第一篇:列方程解应用题(和倍问题)
和倍问题
例
1、甲、乙两袋大米共360千克,已知乙袋大米的重量是甲袋重量的5倍,甲、乙两袋大米各有多少千克? 练 六一儿童节同学们做花束,男生和女生一共做了305束,已知女生做的花束比男生做的3倍还多5束,男、女生各做多少束花?
例
2、已知一个农场猪、牛、羊共有2420只,牛的头数是猪的2倍,羊的头数是牛的4倍,求猪、牛、羊各有多少头?
练 四、五、六年级共栽花苗480棵,六年级栽的花苗是四年级的3倍,四年级栽的花苗比五年级少30棵,求每个年级各栽花苗多少棵?
例
3、小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍? 练 甲、乙两个蓄水池,甲水池有水88吨,乙水池有水62吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍? 例
4、两个数相除商是21,余数为2,已知被除数、除数、商和余数的和一共是443,被除数、除数各是多少? 练 被除数比除数大168,商是22,被除数、除数各是多少?
假设法
例
1、今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚和兔脚共94只,问鸡、兔各有多少只? 练 今有鸡、兔共居一笼,已知鸡和兔共100只,鸡脚比兔脚多80只,问鸡、兔各有多少只?
例
2、某场羽毛球比赛售出40元、30元、50元的门票共400张,收入15600元,其中40元和50元的票的张数相等。每种票各售出多少张?
练 有甲、乙、丙三种练习簿,价钱分别是7角、3角和2角。三种练习簿一共买了47本,付了21元2角,买乙种练习簿的本数是丙种练习簿的2倍。三种练习簿各买了多少本?
例
3、某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一题倒扣4分,小华在这次竞赛中共得66分,问他答对了几道题?
练 某玻璃厂要为商场运送1000个玻璃杯,双方商定每个玻璃杯的运费为1元,如果打碎1个,不但不给运费,而且要赔款3元,到达目的地后结算时玻璃厂共得运费920元,求打碎了几个玻璃杯?
例
4、一批货物用大卡车装要16辆,如果用小卡车装要48辆,已知大卡车比小卡车多装4吨。问这批货物有多少吨?
练 一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨。这批钢材有多少吨?
年龄问题
例
1、小伟今年16岁,爷爷今年61岁。几年前爷爷的年龄正好是小伟年龄的6倍? 练 小明今年16岁,奶奶今年80岁。奶奶多少岁时正好是小明年龄的9倍?
第二篇:《列方程解应用题——和倍问题》教案
精品文档 你我共享
《列方程解应用题——和倍问题》教案
三林镇中心小学
张跃明
一、教学内容:上海市九年义务教育课本
五年级第二学期P21
二、教学目标:
1、会解答已知大小两个量的和及它们的倍数关系,求大小两个量各是多少的应用题。
2、会正确找出和倍问题应用题的等量关系,进一步掌握列方程解应用题的基本方法。初步体会利用等量关系分析问题的优越性。
3、掌握检验方法,养成自觉检查、验算的良好习惯,会进行检验。
4、体验用列方程解答“和倍”问题应用题的过程。
三、教学重点:用方程解答“和倍”问题应用题的方法。
四、教学难点:分析应用题等量关系,设一倍数为未知数。
五、教学过程:
(一)创设情景,展现问题 1.情景引入
师:2010年世博会即将召开了,小胖、小丁丁、小巧、小亚平时收集了许多各国邮票。(多媒体出示人物、邮票图)
师:他们对各自的邮票进行了统计,其中,小胖有174张邮票,小巧有58张邮票。(板书出示)
2.根据所给的两个条件,补上问题,并列式计算(口答)。
教师板书:(1)小胖和小巧一共有 张邮票。(学生列式计算后教师补上232)
(2)小胖的邮票张数比小巧多 张。(学生列式计算后教师补上116)
(3)小胖的邮票张数是小巧的 倍。(学生列式计算后教师补上3)3.在上面(1)(2)(3)三句话中选择2句进行编题。学生回答后,教师选择(1)(3)情况贴出,并补上问题。
小胖和小巧一共有232张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票?
