一元一次方程应用题(常见类型题)

时间:2019-05-13 08:09:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元一次方程应用题(常见类型题)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元一次方程应用题(常见类型题)》。

第一篇:一元一次方程应用题(常见类型题)

一、列一元一次方程解应用题的一般步骤:(1)审题:弄清题意;

(2)找出等量关系:找出能够表示本题含义的相等关系;

(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;

(4)解方程:解所列的方程,求出未知数的值;

(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。

二、若干应用题等量关系的规律: 类型一:和、差、倍、分问题

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率„„”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现。【典型例题】 例1.x的例2.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

例3.甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。

例4.有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。

3与1的和为8,求x? 4

类型二:等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。①圆柱体的体积公式:V=底面积高=sh ②长方体的体积公式:V=长宽高=abc 【典型例题】

例1.有一根铁丝长20米,用它围成一个长是宽2倍的矩形,求长、宽分别是多少米?

例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?

类型三:数字问题

一般可设个位数字为a,十位数字为b,百位数字为c

①两位数可表示为:10ba ②三位数可表示为:100c10bc 然后抓住数字间或新数、原数之间的关系找等量关系列方程。【典型例题】

例1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?

例2.一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l,且三个数字之和的50倍比这个三位数小2,求这个三位数?

例3.一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?

类型四:利润问题

出现的量有:进价、售价、标价、利润、成本、利润率、折扣等 用到的公式有:①利润=卖的钱—成本 ②利润=成本X利润率 注意打几折是按原价的百分之几出售。一般的相等关系:卖的钱—成本=成本X利润率 【典型例题】

例1.一件商品的售价是30元,①、如果卖出后盈利25元,那么这件商品的进价是多少?②若卖出后亏损25元,那么进价又是多少?

例2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?

例3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?

例4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?

例5.某大型服装商场内,一件新款服装的进价是400元。为了吸引顾客,提高销售量,老板向员工征集销售方案,要求保证50%的利润率。员工甲的方案是:把这件服装按进价提高1倍进行标价,然后打出“新款8折优惠”的广告。如果你是这家大商场的老板,你觉得甲的方案符合你的利润要求吗?

例6.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%,这次交易中的盈亏情况如何?

类型五:工程问题

工作量=工作效率×工作时间 合做的效率=各单独做的效率之和 完成某项任务的各工作量之和=总工作量=1 注意:当工作总量未给出具体数量时,常设总工作量为“1”。【典型例题】

例1.一项工程,甲单独做要20天完成,乙单独做需要30天完成,若让甲、乙合做需要几天完成?

例2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,则乙共需要几天完成?

例3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

例4.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

例5.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时再增加 2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作?

类型六:行程问题

路程=速度×时间 时间=路程÷速度

(1)相向而行,相遇问题:各人路程之和等于总路程或同时走时两人所走的时间相等。快+慢=原距(2)同向而行,追及问题:两人的路程之差等于追及的路程或时间为等量关系。快-慢=原距 【典型例题】

例1.甲、乙两地间路程为120km,一列快车从甲站开出,每小时行驶60 km,一列慢车从乙站开出,每小时行驶40 km。

(1)两车同时出发,相向而行,多少小时两车相遇

(2)快车先开1/3小时,两车相向而行,慢车行驶多少小时两车相遇?

(3)两车同时开出,同向而行,快车多少小时可以追上慢车?

(4)两车同时开出,同向而行,慢车在前,快车行驶多少 小时与慢车相距20km?

(5)两车同时开出,相向而行,快车行驶多少小时与慢车相距20km?

类型七:航行问题 顺水、逆水,顺风、逆风。

顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度 抓住两地间距离不变,水流速和船速不变的特点考虑相等关系。【典型例题】

例1.一轮船航行于两个码头之间,逆水需10h,顺水需6h已知该船在静水中中每小时航行12km。求水流速度和两码头之间的距离。

例2.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3 5

小时,求两码头的之间的距离?

例3.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?

类型八:环形跑道 这种问题有两种类型:

同向和异向.当同向出发时,相当于追及问题;当异向出发时,相当于相遇问题.

