对鸡兔同笼问题的教学思考(精选多篇)

时间:2019-05-13 02:51:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《对鸡兔同笼问题的教学思考》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《对鸡兔同笼问题的教学思考》。

第一篇:对鸡兔同笼问题的教学思考

对《鸡兔同笼问题》的教学思考

数学广角中的鸡兔同笼问题从原来的六年级上册被安排到四年级下册,这一变动意味着什么?我们思考了以下几个问题:鸡兔同笼在六年级的目标定位与四年级的目标定位是否一致?如何从四年级学生的认知基础和特点上把握教学目标?如何基于不同年级学生基础实施不同的教学策略?数学广角的教学核心的价值应如何把握?

一、解读教材与学生

从几种不同版本的教材编排来看,苏教版呈现的是画图,人教版版重点强调的是假设法,北师大版在渗透尝试中融合了操作、列表和猜想。不难看出,在鸡兔同笼的问题教学中,学生必然会经历尝试阶段(画图和列表)---思考阶段(假设和替换)---选择优化阶段(方程),不同年级的学生学习经验和思维水平是不同的,必然会导致学生对方法的接受程度是不一样的。所以我们要明确学生的学习起点,中年级学生对于思考问题的方法和角度需要老师重点进行训练,以此来积累他们的活动经验,在教学中让学生在尝试中学会比较概括,寻求适合自己的解题策略。我们认为,教材中的鸡兔同笼的问题是一个载体,不是为了解题而解题,更多的是引导学生怎样去思考,怎样提出问题、分析问题、找到解决问题的途径,学习的价值在于过程的体悟和思考经验的积累。教学目标:

1.使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。

2.通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性,渗透化繁为简的思想。

3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:尝试用不同的方法解决“鸡兔同笼”问题。

教学难点:通过画图理解用假设法解决“鸡兔同笼”问题的算理。

二、解读学法与教法

鸡兔同笼问题,教学最原始而又最广泛迁移的是列表尝试法。通过尝试、反思、再尝试等过程让学生去做数学,无论选择列表、画图、假设等方法,都应该有充分的时间和空间让学生去动手、尝试和感悟,在具体教学中我们也发现学生从一一枚举到中间尝试,在尝试中体验优化思想和数据间的内在联系,从有序列表到形成假设的雏形,无不体现的学生经验的积累和深化。课中引导学生经历想问题的过程,在各自的基础上有直观图表作为依托,逐步过渡到假设等抽象的思考过程,教师在学生思维的每一个关键点让学生都停下来,根据规律你发现了什么?如果假设全是一种情况会是怎么样?这种递进式的设问让学生不断的思考、不断的发现,促进了思考的深入。在学习能力的反馈中,教师把是否建立此类问题的模型作为辨别的标准,看学生能不能用这个模型举一反三,比如,在练习中出现租船,龟鹤同游,求不同面值的硬币等问题,当学生能从这些生活问题中准确的找到鸡兔只数与头数相对应的关系,或者鸡兔同笼问题举例出生活中的问题,都是建立了模型。

三、我们的做法(我们的教学设计)

一、课题导入

1.同学们,今天这节课,我们一起来学习鸡兔同笼问题。这个问题以前听说过吗?那鸡看见过吧?它有几个头,几条腿?那兔呢?鸡兔同笼的意思就是?

(根据学生回答板书:画出2条腿的鸡、四条腿的兔)

2.(投影出示)现在,正有这样一个笼子,老师从上面数了数,有3个头,那你猜猜,下面可能会有多少条腿?你是怎样想的?(根据学生回答,形成表格)

3.老师又从下面数了数,发现有10条腿,你知道鸡兔各几只吗?你是怎么知道的?(看表格)有了这个表格,我们就很容易解决这个问题,像这样的方法,我们就叫做——列表法。(板书)

二、探究交流。

1.现在,老师把条件变成: “笼子里有若干只鸡和兔,从上面数,有8个 头;从下面数,有26条腿。鸡和兔各有几只?” 你能用刚才的方法尝试解决这个问题吗?

列表法:请学生讲解表格的列法;观察表格,你发现的什么? 假设法:学生展示,有多少同学理解这些算式的意思?

画图法:那能不能用画图的方法来帮助我们思考呢?(在教师的引导下边画图边理解算式的意思)

找联系。刚才我们发现了画图法的过程用算式表示出来就成了假设法,那观察一下,列表法和假设法之间时不时也有着这样的联系呢?这一过程的教学主要有三个步骤:

列表法引入:让学生通过逐一列表验证、中间列表验证等方法探究问题,并明确提出列表法的作用帮助我们有序思考,容易发现规律。

假设法的思考:在鸡兔数量很多的时候再用列表法会怎么样?于是在规律中发现,特别是对表格中最大和最小的数进行比较,当兔的只数为0或者8时,是什么意思?学生发现,就是把这8个头都看看成是鸡或者是兔,尝试用算式来表达,从而引出了假设法。

画图法佐证:在脱离表格列式思考的过程中,学生会出现思维的障碍,老师利用画图法,通过数形结合,帮助学生理解假设的真正含义

表面上老师似乎教给学生三种方法,其实老师理清了知识的脉络,紧紧抓住假设法的主线,借助列表法和画图法的优势帮助学生进行有效的思考。

4.尝试。

其实鸡兔同笼这个问题,早在1500多年前,我们的老祖宗已经在研究了,我们来看看那时候的题目。(出示古题)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

读题,弄懂题目的意思――-分析;(先闭上眼睛在脑袋里画画图)――学生独立练习――汇报交流。

三、练习巩固。

1.课件出示生活中“鸡兔同笼”的问题。自行车和三轮车共10辆,总共有24个轮子。自行车和三轮车各有多少辆?

