着重研究了可应用于高次同余式的互反律,继二次剩余之后,得出了三次和双二次剩余理论。此后,为了使这一理论更趋简单,他将复数引入数论,从而开创了复整数理论。高斯系统化并扩展了型的理论。他给出型的等价定义和一系列关于型的等价定理,研究了型的复合(乘积)以及关于二次和三次型的处理。1830年,高斯对型和型类所给出的几何表示,标志着数的几何理论发展的开端。在《算术研究》中他还进一步发展了分圆理论,把分圆问题归结为解二项方程的问题,并建立起二项方程的理论。后来N.H.阿贝尔按高斯对二项方程的处理,着手探讨了高次方程的可解性问题。

高斯在代数方面的代表性成就是他对代数基本定理的证明。高斯的方法不是去计算一个根,而是证明它的存在。这个方式开创了探讨数学中整个存在性问题的新途径。他曾先后四次给出这个定理的证明,在这些证明中应用了复数,并且合理地给出了复数及其代数运算的几何表示,这不仅有效地巩固了复数的地位,而且使单复变函数理论的建立更为直观、合理。在复分析方面,高斯提出了不少单复变函数的基本概念,著名的柯西积分定理(复变函数沿不包括奇点的闭曲线上的积分为零),也是高斯在1811年首先提出并加以应用的。复函数在数论中的深入应用,又使高斯发现椭圆函数的双周期性,开创椭圆函数论这一重大的领域;但与非欧几何一样,关于椭圆函数他生前未发表任何文章。1812年,高斯发表了在分析方面的重要论文《无穷级数的一般研究》,其中引入了高斯级数的概念。他除了证明这些级数的性质外,还通过对它们敛散性的讨论,开创了关于级数敛散性的研究。

非欧几里得几何是高斯的又一重大发现。有关的思想最早可以追溯到1792年,即高斯15岁那年。那时他已经意识到除欧氏几何外还存在着一个无逻辑矛盾的几何,其中欧氏几何的平行公设不成立。1799年他开始重视开发新几何学的内容,并在1813年左右形成较完整的思想。高斯深信非欧几何在逻辑上相容并确认其具有可应用性。虽然高斯生前没有发表。

高斯不仅是数学家,还是那个时代最伟大的物理学家和天文学家之一。在《算术研究》问世的同一年,即1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗现在被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。当时天文学家无法确定这颗新星是彗星还是行星,这个问题很快成了学术界关注的焦点,甚至成了哲学问题。黑格尔就曾写文章嘲讽天文学家说,不必那么热衷去找寻第八颗行星,他认为用他的逻辑方法可以证明太阳系的行星,不多不少正好是七颗。高斯也对这颗星着了迷,他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。不管黑格尔有多么不高兴,几个月以后,这颗最早发现迄今仍是最大的小行星准时出现在高斯指定的位置上。自那以后,行星、大行星(海王星)接二连三地被发现了。

在物理学方面高斯最引人注目的成就是在1833年和物理学家韦伯发明了有线电报,这使高斯的声望超出了学术圈而进入公众社会。除此以外,高斯在力学、测地学、水工学、电动学、磁学和光学等方面均有杰出的贡献。即使是数学方面,我们谈到的也只是他年轻时候在数论领域里所做的一小部分工作,在他漫长的一生中,他几乎在数学的每个领域都有开创性的工作。例如,在他发表了《曲面论上的一般研究》之后大约一个世纪,爱因斯坦评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

从1989年直到2001年年底,高斯的肖像和他所写的正态分布曲线与一些在哥廷根突出的建筑物,一起被放入德国10马克的钞票中。另一方面,在汉诺威有和他有关的鸡血石以及三角测量方法。在德国也发行了三种用以表彰高斯的邮票。第一种邮票(第725号)发行于1955年−他死后的第100周年;另外两种邮票(第1246号.第1811号)发行于1977年,他出生的第200周年。

高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

下载高斯错误修改总结word格式文档
下载高斯错误修改总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学家高斯名言

    我们在学习数学的时候,老师偶尔会说一些关于数学家的故事,那么你们知道数学家高斯说的名言是什么吗?下文内容为你解答!数学家高斯名言数学是科学的女王,而数论是数学的女王。——......

    高斯优化过渡态的经典总结(合集五篇)

    高斯优化过渡态的经典总结 一般地,优化所得驻点的性质(极小点还是过渡态)要靠频率来确定;而对过渡态,要确定反应路径(即到底是哪个反应的过渡态)必需要做IRC了,不然靠不住的(往往用QS......

    应聘公文错误修改题

    XXX应聘面试试题 根据以下公文资料,修改其中的错误之处,可在原文上修改,也可重写。 公文修改题一:(修改下面的公文,包括标题、内容、结束语等。并注意用规范的公文常用语) 关于要求......

    站群小错误修改权限申请书

    网站小错误修改权限申请书马经理您好!关于网站站群的修改问题:电话修改,商务通点击咨询修改,快商通,网站标题,一共是80多个站,或多或少都存在问题,都是一些小的错误,但是量非常大,而且......

    总结错误

    错误分析:启动tomcat错误 异常:the port already use , jvm_bin 错误原因: 端口被占用 错误改正: 1.修改conf/server.xml文件 修改下列端口或关闭占用相应端口的程序。 错误分......

    【数学家故事】高斯的故事

    高斯的故事 1785年,8岁的小高斯在德国农村的一所小学里念一年级。 数学老师是城里来的。他有一个偏见,总觉得农村孩子不如城里孩子聪明。不过,他对孩子们的学习,还是严格要求的......

    数学家高斯的故事

    数学家高斯的故事 高斯(Gauss 1777~1855)是德国数学家、物理学家和天文学家,出生于一个贫苦家庭。高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学......

    数学家高斯的故事

    数学家高斯的故事 高斯念小学的时候,数学老师出一道数学题,题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,学生肯定是要算很久的,才有可能算出来,但是才一转眼的时间,高斯已停下......