4.揭示课题
师:怎样用方程去解决这类题目,这就是我们今天要研究的问题。出示课题:列方程解应用题
(二)合作探究,解决问题
知识改变命运
精品文档 你我共享
1.探究解法
(1)师:通过以前的学习,我们知道列方程解应用题最关键问题要找到等量关系,我们再根据等量关系列出方程。那么本题目告诉你什么,你能找到怎样的等量关系?
(2)根据学生回答,板书等量关系。
生:根据小胖和小巧一共有232张邮票,我们可以找到:
小胖的张数+小巧的张数=两人一共的张数(板书)生:根据小胖的邮票张数是小巧的3倍,我们可以找到:
小巧的张数×3=小胖的张数(3)探究设句与方程。
a.师:那么你准备怎么样列方程?怎样写设句? b.学生独立思考,小组交流。c.反馈并板书
生1:我根据第一个等量关系列方程,那么就用第二个等量关系进行写设句。设小巧有X张邮票,那么小胖有3X张邮票。方程为3X+X=232 生2:我根据第一个等量关系列方程,那么就用第二个等量关系进行写设句。设小胖有X张邮票,那么小巧有X÷3张邮票。方程为X+X÷3=232 生3:我根据第二个等量关系列方程,那么就用第一个等量关系进行写设句。设小胖有X张邮票,那么小巧有(232-X)张邮票。方程为3(232-X)=X 生4:我根据第二个等量关系列方程,那么就用第一个等量关系进行写设句。设小巧有X张邮票,那么小胖有(232-X)张邮票。方程为3X=232-X 师在此强调,①今天有两个未知量,一个设为X,另一个要用含有X的代数式表示。②根据等量关系去设。
板书:
小胖的张数+小巧的张数=两人一共的张数
3X + X = 232 X + X÷3 = 232 设:
X
232-X 设:232-X
X 小巧的张数×3=小胖的张数
设:
X
3X
设:
X÷3 X
知识改变命运
精品文档 你我共享
3(232-X)=X
3X=232-X
d.比较
师:请你比较以上四种方法,你认为哪种比较方便?
学生回答后,教师小结。
(3)师生共同完整解答,板书:小胖的张数+小巧的张数=两人一共的张数
解:设小巧有X张邮票,那么小胖有3X张邮票。(强调后半句要写)
3X+X=232
4X=232
X=58
3X=3×58=174(强调3X)
答:小胖有174张邮票,小巧有58张邮票。学生口头检验。
(4)小结:一般根据倍数关系,设一倍数为x,几倍数用含有字母的式子表示;再根据这两种量的和,找出数量之间的相等关系,就可列出方程,并解方程,求出得数;最后进行检验后写上答句。2.单项训练
根据下列条件,说说:利用怎样等量关系列方程?怎样写设句?
(1)果园里桃树和梨树一共种了340棵,其中桃树的棵数是梨树的3倍(利用 桃树的棵数+梨树的棵数=一共种的棵数 列方程。
利用桃树的棵数是梨树的3倍,设梨树种了X棵,那么棵数种了3 X棵。)(2)小卫家里养了20只兔子,其中大兔只数是小兔的4倍(3)甲班的图书本数是乙班的4.5倍,甲乙两班共有图书110本 3.模仿练习
小胖将174张邮票放在大、小两本集邮册中,大集邮册中的邮票张数正好是小集 邮册中的2倍,这两本集邮册中分别有多少张邮票?(1)找等量关系
大集邮册的邮票张数+小集邮册的邮票张数=这两本集邮册共有的邮票张数(2)分析怎样写 解:设小集邮册有X张邮票,那么大集邮册有2X张邮票。(3)学生解答后,交流板书
知识改变命运
精品文档 你我共享
2X+X=174 3X=174 X=58 2X=2×58=116 答:小集邮册有58张邮票,那么大集邮册有116张邮票。
(4)检验
(三)实践应用,巩固深化 1.第一层次(基本练习)(1)花坛里有红花、黄花共126朵,黄花的朵数是红花的2.5倍。花坛里有红花和
黄花各多少朵?(完整解答)(2)妈妈给小巧买一套衣服一共用去135元,上衣的单价是裤子的2倍。
裤子和上衣单价各是多少元? 2.第二层次(变式练习)(1)猴山上共有猴子52只,大猴比小猴的4倍少8只,大猴、小猴各有多少只?(2)如图所示,∠1的大小是∠2的3倍,∠2是多少度? 1 2(3)乙数末尾添上0后与甲数相等,甲、乙两数的和是99,甲、乙两数各是多少?