2.选一选:龟鹤问题,有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?()A.龟24只,鹤16只;B.龟16只,鹤24只;C.龟22只,鹤18只;D.龟18只,鹤22只;(在这题中主要渗透一个验证的思想)3.东东有2元和5元的人民币共8张,数一数一共是34元钱,东东有2元和5元的人民币各几张?

四、总结。本节课你有什么收获及不懂?

师:解决鸡兔同笼问题的方法很多,有兴趣的同学课后还可以去查查资料,看还有什么好方法

第二篇:鸡兔同笼问题教学设计

人教版六年级上册数学教学设计

鸡兔同笼问题

一、教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

二、教材分析:

(一)设计意图:

通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

(二)设计思路:

遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。

在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

三、教学设计:

<一>、提出问题

师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

问:这段话是什么意思?(生试说)

师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

(板书课题:鸡兔同笼问题)

<二>、解决问题

师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

小组活动充分后进入小组汇报、集体交流阶段。

师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

学生汇报探究的方法和结论:

1:画图法:(学生展示画图方法及步骤)

①先画8个头。

②每个头下画上两条腿。

数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

2.列表法:

(展示学生所列表格)

学生说明列表的方法及步骤:

学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

鸡 8 7 6 5 4 3 2 1

兔 0 1 2 3 4 5 6 7

脚 16 18 20 22 24 26

鸡 8 7 6 5 4 3 2 1

兔 0 1 2 3 4 5 6 7

脚 16 18 20 22 24 26

学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。

鸡 8 6 4 3

兔 0 2 4 5

脚 16 20 24 26

鸡 8 6 4 3

兔 0 2 4 5

脚 16 20 24 26

学生汇报:我们是先按鸡兔各一半来算的,因为鸡、兔共8只,我们先假设鸡、兔各4只,这样共有24条腿,比26条腿少2条,说明假设的兔少了1只,鸡多了1只,于是兔只有5只,鸡有3只。

鸡 4 3

兔 4 5

脚 24 26

鸡 4 3

兔 4 5

脚 24 26

学生汇报:我们先把8只都看作兔,一共是32条腿,显然不对,再减去一只兔,加上一个鸡,这样一个一个地试的,最后得到3鸡、5只兔。

鸡 0 1 2 3

兔 8 7 6 5

脚 32 30 28 26

鸡 0 1 2 3

兔 8 7 6 5

脚 32 30 28 26

师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?

3.假设法:

教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:

板书:方法一:假设8只都是鸡,那么兔有:

(26-8×2)÷(4-2)=5(只)

鸡有8-5=3(只)

同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:

板书:方法二:假设8只都是兔,那么鸡有:

(4×8-26)÷(4-2)=3(只)

兔有8-3=5(只)

4、列方程:

我们还可以根据“鸡的腿+兔的腿=26条”列方程解答:

解:设兔有X只,那么鸡有(8-X)只。

4X+2(8-X)=26,16+2X=26

2X=26-16

X=3

8-3=5(只)

即鸡有3只,兔有5只。

师:通过以上的学习,你有什么发现,有什么想法吗?

生:解决一个问题可以有不同的方法。

<三>、想一想,做一做:

1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

2.完成书中练一练中的4道题,<四>、小结:

我们今天学习了鸡兔同笼问题,发现这类问题可以用画图的方法解决、可以用列表的方式进行分析,还可以用假设的方法(亦可称作置换法)。可以先假设都是同一种事物(换成另一种事物),再根据题中给出的条件进行修正、推算。有的同学还用方程来解决这个问题。一个问题可以用多种方法来解决,真是条条大路通罗马呀!希望同学们今后在学习中也能象今天一样肯于动脑,勤于思考,使我们每一个同学都越学越聪明。

第三篇:运用多媒体进行鸡兔同笼问题的教学思考

运用多媒体进行鸡兔同笼问题的教学思考

计算机和网络为核心的现代教学技术不断更新,特别是其应用已逐步进入教育教学领域。使我们的教育由“一支粉笔、一块黑板、一本书”枯燥无味的课堂教学走向直观、生动的多媒体教学。下面我就结合自己教学中的实际情况对多媒体辅助数学教学谈谈自己的看法。

一、多媒体辅助数学教学有明显优势

1.运用多媒体的声像效果,创设情境,能激发学生学习兴趣。图形直观、动态,便于学生理解

我利用多媒体资源的优势,通过制作课件,让学生在一节可当真全面的掌握列表法,画图法,假设发三种方法。

(如:鸡兔同笼问题:一个笼子里共有24条腿,可能有几只兔子、几只鸡?)

无论讲述哪种方法,学生们都很干兴趣,特别容易掌握。我的经验是利用计算机进行课堂演示,通过精心设计的动画、插图和音频等,可以使抽象深奥的数学知识以简单明了、直观的形式出现,缩短了客观事物与学生之间认识的时间,更好地帮助学生思考知识间的联系,促进新的认知结构的形成。计算机的动态变化可以将形与数有机结合起来,把运动和变化展现在学生面前,使学生由形象的认识提高为抽象的概括,这对于培养学生良好的思维习惯会起到很好的效果。2.教学过程中恰当运用多媒体技术,有助于减轻教师的教学工作量 教师在备课的过程中,需要查阅大量的相关资料,况且你也不可能备有所有所需的图书,互联网为教师提供了无穷无尽的教学资源,为广大教师开展教学活动开辟了一条捷径,大大节省了教师备课的时间.