①假设甲、乙两人同时从A地出发,同向而行,则快者第一次追上慢者时,快者比慢者多跑一圈路程,即S甲-S乙=1圈长

②假设甲、乙两人同时从A地出发,异向而行,则两人第一次相遇时,两人所走路程之和等于一圈长,即S甲+S乙=1圈长 【典型例题】

例1.甲、己两人环湖散步,环湖一周是400m,甲每分钟走80m,乙速是甲速的5/4。

(1)甲,乙两人在同地背向而行,多长时间后两人相遇?

(2)甲,己两人在同地同向而行,多长时间后两人向遇?

例2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,多少分钟后俩人相遇?

类型九:过桥山洞

【典型例题】

例1.已知某一铁路桥长1000m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1 min,整个火车完全在桥上的时间40秒。(1)求火车的速度。(2)求火车的车长

类型十:调配问题

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。【典型例题】

例1.有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的一半,应从乙队调多少人到甲队?

例2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人 数的一半还多15人,求甲、乙两队原有人数各多少人?

例3.在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?

例4.甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人?

例5.有41人参加运土劳动,30根扁担,要安排多少人抬、多少人挑,可使扁担和人数相配不多不少?

类型十一:配套问题

【典型例题】

例1.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?

例2.用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?

例3.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?

例4.星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?

例5.某车间有工人85人平均每人每天可以加工大齿轮8个或小齿轮10,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?

例6.某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?

类型十二:储蓄问题

在这类问题中有本金、利息、利率、本息和存款期限这些基本量.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫做利息,存入的时间叫做期数,每个期数后利息与本金的比叫做利率,通常用百分数表示。

基本量之间的关系:本息和=本金+利息=(1+利率)×本金×期数 利息=本金×利率×期数 利率=利息/本金 【典型例题】

例1.某企业存入银行甲、乙两种不同性质和用途的款项共20万元,甲种存款的年利零为5.5%,乙种存款的年利率为4.5%,上缴国家的利息税率为20%,该企业一年共获利息7600元,求甲、乙两种存款各为多少万元?

例2.银行定期1年存款的年利率为2.5%,某人存入一年后本息922.5元,问存入银行的本金是多少元?

例3.李叔叔今年存入银行10万元,定期二年,年利率4.50%,二年后到期,扣除利息税5%,得到的利息能买一台6000元的电脑吗?

例4.某同学把250元钱存入银行,整存整取,存期为半年,半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

类型十三:年龄问题 大小两人的年龄差不变 【典型例题】

例1.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?

例2.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄?

类型十四:方案优化问题 【典型例题】

例1.我校准备印刷一批招生宣传单,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:每份定价2 元,按八折收费,另收1000元制版费;乙厂的优惠条件是:每份定价2元不变,而制版900按6折优惠。

①设印刷数量为x份,分别求出表示两个印刷厂收费的式子 ②请问选择哪家印刷厂收费比较合算?

例2.某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150 元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案?

例3.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒不小于5盒。问①当购买乒乓球多少盒时,两种优惠办法付款一样?②当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?

例4.中国移动新疆分公司开设适合普通用户的两种通讯业务分别是:“天山通”用户先缴25元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.4元。通话均指拨打本地电话

①设一个月内通话时间约为x分钟,这两种用户每月需缴的费用是多少元?用含x 的式子表示。②一个月内通话多少分钟,两种移动通讯方式费用相同?

③若李老师一个月通话约80分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?请说明理由

例5.某市出租车计价规则如下,行程不超过3千米,收起步价8元,超过部分每千米路程收费1.20元,某天该出租车行驶路程为 ①行驶2千米时,应收费为? ②行驶5千米时,应收费为?③行驶X千米时,应收费为?

例6.某城市按以下规定收取每月的煤气费,用气不超过60立方米,按每立方0.8元收,如果超过60立方米,超过部分按每立方米1.2元收,已知小明家某月共缴纳煤气费72元,那么他家这个月共用了多少?

例7.某同学去公园春游,公园门票每人每张5元,如果购买20人以上(包括20人)的团体票,就可以享受票价的8折优惠。

(1)若这位同学他们按20人买了团体票,比按实际人数买一张5元门票共少花25元钱,求他们共多少人?