(四)自我评价,总结提高
1.本节我们研究什么问题应用题,从中你学会了什么本领? 2.给你的课堂表现作一个评价,打一个分。附:板书设计 列方程解应用题 小胖和小巧一共有232张邮票。小胖的邮票张数比小巧多116张。小胖的邮票张数是小巧的3倍。
小胖的张数+小巧的张数=两人一共的张数
3X + X = 232 X + X÷3 = 232 设:
X
232-X 设:232-X
X 小巧的张数×3=小胖的张数
知识改变命运
精品文档 你我共享
设:
X
3X
设:
X÷3 X
3(232-X)=X
3X=232-X 小胖和小巧一共有232张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票? 小胖的张数+小巧的张数=两一共的张数 解:设小巧有X张邮票,那么小胖有3X张邮票。
3X+X=232
4X=232
X=58
3X=3×58=174 答:小胖有174张邮票,小巧有58张邮票。
沁园春·雪
北国风光,千里冰封,万里雪飘。望长城内外,惟余莽莽; 大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,欲与天公试比高。
须晴日,看红装素裹,分外妖娆。江山如此多娇,引无数英雄竞折腰。
知识改变命运
精品文档 你我共享
惜秦皇汉武,略输文采; 唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,只识弯弓射大雕。数风流人物,还看今朝。知识改变命运
克 俱往矣,
第三篇:列方程解应用题
列方程解应用题
【例1】水果店运来的西瓜的个数是白兰瓜的个数的2倍,如果每天卖白兰瓜40个,西瓜50 个,若干天后卖完白兰瓜时,西瓜还剩360个。水果店运来的西瓜和白兰瓜共多少个?
【例2】有甲、乙两桶油,若从甲桶倒入乙桶15千克,则两桶油质量相等;若从乙桶倒入甲桶48千克后,则甲桶油是乙桶油质量的4倍。甲桶原来有油多少千克?
【例3】甲乙丙三人,甲的年龄是乙的2倍时,丙是20岁,当乙的年龄是丙的2倍时,甲35岁,那么甲65岁时,丙是多少岁?
【例4】甲、乙、丙、丁四人今年分别是16、12、11、9岁。问,多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?
【例5】甲、乙、丙、丁四个人组成代表队参加数学比赛,甲得了88分,丙得了85分,丁得了90分,乙的分数比四个人的平均分多4分。问乙的成绩是多少?
【例6】414是三个数的和,这三个数分别能被5、6、7整除,所得的商相同。问;这三个数分别是多少?商是多少?
【例7】小余买了5元、1元2角、8角的三种邮票共20张,总值43元6角,其中5元和1元2角的邮票张数相同。问:小余三种邮票各购多少张?
【例8】某校五、六年级师生秋游去公园划竹筏,若每筏坐12人,则少3个竹筏;若每筏坐14人,则多出4个竹筏。问:公园一共有几个竹筏?五年级师生共多少人?
【例9】一架飞机所带燃料最多可飞行15.75小时。飞机去时顺风,飞行速度每小时1500千米,返回时逆风,速度是每小时1200千米。问:这架飞机最多飞出去多少千米就要往回飞?