二、多媒体辅助数学教学教师必须掌握好分寸 多媒体辅助教学作为一种现代化教学手段,并不是排斥传统教学手段,应是二者有机结合,优势互补,获得最大的教学效果。多媒体辅助教学能给数学课堂带来生机和活力,但计算机不是决定性因素,起决定作用的是教师。它必须依靠教师科学地设计、精心地组织,才能发挥它的效能。我们利用多媒体技术制作和使用数学课件无非是要将数学中抽象的概念直观地显示在学生眼前,为学生提供操作示范,便于学生动手操作,在实践中感知、发现、创造、培养学生思维能力和口头表达能力。因此应用多媒体在数学教学中应努力做到:优化教学思想注意多媒体的辅助性、工具性,坚持教师的主导地位、注重思维训练,贯穿数学思想。总而言之,我们要借助这一现代化的工具真正丰富数学教学内容,提高课堂效益,提高学生数学学习兴趣,切实贯穿数学思想,充分展示数学美。

第四篇:对鸡兔同笼教学感悟

听《鸡兔同笼》一课教学的感悟

枣庄中心小学

魏祥珍

我今天听了李老师上的《鸡兔同笼》一课,使我受益非浅。

鸡兔同笼是我国古代《孙子算经》中一道经典数学题,而对于这一课,教材上的要求是比较低的,只是让学生会用列表的方法来解决这一问题,对于教材上的三种列表方法,它有一个对数据进行再认识、再分析的过程,从而缩小举例的范围,将列表的过程更优化。

一、研究“鸡兔同笼”问题的价值何在?

有人认为研究鸡兔同笼问题没有价值,实际生活中谁会把鸡和兔装在一起?鸡兔同笼问题的现实意义在哪里?实际上,学习鸡兔同笼问题,并非单纯解决鸡兔同笼问题,需要引导学生能够抓住数学的本质,进一步明确类似鸡兔同笼问题的数量关系。如果仅仅把它当作鸡和兔同笼来理解,也许真会觉得它毫无价值,但是如果把它当作一个典型问题,当作一个类似于模型的东西来审视,你就会发现生活中还真有不少问题都类似这个“模型”,比如:12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张?这不就是一个生活中的“鸡兔同笼”问题吗?如果你把它当作一个模型来理解,它就具有了现实意义,就是有价值的数学。

二、如何帮助学生建立、应用数学模型?

有这样一句话:“数学是模式的科学”,“数学教学的基本任务就在于帮助学习者逐步建立与发展分析模式、应用模式、建构模式与欣赏模式的能力”。数学的生命力就在于它能够有效地解决现实世界向我们提出的各种问题,而数学模型正是联系数学与现实世界的桥梁。如何将现实问题转化为数学模型(也就是数学建模),是对学生解决问题能力的检验,也是数学教育的重要任务之一。数学建模就是指在课堂内外增加一些有生活背景的实际问题,并通过这些实际问题让学生领悟数学工作者是怎样“发现、提出、抽象、简化、解决、处理”问题的整个思维过程。教学时李老师首先介绍新朋友鸡和兔,引出“鸡”与“兔”,然后让学生根据小故事里的情景,表演把兔变成鸡的样子,再把鸡变成兔了样子,为后面的假设法做了很好的辅垫。学生也是一直在兴趣盎然的状态中亲历了知识形成的整个过程。一本节课李教师从学生的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。但我认为学生如果对这个问题的认识仅是停留在这个基础之上,对于学生的思维的训练起不到提高的作用,如果能在解决问题之前,老师先让学生找一找鸡和兔的相同点和不同点,学生就会很快发现鸡和兔都有一个头的相同点,鸡有两条腿、兔有四条腿的不同点。随后,老师说,假如让鸡扮演兔应该怎样扮演呢?对了,把两只翅膀插到地面上。假如让兔扮演鸡怎么办呢?对了,把两只前腿举到头顶上。现在屋子里有一只兔和一只鸡,假如兔扮演成鸡,那么地上有几条腿呢?(4条)可实际有几条腿呢?(6条)多的这两条腿是谁的呢?是兔的。现在屋子里有两只兔子和一只鸡,假如„„现在屋子里有鸡和兔20只,数一数地上共有56条腿,鸡和兔各有几只呢?这样的辅垫将减少单纯的假设法教学会给相当一部份的孩子带来的思考上的难度。同时在教学中,学生也完全可能用具体的、形象的画图方法来解决如:我们画20个圆 当作动物的头,把线段当作动物的腿。这一共有54条腿。我们假设这20只动物全是鸡,先把每只鸡摆上两条腿。我们画完了发现只有40条腿,跟题中说的54条腿还差14条。我们把每只鸡再添上两条腿换成兔子。那多出来的14条就分完了。我们的结论是兔有7只,鸡有13只。在理解上面方法的基础上学生完全可以用假设的方法来解题。如果假设笼子里都是鸡,就有20×2=40只脚,这样就多出54-40=14只脚,一只兔比一只鸡多2只脚,也就是有14÷2=7只兔。所以笼子里有13只鸡,7只兔。如果假设笼子里都是兔,那么也可以列式:

鸡:(20×4-54)÷(4-2)=13(只)

兔:20-13=7(只)答:兔有7只,鸡有13只。

这里也渗透了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设思想,我们就能解决生活中的很多很多问题。这节课下来,根据李老师的精心的板书,学生可以很直观的看到所学知识形成的过程,并且根据板书,李老师让学生找到数学知识的规律,并让学生用通俗的、自己的、简单的语言总结这些规律!