(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)

例8.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润涨至4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140t,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16 t,如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行精加工。

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售。方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。

你认为哪种方案获利最多?为什么?

类型十五:计分问题

例1.在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?

例2.小明在一次篮球比赛中,共投中15个球,其中包括2分球和3分,共得34分,则小明共投中2分球和3分球各多少个?

例3.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

例4.在学完“有理数的运算”后,七年级各班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴ 如果③班代表队最后得分142分,那么③班代表队回答对了多少道题? ⑵ ②班代表队的最后得分能为145分吗?请简要说明理由.13

类型十六:有关数的问题 【典型例题】

例1.有一列数,按一定规律排列成1,-3,9,-27,81,-243,···。其中某三个相邻数的和是-1701,这三个数各是多少?

例2.三个连续奇数的和是327,求这三个奇数。

例3.三个连续偶数的和是516,求这三个偶数。

例4.如果某三个数的比为2:4:5,这三个数的和为143,求这三个数为多少?

类型十七:日历问题

【典型例题】

例1.右图是某一个月的日历:

(1)若同一竖列中有3个数的和是42,这3个数分别是多少?同一竖列中能有3个数和为44吗?请说明理由

(2)若同一竖列中有4个数的和为74,这4个数分别是多少?同一竖列中能有4个数的和为75吗?(3)日历中能有2×2矩形方块中的4个数之和为80吗?如果有,请求出这四个数。

例2.某月日历上竖列相邻的三个数,它们的和是39,则该列的第一个数是()

A.6 B.12 C.13 D.14 例3.几名同学在日历的纵列上圈出三个数,算出它们的和,其中正确的一个是()

A.38 B.18 C.75 D.57 例4.小华全家外出游玩连续七天,已知这七天的日期和月份之和为84,请问这七天的中间一天是几月几日?

例5.小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日?

第二篇:一元一次方程应用题

一元一次方程的解法

(1)x+1.5-9x

85=0

24y12y5(2)y-=2-336

(3)

(4)

(5)

2311[3(x-)-3]-2=x 24214(1-x)-(2-)=2 3213x43x1.50.20.1-0.20x.03=2.5

第三篇:一元一次方程应用题

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运

几次才能完? 还要运x次才能完

29.5-3*4=2.5x 17.5=2.5x x=7

还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

它的高是x米

x(7+11)=90*2

18x=180 x=10 它的高是10米

3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个

9x+908=5408 9x=4500 x=500

这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?

乙每小时行x千米

3(45+x)+17=272 3(45+x)=255 45+x=85 x=40

乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

平均成绩是x分

40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550

盒,平均每箱多少盒?平均每箱x盒

10x=250+550 10x=800 x=80 平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多

少人?平均每组x人

5x+80=200 5x=160 x=32 平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克?

食堂运来面粉x千克

3x-30=150

3x=180 x=60

食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?

平均每行梨树有x棵

6x-52=20 6x=72 x=12

平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140

米,高是多少米?

高是x米

140x=840*2 140x=1680 x=12 高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿

童衣服用布多少米? 每件儿童衣服用布x米

16x+20*2.4=72 16x=72-48 16x=24

x=1.5

每件儿童衣服用布1.5米 12、3年前母亲岁数是女儿的6倍,今年母亲3

3岁,女儿今年几岁? 女儿今年x岁

30=6(x-3)6x-18=30 6x=48 x=8 女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

需要x时间

50x=40x+80 10x=80 x=8 需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

苹果x 3x+2(x-0.5)=15

5x=16 x=3.2

苹果:3.2 梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?

甲x小时到达中点

50x=40(x+1)10x=40 x=4

甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.乙的速度x 2(x+15)+4x=60 2x+30+4x=60

6x=30 x=5 乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳

子各长几米? 原来两根绳子各长x米

3(x-15)+3=x 3x-45+3=x 2x=42 x=21

原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球

和足球各多少元? 每只篮球x 7x+10x/3=248 21x+10x=744 31x=744

x=24 每只篮球:24 每只足球:8 这还有 追问:

再多点,那里没答案!

