分式方程及应用练习题2

时间:2019-05-13 09:20:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《分式方程及应用练习题2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《分式方程及应用练习题2》。

第一篇:分式方程及应用练习题2

分式方程及应用练习题 姓名

一、解方程:

(1)

3221x132(3)(2)

x1x2x5x x4x4x234x3511223(4)

(5)(6)

x5x6xx6x1x3xx3

(7)

124x52x521=1

(8).(9)2x55x2x1x1x12x552x

二、解答题:

x11xk

1、若关于x的方程无解,求k的值.x3x3x

2、关于x的分式方程1k42无解,求k的值.x2x2x

43、甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是多少天?

4、甲、乙两种涂料的单价比为5:4,将价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,这种涂料的单价为17元.求甲、乙两种涂料的单价.

5、2001年底,我国加入WTO,从2002年起,部分汽车的价格便开始大幅度下调.现某种型号的小汽车热销,为了增加产量,某汽车生产厂增加了设备,同时改进了技术,使该厂每小时装配的车辆2数比原来提高,这样装配40辆汽车所用时间比技术改造前装配30辆汽车所用时间还少2h,那3么该厂技术改造后每小时装配多少辆汽车?

6、在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.

7、甲、乙两打字员,甲每分钟打字数比乙少10个.两人分别打同一份搞件,结果乙完成所需的时5间是甲的,那么甲、乙两人每分钟打字数分别是多少?

68、某房地产开发公司原计划建商业场所50000m2,住宅100000m2,由于销售市场发生变化,就将一部分商业场所改建为住宅销售,使两部分面积之比为1:3.那么该公司将多少面积的商业场所改建为住宅销售?请分析题中的等量关系,并列出符合题意的方程.

9、为了过一个有意义的“

六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的1.2倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学?

第二篇:《分式方程》练习题

15.3分式方程(1)

4x1的值为0,x的值应取_____. x34x12.当x_____时,分式的值为1.

5xa13.要使得关于x的方程的解为正数,a的取值范围是(). x12x111 A.a> B.a< C.a= D.以上答案都不对

222|x|24.如果分式2的值为零,则x=().

xx61.要使得分式 A.±2 B.-2 C.+2 D.以上结论都不对 5.如果关于x的方程【聚集“中考”】 6.解方程:

2a1有增根,求a的值. x3x3x15x=6 xx17.为适应国民经济持续快速协调地发展,自2004•年4•月18日起,全国铁路实施第五次提速,提速后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1 326千米,提速前火车的平均速度为x千米/时,提速后火车的平均速度为y千米/时,则x、y应满足的关系式是().

13267.42 13261326C.7.42xyA.xy 答案: 1.

B.yx13267.42

13261326D.7.42yx11 2.x=1 3.B 4.B 5.-2 6.x= 7.C 44

第三篇:初中数学分式方程应用综合练习题

2、某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,求计划每天生产多少吨化肥?

3、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。

4、陈明同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠,一共只需480元,参加活动的每个同学平均分摊的费用比原计划少4元,求原定的人数是多少?

5、甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队完成此工作时间比是2:3,求甲、乙两队单独完成此项工程各需多少天?

6、市政工程公司修建6000米长的河岸,修了30天后,从有关部门获知汛期将提前,公司决定增派施工人员以加快速度,工效比原来提高了20%,工程恰好比原计划提前5天完成。求该公司完成这项工程实际的天数。

8、已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

9、A,B两地相距135千米,有大,小两辆汽车同时从A地开往B地,大汽车比小汽车晚到4小时30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.12、A、B两地距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。

13、某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。问原计划这项工程用多少个月。

14、.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?

16、某人在公路上匀速行走,环路公共汽车每隔4分钟就有一辆与之迎面相遇;每隔6分钟就有一辆从后越过此人;汽车站每隔几分钟双向各发一辆车?