李老师的这节课,没有多媒体动态的演示,没有各种教学用具的辅助,但是课堂上学生思维的泉涌、知识火花的碰撞,直射出教师的课堂教学水平与魅力!不得不让我们这些听课的教师由衷的折服!听了李老师的课后,我感触颇多,重要的是我的心态平衡了许多,以前总认为好课是由好条件创造出来的,现在知道简单平凡中有更大的精彩!

这节课中,李老师引导学生围绕“鸡兔”进行讨论,对研究对象进行初步的提炼,然后通过问题突出数量差异的变化,从而引导学生建立相关的数学模型。最后用模型解释各种生活现象并引导学生设计生活中“鸡兔同笼”问题,促进模型的进一步内化与应用。

三、多种解题策略孰轻孰重,如何取舍?

在每次对教学《鸡兔同笼》的研讨活动中,总有不少老师会提出质疑:这节课上仅仅要求学生经历尝试与猜想的过程,用列表枚举解决鸡与兔的数量问题就行了吗?其他几种如:假设法,方程法,画图法等不需要学生掌握吗?

北师大版教材安排这一内容的目的,不仅仅是让学生能解决鸡兔同笼的问题,更重要的是引导学生在解决“鸡兔同笼”问题的过程中,经历列表法解决问题,体验“猜测——验证——调整”这一解决问题的基本策略,进一步引导学生将“停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆”与其比较,找出其本质联系,使列表法这一解题策略得到广泛应用。

我认为,可以把掌握“猜测——验证——调整”这一列表枚举的方法作为本课的基本目标,课尾可以引导学生交流“你还能用什么方法解决鸡兔同笼的问题?使部分学生原有的方法策略(如:画图法、解设法、列方程法等)得以展示,实现“下要保底,上不封顶”的教学原则。

也许这个问题永远不会有一个标准答案,不同教材有不同的价值取向,不同的教师会有不同的感受和理解。

第五篇:鸡兔同笼问题解法教学设计

篇一:鸡兔同笼教学设计与反思

“鸡兔同笼”教学设计与反思

永泰县城南小学卢鸿祯

设计理念:

“鸡兔同笼”作为一种经典名题,在国标新教材中,不少版本都有编排。比如,北师大版五年级上册“尝试与猜测”中用它来让学生学会表格列举;苏教版六年级上册将之作为一道练习题来巩固“假设和替换”的策略;而人教版更是浓墨重彩,在六年级上册“数学广角”中用6个页码详细介绍了“鸡兔同笼”问题的出处、多种解法及实际应用。除此之外,还有很多名师在不同年级用不同的方法来生动地演绎它。但我想尽管“鸡兔同笼”各年级都可以作为教学内容,且有着不同的目标指向,但对于六年级而言,是否可以用来让学生“从已有的经验出发,经历将实际问题抽象成数学模型并进行解释和应用的过程”,从而更好地认识数学?让学生在学习过程中培养“模型”意识和举一反三的能力。感受到一些数学问题所具有的“模型”的力量呢?带着这样的思考,我对这节“鸡兔同笼”数学活动课作了如下尝试:

教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册第112~117页。教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和代数方法的一般性。3.在解决问题的过程中,培养学生的逻辑思维能力,并向学生渗透转化、函数等数学思想和方法。

教学重点:用假设法和方程解决“鸡兔同笼”问题。

教学难点:用假设法程解决“鸡兔同笼”问题。

教学具准备:

1、设计导学提纲:

自学课本第112~115页并思考解决以下几个问题:(1)、尝试用不同的方法解决例1的“鸡兔同笼”问题。(2)、生活中有类似“鸡兔同笼”的问题吗?请举例说明。(3)、试着完成课本第115页“做一做”第1题。(4)、你还有什么疑问吗?

2、课件制作。

教学流程:

一、课前谈话。(课前板书:鸡兔同笼)

师:同学们,你们知道我国古典文学的四大名著是什么吗?

生:幻灯片:《西游记》、《红楼梦》、《三国演义》、《水浒传》。

师:这些名著你们读过吗?

师:四大名著是中国乃至全人类共同拥有的宝贵文化遗产,在整个华人世界中有着深远的影响。我建议大家去读一读。

师:这是我们的古人在文学方面的伟大成就,其实我们的古人在数学方面也有很多了不起的成就,为我们留下许多有名的著作。你知道吗?让我们一起来看一看吧。

师:你们见过这些书吗?在哪里见过?

生:我在数学书上见过。

生:我在网络上见到过。

师:昨天要求同学们自学的“鸡兔同笼”就在这其中的一部书里,大家一起说是哪部? 生:《孙子算经》。

师:对了,这是一部成书于1500多年前的数学著作,书中记载着很多有趣的数学名题。“鸡兔同笼”就是其中的一道。

师:通过昨天的自学,你们知道鸡兔同笼是什么意思吗?

生:鸡兔同笼就是鸡兔在一个笼子里。

生:鸡兔同笼就是把鸡和兔关在一个笼子里,告诉我们鸡兔的总头数和总脚数,求出鸡兔各几只。

师:是的,鸡兔同笼不仅仅是鸡和兔关在一个笼子里,而是一种数学问题。(板书:问题)

二、借助导学提纲,交流自学情况。

全班汇报、展示。

1、不同方法解决“鸡兔同笼”的问题。

师:通过自学,你们也一定找到不少“鸡兔同笼”的解决办法吧!谁先来汇报?