【例10】一个三位数的数字是由大到小的顺序排列的三个连续整数,这个三位数除以3所得的商比这个三位数的百位数与个位数交换后所得新的三位数小238,求原来的三位数。
【例11】东西两镇相距3450米,甲、乙从东镇,丙从西镇同时出发相向而行,甲、乙、丙速度分别是每分钟45、50、60米,那么多少分钟后乙正好在甲、丙的中间?
【例12】小余买两种练习本若干本,单价分别是1元和1元5角,共付出12元,问:两种本子各买了多少本?
消去法解题
【例1】甲买了8盒糖和5盒蛋糕共用去171元,乙买了5盒糖和2盒蛋糕共用去90元。每盒糖和每盒蛋糕各多少元?
【例2】小明买了3只小鸭,7只小鸡和1只小兔,共付15.9元;小豪买了4只小鸭,10只小鸡和1只小兔共付了21元。如果小兰只买小鸭、小鸡、小兔各1只,则应付多少元?
【例4】8头梅花鹿和13只羊每天共吃青草182千克,13头梅花鹿和8只羊每天共吃青草217千克。问:1头梅花鹿和1只羊每天各吃青草多少千克?
列方程专项练习
1、一条鲨鱼头长3.5米,身长等于头长加尾长,尾长等于头长加身长的一半。问:这条鲨鱼有多长?
2、一道除法算式中,商是除数的7倍,除数是余数的4倍,商与除数、余数的和是528。问:被除数是多少?
3、用绳子量井深,将绳子2折则多出井外9米,将绳子3折则多出井外0.5米。问井有多深?
4、商店里有一批服装,卖掉90套女装后,剩下的服装中,男装是女装的2倍,又卖掉378套男装后,剩下的女装是男装的5倍。问:商店里原有男、女装各多少套?
5、一个两位数,十位上数字比个位上数字少2,如果十位上的数字扩大3倍,个位上的数字减去3,所得的两位数比原来的数大57,求原来的两位数。
6、五年级组织爬山活动,上山用了3小时到达离山顶还有22.5千米处,如果从山顶沿原路下山,就要用4小时,已知下山的速度是上山的2倍,问:从山脚到山顶的山路有多长?
7、王师傅加工一批零件,如果每天加工75个,就可以比原计划提前4天完成任务;如果每天加工50个就会比原计划推迟3天完成。王师傅希望能比原计划提前3天完成,他每天应加工多少个?
8、五年级组织去郊外活动,共有师生336人准备租车前往,现有56个座位的大客车和28个座位的小客车若干辆,要使每辆车都满座,问:需大、小客车各多少辆?
9、已知蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有三种小虫共43只,共有294条腿和39对翅膀。问:每种小虫各有几只?
10、小明有面值分别为拾元、伍元、壹元的人民币49张共211元,拾元的张数比伍元的少8张。问:小明有拾元、伍元和壹元的各多少张?
11、有大兔、中兔和小兔共97只,一餐午饭共吃掉蘑菇854个,已知每只大兔子吃13个,每只中兔子吃9个,每只小兔子吃6个。已知中兔比大兔多4只。问:兔场有大、中、小兔子各多少只?
12、甲仓库有大米76吨,乙仓库有大米46吨,现在甲仓库每天进大米5吨,乙仓库每天进大米29吨,多少天后乙仓库的大米是甲仓库的3倍?
13、同学们乘车郊外游玩,如果每辆车坐60人,就余下25人的座位;如果每辆坐55人,就空出10人的座位。问:车有多少辆,有多少同学?
14、五(1)班甲组同学擦玻璃,如果每人擦12块,还剩18块;如果每人擦14块,还剩6块。问:每人擦多少块正好擦完?
15、果蔬农场将855千克的圣女果分装在大小两种纸箱里,每只大箱装6千克,每只小箱装4.5千克。装箱后清点箱数,得知小箱比大箱的3倍还多8箱。问:一共装了多少大箱?多少小箱?