追答:

16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场? 设胜了x场,可列方程:2x+(8-x)=13,解之得x=5 17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题. 小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家. 18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数. 树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程: 100+(x-100)=200+ [x-200-100- •(x-100)],也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的 ”也是最后一个班级的树苗数的,由最后两班的树苗相等,可得方程: 100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得 =100,还可以设每班级取树苗x棵,得 =100. 19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释. 设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6•(36-x)=100-27.60,解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.

第四篇:一元一次方程应用题教案

《列一元一次方程解应用题》教学设计

-----多角度寻找题目中的等量关系与列方程

主讲教师:刘露莲

【教学目标】

1.弄清楚题目中各数量之间的关系,找出等量关系。

2.能根据题意设未知数,列出相应的方程,并明白列方程的实质。

3.通过用一元一次方程解决生活中的实际问题,让学生感受到数学和我们的生活息息相关,从而增强学生使用数学的意识和对数学的兴趣。

【教学重、难点】

重点: 将实际问题转化为数学问题,找出等量关系 难点: 明白列方程的实质。【教学方法】

采用探究、合作、交流等教学方式完成教学。

【教学手段】

多种媒体辅助教学.【教学流程】

一、复习引入 :找等量关系并列出方程 1.某数的三分之一比这个数小1,求这个数。2.某数与7的和的四分之一是10,求这个数。3.某数的30%与5的差是8,求这个数。

4.某数的30%与5的差的三分之一等于3,求这个数。

5.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?(方法一)(方法二)

6.一个数的3倍与(-9)的绝对值的和恰好等于这个数的6倍,求这个数。

7.甲组4名工人1月完成的总工作量比该月人均定额的4倍多20件,乙组5名工人1月完成的总工作量比该月的人均定额的6倍少20件。

(1)设月人均定额为X件,则甲组人均生产量为 乙组人均生产量为(2)若两组工人人均生产量相等,可列方程为(3)若甲组人均生产量比乙组多2件,可列方程为(4)若甲组人均生产量比乙组少2件,可列方程为

8.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。9.长方形的周长为60米,已知长是宽的1.5倍,求它的面积。

10.某厂今年产值为600万元,今年比去年增长了20%,求去年的产值。11.某商品进价为200元,按标价的九折卖出后,利润率为35%,求标价。

12.已知三个连续奇数的和为105,求这三个奇数。归纳小结:找等量关系主要应,注意关键词语。(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,它们的比是……”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。(3)基本的数量关系与公式:路程=速度×时间,行船问题:V顺=V静+V水 V逆= V静-V水,飞行问题:V顺=V静+V风,V逆=V静-V风,工作总量=工作效率×工作时间,长方形周长=2(长+宽)等等。(4)理解文字找等量关系。会找等量关系,咱们解应用题就成功了一半。

二、小组尝试:(小组活动)

例4 某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t;如用新工艺,则废水排量比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?

思考:

(1)你能在问题中把表示等量关系的语句找出来,并用等式进行表示吗?(2)你准备设哪个未知数

等量关系:旧工艺的废水排量=环保限制的最大量+200;

新工艺的废水排量=环保限制的最大量—100; 新工艺的废水排量:旧工艺的废水排量 = 2:5 解:设新、旧工艺的废水排量分别为2x t和5x t.根据废水排量与环保限制最大量之间的关系,得

5x-200=2x+100(问:等号两边代表哪个数量)移项,得

5x-2x=100+200

合并同类项,得

3x=300

系数化为1,得

x=100

所以 2x=200,5x=500.答:新旧工艺产生的废水数量分别为200 t和500 t.三、归纳小结:

通过刚才咱们一起探究的过程,咱们来总结一下运用方程解决实际问题的一般过程。1.审题:分析题意,找出题中的数量关系及其等量关系(也就是将实际问题转化为数学问题); 2.设元:选择一个适当的未知数用字母表示(例如x); 3.列方程:根据等量关系列出方程; 4.解方程:求出未知数的值; 5.检验6.答。而我们知道前3步是咱们用方程解应用题的制胜关键,接下来咱们重点练习前3个步骤。

四、课堂检测(回答:列方程的实质是什么?)