生汇报:

第一种:列表法。

生:我采用列表法得出的答案。先假设有1只鸡,7只兔子,脚就有30条。脚太多,然后又假设有2只鸡,6只兔子,脚还是太多了。这样试下去就得到了有3只鸡,5只兔子。

生:我也是列表法。我们是先假设鸡有4只,兔子也有4只。这样比较简便。

师:你们认为这种方法有什么优势? 生:这种方法比较简单,容易理解。

师:除了列表法,你们还有什么方法?

第二种:假设法。

生1:我先用26-8×2=10(只),我是想假设全部是鸡的话,8只鸡就有16只脚,而26减去16还多出10只。也就是有些兔也当成鸡了,一只兔当成一只鸡就会少算2只脚,再用10÷2=3,就是兔有5只,鸡有8-5=3只。(配合幻灯或画图演示)

师:刚才这位同学把笼子里的动物全假设成鸡了,还有不同的假设法吗?

生2:我是全部假设成兔,总共有8×4-26=6(只)脚,一只鸡当成一只兔就会多算2只脚,再用6÷2=3(只),就是鸡有3只,兔有8-3=5只。(配合幻灯或画图演示)

师:这两位同学的方法有什么相同之处吗?

生:都是用的假设法。(板书:假设)

师:还有和他们的解法不一样的吗?

第三种:列方程。(配合幻灯演示)

生:设有x只兔,鸡就有(8-x)只。列出方程4x+2(8-x)=26,解是x=5,即有5只兔,8-3=5只鸡。

师:老师想问你,这里的 4x和2(8-x)分别表示是什么?

生:4x是兔脚的总数,2(8-x)是鸡脚的总数。

师:方程解完了也要注意检验,列方程的解法还有个名字也就叫代数法。(板书:方程)

第四种:古人的解法。(配合幻灯演示:)

生:用26÷2-8=5,这是兔子的只数,再用8-5=3,这就是鸡的只数。

(屏幕显示:脚数÷2-头数=兔数 头数-兔数=鸡数)

师:看起来很复杂的“鸡兔同笼”问题,古人解起来就这么简单啊。

师:老祖宗的方法真是太简单了,其中的道理你们都听明白了吗?

师:这个方法看起来很简单,要理解它还真不容易呢。其实对这个问题,不但咱们中国人有研究,外国人对它也有关注,美国教授波利亚,他讲了一个很有趣的故事解释了这种解法的道理。

(课件演示,教师相机解释):草地上有一群鸡兔在玩耍,突然,鸡对兔说:“我们的本领可大了,可以做金鸡独立”。说着每只鸡就抬起一只脚,只用一只脚站着。兔子们见了,也不甘示弱:“这有什么了不起,看看我们兔子作揖。”说完,每只兔就把两只前脚提起来,只留下两只后脚站着。哈哈,这下有趣了,原来的双脚鸡都变成了“独脚鸡”,原来的四脚兔都变成了“双脚兔”。看着图示,你发现什么了? 生1:现在草地上鸡和兔的头数没变,站立的脚数只剩下原来的一半,也就是“脚数÷2”。生2:现在草地的脚数再和头数比,只有一只兔子多出1只脚,所以,脚数÷2-头数=兔的只数。

师:都看明白了吗?你们觉得我们老祖宗的方法怎么样?

生3:方法很简单,蕴含的道理很深刻!

师:不过,大家也要小心哦,这种看起来很简单的方法也是有局限的。

2、方法优化。

师:这么多不同的解决方法,你们最喜欢哪种方法呢?

生1:我喜欢方程解法,因为方程顺着题目的意思想起来比较方便。

生2:我觉得要看题目来决定,先弄清题目意思,再来选择合适的方法。

师:这些解法各有各的特点,它们既有联系又有区别,既有优长也有缺陷。希望大家能根据题目的特点灵活运用。

3、体验感受,建立模型。

师:通过刚才的汇报说明大家对“鸡兔同笼”的解决办法掌握的不错,只是老师现在有一个疑问,在生活中我们很少看到有人把鸡和兔放在一个笼子里养吧,就是放在一起养,也没谁去数头数脚做这种无聊的事。我们的老祖宗干嘛煞费苦心地研究来研究去的,一千多年过去了,还作为宝物似的流传到今?“鸡兔同笼”有什么独特的魅力吗?”(显示:“鸡兔同笼”有什么独特的魅力?)日常生活中有类似鸡兔同笼的问题吗?

师:据资料显示,日本人也研究鸡兔同笼问题,只是他们不叫“鸡兔同笼”,而叫“龟鹤同游”。

(幻灯:龟鹤同游,共有40个头,112只脚,求龟、鹤各有多少只?)

师:日本人说的“龟、鹤”和我们说的“鸡、兔”有联系吗?

生:龟和兔一样的,有四只脚。鹤和鸡一样的,都是两只脚。

幻灯:龟-----兔 鹤-----鸡

师:老师昨天晚上还看到这样一首儿歌。

(幻灯:一队猎人一队狗,两列并成一队走。数头一共五十五,数脚共有一百九。)师:我们研究了鸡兔同笼、龟鹤同游,也来给这首儿歌取个名字?

生:人狗同行。

师:这“人狗同行”和“鸡兔同笼”有联系吗?