16、牧场上的青草每天匀速生长,已知这片草可供15头牛吃20天,或者供84只羊吃10天,如果4只羊吃草量相当于1头牛的吃草量。那么现有9头牛和96只羊一起吃,可以吃几天?
17、一个六位数的左端数字是1,如果把左端的数字1移到右端,所得的新数是原数的3倍,求原数是几?
18、兔妈妈给小兔们分蘑菇,如果每只小兔分6个,就会多出48个蘑菇;如果每只小兔分8个蘑菇,就有一只小兔分不到。问:一共就有多少蘑菇?
19、果园里有梨树若干棵,苹果树是梨树的3倍。如果每天给15棵苹果树和9棵梨树修枝,当梨树全部修枝后,还剩96棵苹果树没有修枝。问:果园里有苹果树、梨树各多少棵?
20、一个两位数,各位数字之和的4倍正好比这个数少9,这个两位数最大是多少?
21、运一批西瓜,如果用2辆大卡车和6辆小卡车运,15次可以运完;如果用9辆大卡车和5辆小卡车运,5次可以运完。现在只有4辆小卡车运,问:多少次可以运完?
22、学校教务处购买2台打印机和10个U盘共用去2360元,如果用一台打印机换回8个U盘,可以少花62元。问:打印机和U盘单价各是多少?
23、有一个两位数,十位数字比个位数字大2,如果把个位上的数字与十位上的数字对调,所得的两位数比原数小18,求这个两位数是多少?
24、三个连续自然数,它们的和为108,求这三个数。
25、一个三位数、各个数位上的数字相加之和是9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数。
第四篇:列方程解应用题
《列方程解应用题》教学实录及评析
执教者:郭江海评析者:李汝凤
教学内容:人教版9册P114例4,做一做,练习二十八1—2,4,8题。教学目标:
1、学生会用方程解答“已知比一个数的几倍多(少)几是多少,求这个数”的应用题。会灵活选用算术与方程解答一倍量已知与未知的应用题。
2、培学生从不同角度思考同一个问题的能力。
3、体验数学与现实生活的联系,培养学生的应用意识和解决简单实际问题的能力。
4、能过对挫折的体验,培养学生质疑的习惯和对数学的兴趣。教学重点和难点:从已知条件中找数量间相等的关系,列出方程。
一、创设情境,复习旧知
师:最近少年文艺团的小团员遇到了一个难题,想请你们帮帮忙,你们愿意吗? 生:愿意!
出示题目:少年文艺团舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人,合唱队有多少人?
学生独立解答,同桌探讨解题思路,生板演。
师:请一位同学说说计算列式。
生:23×3+15
=69+15
=84(人)
师:请你说说解题思路。
生:我是从这一句中知道的“合唱队的人数比舞蹈队的3倍多15人”也就是“舞蹈队的3倍多15人,是合唱队”只要舞蹈队人数×3加上15人就求出,合唱队的人数。
师:请你们用线段图表示这道题,该如何表示呢?
生:我知道舞蹈队的人数为倍数,先画1倍数,然后合唱队的人数是他的3倍多15人,就画3个倍数的长度再加上15人。
师:根据学生的回答板演并画出线段图,并标出问题。
师:从这个线段图中可以知道,1倍数已知,也就是23的3倍多15的数十多少,因此很快列出算式。
师:现在小文艺团长又遇到了一个小麻烦,想请你们帮助解答,你们有信心吗? 生:有!
出示题目:少年文艺团合唱团有84人,比舞蹈队的3倍还多15人,舞蹈队有多少人?