1.某科技兴趣小组共32人,其中男生与女生的人数之比为3:5,问男、女生各有多少人?

2.一个三角形三边长度的比为3:4:5,最短的边比最长的边短4 cm,则这个三角形的周长是多少?

3.某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求这批树有多少棵.4.某工人在一定时间内加工一批零件,如果每天加工44个就比规定任务少加工 20个;如果每天加工50个,则可超额10个.求规定加工的零件数和计划加工的天数.

(附加题)5.一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求 两城之间的距离。

(附加题)6.小聪从家到学校,如果每分钟走100米,就会迟到3分钟;如果每分钟走150米,就会早到3分,问小聪每分钟走多少米才能按时到校

(答案:列方程的实质就是用两种不同的方法来表示同一个量。单位统一)【布置作业】 1.教科书第92页习题3.2第10,11题.

第五篇:一元一次方程典型应用题

小学数学典型应用题分析归纳

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数

最大数与各数之差的和÷总份数=最大数应给数

最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1”,则汽车行驶的总路程为“ 2”,从甲地到乙地的速度为 100,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为 + = ,汽车的平均速度为 2÷ =75(千米)

(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)

例 一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?

分析:必须先求出平均每天织布多少米,就是单一量。693 0÷(477 4÷ 31)=45(天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 =另一个单位数量

单位数量×单位个数÷另一个单位数量=另一个单位数量。

例 修一条水渠,原计划每天修 800 米,6天修完。实际 4天修完,每天修了多少米?

分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。80 0× 6÷ 4=1200(米)

(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 =大数

大数-差=小数

(和-差)÷2=小数

和-小数=大数

例 某加工厂甲班和乙班共有工人 94人,因工作需要临时从乙班调 46人到甲班工作,这时乙班比甲班人数少 12人,求原来甲班和乙班各有多少人?

分析:从乙班调 46人到甲班,对于总数没有变化,现在把乙数转化成 2个乙班,即 9 4- 12,由此得到现在的乙班是(9 4- 12)÷ 2=41(人),乙班在调出 46人之前应该为 41+46=87(人),甲班为 9 4- 87=7(人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数

标准数×倍数=另一个数

例:汽车运输场有大小货车 115辆,大货车比小货车的 5倍多 7辆,运输场有大货车和小汽车各有多少辆?

分析:大货车比小货车的 5倍还多 7辆,这 7辆也在总数 115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。

列式为(115-7)÷(5+1)=18(辆),18× 5+7=97(辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的差÷(倍数-1)=标准数 标准数×倍数=另一个数。

例 甲乙两根绳子,甲绳长 63 米,乙绳长 29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3倍,甲乙两绳所剩长度各多少米? 各减去多少米?

分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(63-29)÷(3-1)=17(米)„乙绳剩下的长度,17× 3=51(米)„甲绳剩下的长度,29-17=12(米)„剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:

同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间

同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

例 甲在乙的后面 28 千米,两人同时同向而行,甲每小时行 16 千米,乙每小时行 9 千米,甲几小时追上乙?

分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。已知甲在乙的后面 28 千米(追击路程),28 千米 里包含着几个(16-9)千米,也就是追击所需要的时间。列式 2 8÷(16-9)=4(小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速

逆速=船速-水速

解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。

解题规律:船行速度=(顺水速度+逆流速度)÷2 流水速度=(顺流速度逆流速度)÷2 路程=顺流速度× 顺流航行所需时间

路程=逆流速度×逆流航行所需时间

例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?

分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284× 2=20(千米)2 0× 2 =40(千米)40÷(4× 2)=5(小时)28× 5=140(千米)。

(9)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。

例 某小学三年级四个班共有学生 168人,如果四班调 3人到三班,三班调 6人到二班,二班调 6人到一班,一班调 2人到四班,则四个班的人数相等,四个班原有学生多少人?