生:我觉得它和鸡兔同笼的问题仍然是一样的。猎人相当于鸡,狗相当于兔。师:他的这个理解可以吗? 生:可以。

师:虽然把猎人看作鸡有些不雅,但是从研究的角度大家确实是找到了他们数量上的联系。幻灯:猎人——鸡(两只脚)狗——兔(四只脚)

师:回想一下,从“鸡兔同笼”到“龟鹤同游”,再到“人狗同行”,你发现了什么呢?(再次显示:“鸡兔同笼”有什么独特的魅力?)

生1:鸡兔同笼是多方面的。

生2:“鸡兔同笼”可以表示好多种和“鸡兔同笼”相同的情况。

师:是啊,鸡兔同笼不只是代

表着鸡兔同笼的问题(老师在课题上加上双引号),它就好像是一个模型!(板书:模型)我们可以在日常生活中找到很多它的影子。想想看,鸡兔同笼问题还可以变化成什么问题?

生1:鸭猫问题。生2:猪鹅问题。

生3:马鹰问题。

师:鸡、鸭行不行?牛马呢?

生:不行的,它们都是两条腿,数量没有区别。

4、质疑引思。

师:在自学过程中,你们还有什么疑问吗?

师:都没疑问了,那就看看大家能不能运用(板书:应用)今天所学的知识解决日常生活中的“鸡兔同笼”问题,请看题。

三、应用拓展,强化体验。

1、应用。(自由选择)

(1)、六(3)班38人去划船游玩,共租了8条船,每条大船可坐6人,每条小船可坐4人。大小船各租了几条?

师:谁来汇报第一题

(生汇报,同学判断)

(2)、盒子里有大、小钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。盒中大钢珠、小钢珠各有多少个?

师:谁来汇报第二题

(生汇报,同学判断)

2、拓展。

(1)、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。篇二:鸡兔同笼问题 教案设计

人教版新课程标准实验教科书

六年级上册

《鸡兔同笼》教学设计

执教:驿城区胡庙乡周井小学 耿 峰

《鸡兔同笼》教学设计

教学内容:人教版六年级上册数学广角--鸡兔同笼(112-114页及115 页“做一做”和练习二十六相关练习题)

教学目标: 1.知识与技能

(1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

(2)尝试用不同的方法解决“鸡兔同笼”问题,使学生体会代数 方法的一般性。2.过程与方法 解决“鸡兔同笼”问题可用列表、猜测、假设或者方程解等方法。3.情感、态度与价值观

(1)在解决问题的过程中,培养学生的逻辑推理能力。

(2)让学生体会到数学问题在日常生活中的应用。

重 难 点:尝试用不同的方法解决“鸡兔同笼”问题。

关 键:在解决问题的过程中培养学生的逻辑推理能力。课 时:1课时

教具准备:课件

教学过程

一、开门见山,导入新课:同学们,今天,我们一起来研究一个有趣的问题,请看屏幕。

二、新授

1、出示鸡兔同笼问题:今有鸡兔同笼,上有8头,下有22足,问:鸡有几只?兔有几只? 提问:哪位思维敏捷清晰的同学能给大家读一遍题目?

2、学生读后,师说,这道题目的名字起的很直白,就是题目中说的“鸡兔同笼”(板书课题)师问:题中都有哪些已知条件?指名回答。(重点关注隐性条件,就是鸡有两只脚,兔有四只脚)

3、师说:这道题可能有同学曾经在一些思维训练的题目中见到过,当然也有很多同学可能是第一次见到,请同学们挑战一下自己,看能不能把它解决掉。(让学生独立思考三分钟,老师到学生中间,发现解法。)

4、逐一列表法 出示表格,和学生一起完成表格。突出检验的过程,为后续学生的作业中避免出错打下基础。

5、师说:同学们,我们刚才做的这道题,我曾经拿它考过同事一位四年级的小学生,他也非常聪明,竟然也找到了答案。大家想不想知道他是怎么做的啊?

出示画图的方法,然后顺势引入假设法。

出示假设法

如果这8个头都是鸡的,那么,腿就应该有16条,可是这就比实际的22条腿少了6条,这说明笼子里肯定有兔子存在,因为我们知道每只鸡比一只兔子少了两条腿,那么少算的6条腿肯定就是3只兔子的,这就算出了兔子的只数是3只,再用8减去3,就得到鸡有5只。

大家看,这种方法是不是也很简单,而且真的是很聪明的想法。这就叫数形结合。(板书:数形结合)

6、请大家想一个问题,刚才我们是先把兔当成鸡来算的,那么,能不能把鸡当成兔来算呢?

(同学们的小脑瓜真的很灵活,能够做到举一反三,加油哦。)

7、师:这道题我们已经能够用两种方法解决了,不知道还有没有同学能用咱们常用来对付疑难应用题的方法来消灭它?

生:列方程

师:对了,就是方程,那么该怎么用方程来解决呢?

师:谁还记得,用方程解的时候,弄懂题意后要做什么? 师:对,就是设未知数。

那么,我们可以设鸡有x只,则兔就应该有(8-x)只。

谁站起来给大家列出完整的方程?

师:指名学生口头列出方程

师:这个方程我们会不会解?请大家快速的解出来。

8、小结

一个小小的“鸡兔同笼”问题我们用了这样几种不同的方法把它解决了。你喜欢哪一种方法?为什么?第一种是列表法,简单、明白,但也有缺点,谁知道?(不适合较大数字),说的真好。第二种是假设法,也就是算术法,第三种是方程,每一种解法都有它自己的特点,我们应该根据自己的需要,来选择合适的方法灵活去用。比如在数字比较小的时候,我们可以用这几种方法中的任何一种,但是如果数字比较大的时候呢,我们用算术方法或者方程来做就会更好些,是不是?