17、甲乙两人分别从A、B两地同时出发,相向而行。甲走8米后两人第一次相遇,然后甲继续向前到B立即返回,乙继续向前走到A立即返回,两人在距离B地6米处第二次相遇,求A、B两地的距离。

18、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。

20、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。

21、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?

22、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。

23、甲有25元,这些钱是甲、乙两人总数的20%。乙有多少钱?

24、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?

25、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

26、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。已知水流的速度是3千米/时,求轮船在静水中的速度。

27、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。求先遣队和大队的速度各是多少?

28、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。

29、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。

32、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?

33、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?

34、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?

35、某种商品价格,每千克上涨1/3,上回用了15元,而这次则是30元,已知这次比上回多买5千克,求这次的价格。

36、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?

37、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。

38、某商品每件售价15元,可获利25%,求这种商品的成本价。

39、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?

40、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度

41、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?

42.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产25%,可提前10天完成任务,问原计划日产多少台?

43.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。求原来每天装配的机器数.44.某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的21倍,所以加工完比原计划少用9小时,求原计划和改进操2作方法后每小时各加工多少个螺丝?

45.打字员甲的工作效率比乙高25%,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?

46.某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?

47.某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的1.2倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.48.供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.49.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度.51.一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.52.大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的1

53.一船自甲地顺流航行至乙地,用2.5小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.1倍,求单独浇这块地各需多少时间? 2

第四篇:分式方程练习题

分式方程练习题(2013中考)

1.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为________.

2.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.

3.2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?

4.解方程:.

5.水源村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入村民植树活动,并且该环保组织植树的速度是全村植树速度的1.5倍,整个植树过程共用了13天完成.(1)全村每天植树多少亩?(2)如果全村植树每天需2000元工钱,环保组织是义务植树,因此实际工钱比计划节约多少元?

6.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()

A.

C.

7.解方程:. B.D.

8.某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1∶3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?

10.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍费贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用.(2)若购买的两种球拍数一样,求x.

15.解方程:.

19.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工

完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务个需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?

22.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价-进价)

24.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?

27.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.

29.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?

33.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()

A.

C.

B.D.

第五篇:15.3分式方程练习题(范文模版)

15.3分式方程

教材分析:人民教育出版社义务教育教科书八年级数学 上册 十五章 分式 15.3分式方程

教学目标:

1、会熟练进行分式的加减法计算

2、会解分式方程并会列分式方程解应用题 教学重点:解分式方程

教学难点:列分式方程解应用题 教学过程:

一、复习

1、整式方程的解法

2、分式性质

3、整式乘、除法

4、最大公因数与最小公倍数及求法

5、分解因式

二、新知识探究:

1、分式方程的定义

2、解分式方程步骤:去分母化为整式方程并求出解,最后一步为检验解。

3、应用题中列出分式方程后,求解,检验,作答。

三、巩固练习

<一>、填一填,要相信自己的能力!

1x1的值为,则x的值为____________.35xx1312.分式方程的解为 . 2xx21.要使分式3.已知公式PP12,用P1、P2、V2表示V1=________. V2V112(xa)31的解为x,则a=_________.5a(x1)54.已知方程2xx3与互为倒数,则x的值是________.x23x2326.若方程有负数根,则k的取值范围是__________.x3xk5.若使7.有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.

8.为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x棵,根据题意得方程________.