师:你们能比较一下两道题的已知条件和问题有哪些相同的点、不同点吗? 生1:“比舞蹈队人数3倍多15人”这句话是相同的。
生2:他们都是有舞蹈队、合唱队两个数量之间的关系问题。
生3:他们不同的地方是,已知条件与问题调换位置。
师:同学们观察的真仔细,这道题目就是我们以前见过的“已知比一个数的几倍多几是多少”求这个数的应用题,今天我们就来学习列方程解应用题。
(评:把学生熟悉的情境引入课堂,使数学与生活有机地结合起来,使学生在课的开始就感觉到应用题在生活中的重要性,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学,从而以积极的状态投入新知的探究。)
二、探究新知,引入新课
师:请同学们选用自己喜欢的方法来解这道题。
让学生独立解答,选择学生不同的解法,学生板演。
生1:(84-15)÷3=23(人)
生2:84÷3+15=43(人)
生3:(84+15)÷3=33(人)
生4:解:设舞蹈队的人数为X人。
3X+15=84
3X=84-15
X=23
生5:还可以这样列方程:84-3X=15
师:这道题出现多种方法解答。我们先来画线段图。请一位同学说说该怎么画线段图?
生:这道题的线段图与前面的一题的线段图大致一样只不过1倍数变成了问题了。
根据学生回答,画线段图。
师:请你们根据线段图说说以上的几种列式的方法谁对谁错?
生1:我觉得第二个同学的列式是错误的,因为他是把舞蹈队的人数的3倍的人数看成84人,实际上舞蹈队人数的3倍不是84人而是比84还少15人。
生2:根据刚才说的我觉得第三个同学说的也是错的,应该说是舞蹈队人数的3倍,是合唱队人数少15人。用算术解来完成,先求3倍是多少用(84-15)÷3 生3:根据前面两个同学的分析,第一个同学完成的是正确的,合唱队的人数十舞蹈队的3倍多15人,也就是X的3倍多15人方程就很容易列出来了。
师:这节课我们就是学习列方程解这类应用题,我们就一起来探讨一下这类应用题的思路。我请个同学说说,你是怎样解这道题的?
生1:我是抓住列方程解应用题的关键是找等量关系式。找等量关系式中的一种方法,找到题中的关键句。
师:那你能不能说说这道题里的关键句?
生1:合唱队比舞蹈队的3倍多15人。我用合唱队的人数—舞蹈队的人数×2=15,列出方程:84-3X=15
生2:我也是找这句关键句,但是我是反过来说舞蹈队的3倍多15人是合唱队的人数,列出方程:3X+15=84
师:同学们做的很好,能抓住学习的重点,今天这种类型的应用题就可以抓住关键句来找等量关系式。刚才我们弄清了列方程算理。现在我们来比较一下算术解和方程解。
生1::我觉得这道题要用算术解不好做,因为算术解还要考虑3倍的数是多少?需要逆向思考。
生2:我觉得方程解比较好做,因为方程只要顺着题意来做,不要拐弯抹角,变逆思考为顺思考。
生3:我觉得方程简便,不要写解和设,我觉得方便。
师:通过刚才的比较,我们发现方程比算术解易思考,不容易出错。在今后的学习中我们要注意“几倍多几”的应用题,要先判断1倍数是已知,还是未知,“它知”用算术解容易,“未知”用方程解容易思考。
(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)
三、实践应用,巩固新知
1、找等量关系(课件出示)
(1)今年养兔的只数比去年的3倍少8只
(2)红毛衣的件数比蓝毛衣的2倍还多13件
(3)买3个篮球比4个排球多用去5元
(4)比小孩服装的5倍少3套是大人服装。
2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。
师:请一名学生说说该怎么列式。并说说它的等量关系式。
生:今年养兔34只,今年养兔的只数比去年的3倍少8只,去年养兔多少只? 生:这道题的等量关系式是今年养兔的只数×3-8=去年养兔只数。
师:那你怎么这么快就找到等量关系式?
生:我找到了关键句,所以就能很快的找到等量关系式,并列出方程。
3、游戏(机动)
师:指名问学生几岁?×××同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?