三、归纳研究

师:同学们,不仅是我们今天在研究这个问题,其实在很多年前,古人对这个题目就有研究。在一千五百多年前,中国有一本非常有名的关于数学的故事书,叫《孙子算经》。在这本书中就记录了“鸡兔同笼”问题。并且还给出了一个很有趣的解法。

出示题目及解法:今有鸡兔同笼,上有8头,下有22 足,问:鸡有几只?兔有几只?

脚数÷2兔数=鸡数

师:我们先用这种方法口算一下,看和我们算的结果是不是一样。学生口算后,发现结果,说明这个方法正确。

师问:古人这样做的道理是什么?

指名回答:有些同学想到了,我们请一位同学来说一说 好不好?(指名学生解释,但学生很难说清楚)

师说:大家心里明白,就是说不好,是不是?其实啊,对这个问题,不但咱们古人有研究,外国人也曾关注过这个解法。美国有一个非常有名的数学家叫波利亚,他讲了一个很有趣的故事来解释为什么可以这么算。他说,有一天,有一群鸡和兔在草地上玩,突然,一只鸡突发奇想,说,我可以表演金鸡独立,兔说,我也会。于是,他们就这样做了。这时候我们发现,草坪上的脚的只数只剩下了原来的(一半)。那么再拿这些脚和他们的只数比一比,是不是比他们的只数还多一些,为什么会多呢,不就是因为每只兔子多算了一只脚吗?所以我们拿脚的一半减去它们一共的只数,如果多了几只脚,不就有几只兔子吗?,看来咱们解决数学问题的时候啊,还真的需要一点数学家的本领。(板书:奇思妙想)

四、延展

1、师:好了,同学们,接下来,我这里有一首儿歌,我们一起把它来读读。

出示儿歌:一队猎人一队狗,二队并成一队走,数头一共有十二,数腿一共四十二,多少猎人多少狗?

师问:这道题算哪一类题目

生答:鸡兔同笼问题。

指名学生找和鸡兔的相同点(人两条腿,相当于鸡,狗四条腿,相当于兔)学生分析后,让学生独立做。

指名学生回答后,一起检验腿的条数

师:从这里我们可以看得出,“鸡兔同笼”问题中不仅仅是指鸡和兔。(在标题的鸡兔上加引号),例如本题。其实啊,对这个问题,日本人也有研究,日本人就把此类问题称为“龟鹤问题”。大家想想,日本人说的龟鹤和鸡兔同笼问题有联系吗?

学生回答后,请学生自己给这类题目起名字:我们如果不叫它鸡兔也不叫它龟鹤,能不能叫它其他的名字(只要和鸡兔同类型就行)。

生答:行。

师:那么说到底,鸡兔同笼只是个“模型”。那么什么是模型?说到模型,你会想到什么?生答:飞机模型。师问:飞机模型和飞机长得像吗?生答:像!师问:那么飞机模型是真飞机吗?生答:不是。师总结:对,模型就是像真的,它有真的构造但不是真的,就是具有基本构造但非真实 就叫模型。所以,我们刚刚说的什么龟鹤问题啊、人狗问题啊,等等,就是鸡兔同笼问题的模型。

师:同学们,我们讨论这个“鸡兔同笼”快一节课了,可是我突然想到一个问题,那就是:生活中谁会把鸡和兔装到同一个笼子里啊,就是装了,谁会傻到去数它们的腿玩啊,数头不就行了?那我们干嘛要研究它呢?看来,只有一个原因,那就是在生活中我们能够找到这一类型的问题。不信请看: 篇三:《鸡兔同笼》教学设计

《鸡兔同笼》教学设计

一六八玫瑰园学校孙进二0一四年三月十四日

一、备前思考

教材分析:“鸡兔同笼”是我国的历史名题,既有趣又益智,最早出现在《孙子算经》中。在国标新教材中,不少版本都有编排,但每个版本的教学目标不同。北师大版教材是安排在五年级上册学习这个内容,突出“尝试与猜测”(列表)的解题方法;苏教版六年级上册将之作为一道练习题来巩固“假设和替换”的策略;而人教版则是浓墨重彩,用了6个页面在“数学广角”中详细介绍了“鸡兔同笼”的出处、几种典型解法及实际应用,突出解决问题策略的多样化。本课使用人教版教材,加深使用苏教版的学生对《鸡兔同笼》的认识。

学生分析:使用苏教版教材的学生,在六年级上册已经接触过《鸡兔同笼》,很多孩子会用假设和方程法解决这个问题,同时,他们思维活跃,对这类问题很感兴趣,这为本课教学提供了良好的基础。但是因为苏教版教材的侧重点不同,孩子们对《鸡兔同笼》的认识有局限,对有些方法的探索和理解还是有难度的。

依据教材和学生的情况我有了以下的思考: 思考一:

教材编者把这个问题放在不同的版本中,是想让他呈现一定的数学知识,提升学生某方面的数学能力。苏教版教材将《鸡兔同笼》作为一道练习来呈现,提升对“替换和假设”策略的理解。而笔者认为,《鸡兔同笼》一直流传到现在,他有一个重要的价值就是解题方法的多样性,每种解题方法都蕴含着丰富的数学思想,而让学生体会到解决问题方法的多样化,正是《鸡兔同笼》价值的最好体现。因为这次面对的是使用苏教版教材学习的六年级学生,大部分同学对解决《鸡兔同笼》问题方法的理解有可能只局限于假设法和方程法,所以,笔者认为,让学生们去体会《鸡兔同笼》解题方法的多样性是合理的。