<二>、选一选,看完四个选项再做决定!1.下列方程中①x331x1x2=1,②=2,③=,④+=5中是分式方程的有()

x2x55x211x1去分母后的结果,其中正确的是()x2x

B.21x1

D.21x2x A.①② B.②③ C.③④ D.②③④ 2.(2006年南宁)以下是方程A.21x

1C.21x2x

3.(2006年定西)方程A.1

23的解是()x12xB.2 C.3 D.3

4.(2006年泸州)如果分式

23与的值相等,则x的值是().x1x3(A)9

(B)7

(C)5

(D)3 5.若关于x的方程ax3x5有正数解,则a的取值范围是().(A)a3(B)a3(C)a3(D)a3 6.若分式方程ax=2的解是2,则a的值是()x2 A.1 B.2 C.3 D.4 7.若分式方程k11k5有增根x1,那么k的值为()222x1xxxxA.1 B.3 C.6 D.9 8.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()

42042042042020 B.20 xx0.5x0.5x4204204204200.5 D.0.5 C.xx20x20xA.<三>、做一做,要注意认真审题!

1.解分式方程:(1)解分式方程:2x311x2.(2)解方程:+ 3 =.x2x2x22x2.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.

(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数. 3.阅读下列材料: 解方程1x13.x2x2解:方程的两边都乘以x2,约去分母,得1x13(x2).解这个整式方程,得x2.检验:当x2时,x20,所以2是增根,原方程无解.请你根据这个方程的特点,用另一种方法解这个方程.4.近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.

今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽

今年5月份每升汽油的价格是多少

<四>、推广探索

1.(探究题)先阅读下列一段文字,然后解答问题:

已知:方程x-1x1 方程x-x1 方程x-x 方程x-111=1的解是x1=2,x2=-. x2221=2的解是x1=3,x2=-. 3331=3的解是x1=4,x2=-. 4441=4的解是x1=5,x2=-. 55110=10的解. x11 问题:观察上述方程及其解,再猜想出方程x-

下载分式方程及应用练习题2word格式文档
下载分式方程及应用练习题2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分式方程练习题及答案

    分式方程是数学中基础数学一个很重要的知识点,学好分式方程,更极大的提高运算能力,下面是分式方程练习题及答案,欢迎参考阅读。分式方程练习题及答案一选择1.下面是分式方程的是......

    可化为一元一次方程的分式方程及其应用练习题

    可化为一元一次方程的分式方程 解方程 1. x1413x3x112212. 2x1x113x3x119x326x1x22x4.3.x2xx2xx21x2x25x6x3 5.关于x的分式方程 1k42有增根x=-2,则k= x2x2x4四、应用题 一.行......

    一元一次方程的分式方程练习题

    可化为一元一次方程的分式方程练习题 1.若分式方程 有增根,则增根为2.分式方程 的解为3.分式方程 的解为 4.若分式 的值为 ,则y= 5.当x= 时,分式 与另一个分式 的倒数相等。 6.当x= 时......

    初一暑假数学分式方程练习题

    优尔佳教育 可化为一元一次方程的分式方程及其应用练习题一、填空题(6分×7=42分) 1.当时,2.方程 3x 1x1 xx5 与 x2x6 相等. 的解是. mx1x12x1 8的解为x= 14 3.若关于x的方程......

    上海市初中八年级分式方程练习题

    分式方程的练习1、下列方程是分式方程的是 1253y1y58x12(C)2x2x30 (D)2x5 (B) 2x1x326793ax91的解,则a的值为(A) (B) 2、若x3是分式方程52x5(A)(C)55(D)  9 92(x21)6(x1)62......

    八年级数学上册《分式方程》练习题

    《分式方程》练习题 一、选择题 1.解方程84x22的结果是( ) 2xB.x2 C.x4 D.无解 A.x2 2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且......

    八年级下数学分式方程练习题

    分式方程检测题 姓名:____________ 一、精心选一选 1. 在xyy46,,,中分式的个数有( ) 24yxyA.1个 B.2个 C.3个 D.4个 2. 下列各式是最简分式的是 4baa2b1A. B. C. D.2 8aba2axyb2a3......

    初二数学分式方程练习题及答案

    分式方程及应用练习1.分式方程2.已知公式252的解是________. =3的解是________;分式方程x3x1x4mxPP1,则x=________. 2,用P1、P2、V2表示V1=________.3.已知y=6nxV2V14.一项工程,甲单独......