分析:当四个班人数相等时,应为 168÷ 4,以四班为例,它调给三班 3人,又从一班调入 2人,所以四班原有的人数减去 3再加上 2等于平均数。四班原有人数列式为 168÷ 4-2+3=43(人)

一班原有人数列式为 168÷ 4-6+2=38(人);二班原有人数列式为 168÷ 4-6+6=42(人)三班原有人数列式为 168÷ 4-3+6=45(人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。

解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题规律:沿线段植树 棵树=段数+1

棵树=总路程÷株距+1 株距=总路程÷(棵树-1)

总路程=株距×(棵树-1)

沿周长植树

棵树=总路程÷株距

株距=总路程÷棵树

总路程=株距×棵树

例 沿公路一旁埋电线杆 301根,每相邻的两根的间距是 50 米。后来全部改装,只埋了201根。求改装后每相邻两根的间距。

分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50×(301-1)÷(201-1)=75(米)

(11)盈亏问题:是在等分除法的基础上发展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

解题规律:总差额÷每人差额=人数

总差额的求法可以分为以下四种情况:

第一次多余,第二次不足,总差额=多余+不足

第一次正好,第二次多余或不足,总差额=多余或不足

第一次多余,第二次也多余,总差额=大多余-小多余

第一次不足,第二次也不足,总差额=大不足-小不足

例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10人,则多 25支,如果小组有 12人,色笔多余 5支。求每人 分得几支?共有多少支色铅笔?

分析:每个同学分到的色笔相等。这个活动小组有 12人,比 10人多 2人,而色笔多出了(25-5)=20支,2个人多出 20支,一个人分得 10支。列式为(25-5)÷(12-10)=10(支)10× 12+5=125(支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。

例 父亲 48岁,儿子 21岁。问几年前父亲的年龄是儿子的 4倍?

分析:父子的年龄差为 48-21=27(岁)。由于几年前父亲年龄是儿子的 4倍,可知父子年龄的倍数差是(4-1)倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4倍。列式为: 21(48-21)÷(4-1)=12(年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题

解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。

解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数 兔子只数=(总腿数-2×总头数)÷2 如果假设全是兔子,可以有下面的式子:

鸡的只数=(4×总头数-总腿数)÷2 兔的头数=总头数-鸡的只数

例 鸡兔同笼共 50个头,170条腿。问鸡兔各有多少只?

兔子只数(170-2× 50)÷ 2 =35(只)

鸡的只数 50-35=15(只)

下载一元一次方程应用题(常见类型题)word格式文档
下载一元一次方程应用题(常见类型题).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元一次方程应用题及答案

    1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇? 设慢车开出a小时后与快车相遇 50a+7......

    一元一次方程应用题基本类型及解题所需等量关系

    一元一次方程应用题基本类型及解题所需等量关系 第一类、行程问题 基本的数量关系: (1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度 要特别注意:路程、速度、时间的对......

    一元一次方程应用题匹配问题

    一元一次方程应用题匹配问题 例:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人......

    一元一次方程应用题教学设计

    一元一次方程应用题教学设计 作者: 田利霞 (初中数学 河南安阳滑县初中数学一班 ) 评论数/浏览数: 9 / 2555 发表日期: 2011-01-05 17:53:29 教学设计 【教学目标】 1、通过对......

    浅谈一元一次方程应用题的教学(范文大全)

    浅谈一元一次方程应用题的教学 王美华 黄铺镇中心学校 1329200204@QQ.com 【摘要】:列一元一次方程解应用题的教学是七年级教学中一个重点和难点,列一元一次方程解应用题就是......

    如何学好一元一次方程解应用题

    如何学好一元一次方程解应用题 安徽省芜湖市南陵县东河初中 开平列一元一次方程解应用题是七年级数学教学中重点和难点,如何让学生熟练掌握列方程解应用题的技巧,教师要根据......

    一元一次方程应用题----工作量问题

    一元一次方程应用题-----工作量问题 工作量问题的基本关系: 工作量=工作效率×工作时间 ;工作效率=工作量÷工作时间 ;工作时间=工作量÷工作效率 注意:一般情况下把总工作量设......

    一元一次方程应用题测试15篇

    一元一次方程应用题专题训练 命题人:张书涵 《一元一次方程》应用题专项训练 密1.某人从甲地到乙地,全程的11乘车,全程的乘船,最后又步行4km到达乙地。23......