思考二:

执教过《鸡兔同笼》的老师发现,一旦将题目情境改变,很多的学生就会出现不会做的情况。深入思考,原因是《鸡兔同笼》不是一道题目,它是一类“问题”,它是 “母题”,是一个数学“模型”。数学模型是对现实世界的某一特定研究对象,在作了必要的简化和假设之后,运用适当的数学工具,并通过数学语言提炼、表达出来的一个数学结构,如数学公式、数学概念、解题方法及某类知识的特征等。一般可分为三类:概念型数学模型、方法型数学模型、结构型数学模型。很显然《鸡兔同笼》所体现的模型是第三类,就是虽然问题的情境在变化,但问题的本质——数量之间的结构关系是不变的。

2011版《数学课程标准》强调,学生要初步形成模型思想,所以这节课,我们不仅要教给孩子们解题的方法,还要让孩子们建立《鸡兔同笼》这类问题的“模型”,培养模型意识和“举一反三”的能力,为孩子们升入初中后,更好的学习数学打好基础。

带着这样的思考,在六年级进行教学尝试,有不妥之处,真诚希望各位前辈、同行批评指正。

二、教学设计 教学目标:

1.在掌握基本解法的基础上,比较和梳理各种解法的特点,体会解决问题方法的多样化; 2.经历将实际问题抽象成数学模型进行解释和应用的过程,培养学生解决问题的模型意识; 3.感受古代数学问题的趣味性,激发学生学习数学的兴趣。教学重点:

比较和梳理各种解法的特点,体会解决问题方法的多样化;培

养学生解决问题的模型意识; 教学准备: :教具:多媒体课件

学具:学习卡片4张 教学过程:

一、提出问题

(一)猜测导入,出示题目

这是中国古代的一道趣题,距今约有1500年的历史,它记录在《孙子算经》这本古籍中,题目当中的主角是兔子和鸡。(板书课题 鸡兔同笼)”

(二)回顾旧知,梳理信息 关于鸡兔同笼你都知道些什么?

出示题目:今有鸡兔同笼,上有8头,下有22足。问:鸡有几只?兔有几只?

从这道题目上你能发现哪些数学信息?

二、探究方法

(一)完成学习卡片1 大屏幕出示学习指南(生读)学生完成学习卡片1

(二)展示做法,全班交流。预设: 方法1(假设法)假设全是兔子

鸡:(8×4-22)÷(4-2)=5(只)兔:8-5=3(只)方法2(方程法)

解: 设兔有x只,则兔子有(8-x)只 4x+(8-x)×2=22 4x+16-2x=22 2x=6 x =3 8-3=5(只)

方法3(画图法)(图略)方法4(列表法)(表略)

(三)对比提炼,优化方法。

(四)沟通联系,介绍古人方法。足数÷2-头数=兔数 头数-兔数=鸡数

三、初步建立结构模型

(一)出示《龟鹤同游问题》、《人狗同行问题》,学生读题。

下载对鸡兔同笼问题的教学思考(精选多篇)word格式文档
下载对鸡兔同笼问题的教学思考(精选多篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    鸡兔同笼问题_教案设计

    《鸡兔同笼》教学设计 执教:薛敏 教学内容:人教版六年级上册数学广角--鸡兔同笼教学目标: 1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2、尝试用不同的方法解决“鸡兔......

    数学广角鸡兔同笼问题教学设计

    创新性成果:数学广角--鸡兔同笼教学设计 和龙市富兴二小刘延红 创新性成果:这次数学广角--鸡兔同笼教学设计,我认为可以称之为创新性成果。因为初次教学设计时,我是以讲为主,学......

    四年级下册“鸡兔同笼”问题教学设计

    “鸡兔同笼”教学设计 教学目标: 1、了解”鸡兔同笼”问题,感受中国古代数学问题的趣味性. 2、尝试列表枚举,图示,假设等不同的方法解决”鸡兔同笼”问题,体验解决问题方法......

    用方程解鸡兔同笼问题

    60x-40(8-x)=480 (1) 四年级举行数学竞赛,共有10道试题,每做对一题得15分,没做或做错一题不但不得分,还要倒扣10分,小王得了100分,问:他做对了多少题? (2) 小王和小李,参加数学竞赛,每做对一......

    有趣的鸡兔同笼问题

    有趣的鸡兔同笼问题 先烈东小学五年(2)班汤迎丰 鸡兔同笼这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡......

    鸡兔同笼问题教案及说课稿(精选)

    四年级下册数学《鸡兔同笼》教案 田庄中心校耿庄小学 王 俊 教学内容: 人教版四年级下册数学第九单元《鸡兔同笼》。 教学目标: 1、了解“鸡兔同笼”问题的结构特点,了解猜......

    《鸡兔同笼问题》听课感想

    1. 老师教态自如,幽默风趣,教学设计严谨缜密,构思巧妙,条理清晰,重点突出,把抽象的鸡兔同笼问题讲的通俗易懂,让孩子在轻松的氛围中掌握了本节课的知识。 2. 鸡兔同笼问题是比较抽......

    对体育教学存在问题的几点思考

    对体育教学存在问题的几点思考 天津市大港区教师进修学校 李文江 课改实验四年了,各个实验区都在进行着教学的探索,总结出了许多有益的经验,推动了体育课教学。课改实验在稳步......