请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。
4、对比练习,灵活选择方法
A、各出一道题目“一倍数已知”与“一倍数未知”的应用题
师:下面俩道题,请同学们选择适当的方法解答。
生自己解答,两生板演,集体订正。
师:请你们把两道题里的关键句画出来。两题的关键句是一样的也就是两道题的数量关系式一样,为什么第一题选择方程而第二题选择算术方法呢?请四人小组讨论交流一下。
生1:1倍数已知用算术方法简单。1倍数未知的时候用方程解简单一些。师:是不是请你们验证一下。
出示两道题目,只选方法不必计算列式。
(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)
四、全课小结
1、师:谈谈这节课你有什么收获?
2、师:通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么? 学生发言,师归纳总结。
(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键。)课后反思:
1、列简易方程解应用题是中学学习方程解应用题的基础,对
于小学生来说是不容易的,由于小学生仍处于从形象思维向抽象思维过渡的关键时刻,所以如何做好过渡,是值得我们研究的。本节课采用画线段图,帮助分析数量关系。并在教学中指导学生画图,这样利用线段图使数量关系明显地显现出来,有助于帮助学生设未知数,找等量关系式和列出方程。
3、教会多种学习方法。本节课除了画线段图帮助学生理解以
外,还要考虑指导学生学习方法如: 阅读法,在教会学生阅读的方法,找等量关系式,在教学新知识时我采用不同的读法例如:“合唱队比舞蹈队的3倍多15人”也可以这样读“舞蹈队人数的3倍多15人是合唱队的人数”采用不同的阅读方法就出现不同的方程。还有使用比较法,让学生比较相同的数量关系的应用题,如何选择不同的方法,放手让学生讨论思考得出结论。这些方法对今后学生的继续学习数学是十分必要的,并且这样有利于学生的成长,让学生能轻松的遨游在数学学习的海洋中。
总评:本节课教师能够努力营造宽松、民主和谐的学习环境,引导学生积极参与学习过程。重视师生、生生间的交流、小组讨论、同桌合作,给学生提供自主的活动空间和交流的机会,引领学生通过自己的探索来获取知识,改变以往教师教和学生学的方式。如解题的一般步骤与方法探讨,从准备的演练至例题的尝试,再到方法的归纳无不体现着“以学生为本”的思想理念。整个教学过程,学生学得轻松活泼、积极主动,成为学习的主体;教师教得轻松自如,适时点拨,真正起到一个引导者、促进者的作用
第五篇:列方程解应用题
《列方程解应用题》教学反思
默认分类 2009-10-22 13:50:15 阅读86 评论0 字号:大中小
加强题意内化的教学重点应该放在如何提高学生把应用题中的各种信息进行筛选,压缩成以数量关系为核心的若干临时信息组块的能力。故列方程解
应用题的教学除了教授一般方法例如解题步骤之外,在学生掌握了一定的知识之后,宜加强以下几个方面的工作。
(一)正确理解,牢固掌握应用题中惯用名词术语的意义及常用的等量关系,形成良好的知识结构。
(二)加强文字语言和数学语言的互化练习,借此提高外部言语内化的信息转换能力。
(三)加强分析题中关键词句和非关键词句的练习,借此提高对题目信息筛选、压缩的能力,控制内化前后信息“质的一致性”。
(四)加强整体把握题意的综合能力训练,借此提高对题目内在逻辑的理解以及对题意的知觉水平。
(五)加强对题目矛盾条件的觉察能力的培养,借此提高内化过程中思维的监控水平。
(六)通过列举法,把复杂的问题简单化、生活化。
还可以进行把复合问题分解为几个简单问题,把同一题目的已知条件和问题的位置互换重新编题等等练习。
总之,教师除了应该向学生讲清列方程解应用题的一般步骤、基本方法,诸如通过列表法、线示法、图示法等各种方法,从可直接言传的角度向学生展示解方程应用题的过程,使学生能仿此形式解决问题,表述问题;还应该间接地,从改善学生审题过程的心理品质出发,培养学生正确进行题意内化的能力,从而更有效地解决列方程解应用题的教学难点,努力实现以培养人的发展为宗旨的教学方针