第一篇:第六章 自动控制系统的校正概要(写写帮推荐)
第六章 自动控制系统的校正
6-1.试求图示超前和延迟后网络的传函和BODE图 a)
C(s)R(s)RCSsrcsh1s C(s)R(s)1s1 6-2.回答问题:
⑴有源校正装置和无源校正装置有何不同特点,在实现校正规律时作用是否相同?
① 无源校正装置由无源元件组成,有负载效应
② 除测速发电机之类的有源校正装置外,其他有源校正装置太多,把无源网络连接在运算放大器的反馈通道,以实现所需要的频率特性或零.极点分布.由于运放的存在,可克服负载效应.补偿幅值衰减.且其参数可随意调整.因而其效果优于无源网络.③ 在实现校正规律时,有源校正优于无源校正.P D:比例微分 => 超前校正 P I:比例积分 => 迟后校正
PID:比例微分积分 => 迟后—超前校正
⑵若I型系统校正后成为Ⅱ型系统,应采用那种校正规律才满足要求,并保证系统稳定性?
k(sj1)G(s)j1nm
s(is1)i1所以采用串联迟后校正装置或迟后—超前装置(若BT过大时)⑶串联超前校正为什么可改善系统稳态特性?
因为提供超前相角Φ↑ r=180°+Φ(ωc)↑.改变ωc=>Mr ⑷什么情况下加串联迟后校正可提高稳定程度?利用滞后网络高频衰减特(结果:交界频率↓.快速性变差.稳定裕度足够)①快速性有余,稳定性差.⑸若从抑制扰动对系统影响角度考虑,最好采用哪种校正形式?迟后或迟后—超前校正 比较:
① 超前校正利用超前网络相角超前特性;迟后校正可用迟后网络交频幅值衰减特性.② 为满足一定的稳定性能,采用无源网络时,超前校正引入一定的附加增益,而迟后校正一般不需要引入附加增益.③ 对同一系统,带宽超前>迟后.而带宽↑,抑制噪声干扰能力差.当系统输入端噪声电平较高时,一般不宜采用超前校正.6-3.单位反馈系统的开环传函。设计一串联迟后网络,使R》40°,并保持原开环增益值
解:=4/s(2s+1)420g/lgwc/0.5400.5wc11.414s1r19.5r25082820.8410.10511.2s112s4(11.2s)G(s)s(12s)(112s)?Gc(s)G(s)k15ks(0.1s1)(0.2s1)
系统稳定工作时k只
1N(x)4[sin11/x1/x11/x] w7.07Re[G(jw)]0.3k/4.5当k=15时 Re=-1<-0.5自振
令-1/N(x)=1 x=2.5
稳定工作时-0.3.<-0.5 k<7.5
6-4.设控制系统的开环传函为G(s)10
s(0.5s1)(0.1s1)① 绘制BODE图,求相角裕度R 0.23s1② 采用的G0(s)串联超前校正装置,求校正后Υ并讨论校正后系统0.0231性能有何改进?
10解:①L(w)
jw(0.5jw1)(0.1jw1)(w)90arctg90.5warctg0.1w
③ 校正后开传 ④ G(s)Gc(s)G0(s)10(0.23s1)求ωc2=4.59
s(0.5s1)(0.1s1)(0.023s1)Ф(ωc2)=-90°-arctg0.5ωc2-arctg0.1ωc2-arctg0023ωc2 +arctg023ωc2 =-90°-66.46-24.66°-6.03°+ 46.55° =-140.6°
R=180°+Ф(ωc2)=39.4°
校正后相角裕度由0°↑为39.4°,K仍为10,ωc↑4.59,频带展宽,快速性好.
第二篇:污水处理厂自动控制系统
污水处理厂自动控制系统
姓名:褚金鹏
学号:101824103 摘要:随着中国经济的发展和人民生活水平的逐步提高。必然对环境质量提出更高的要求。污水智能控制技术渐渐应用到污水处理工艺过程监测过程当中,并且取得了相当好的效果,既节省了人力资源又节约了能源,有着广阔的发展前景。文章主要论述污水厂的自动化系统的结构形式以及数据监控系统在处理厂自动化监控的基础上实现处理厂全自动化控制管理。
关键词:城市污水处理 自动化系统 监测 结构方式
Sewage treatment plant automatic control system
Name: Chu jin peng Number:101824103 Abstract: with the development of Chinese economy and the gradual improvement of the people's living standard.Necessary quality put forward higher request to the environment.Sewage intelligent control technology is gradually applied to the process of sewage treatment process monitoring, and has achieved fairly good results, is to save human resources and save energy, with broad prospects for development.The paper mainly expounds the structure forms of sewage factory automation systems and data monitoring system on the basis of the treatment plant automation monitoring implementation treatment plant automatic control management.Key words: Urban sewage treatment Automation system monitor Structure moder 随着城市发展以及人民生活水平的提高,城市污水排放量也在逐年增加,这给城市环境造成了严重污染,基于此需求,各地都在积极建设污水处理厂,以实现城市可持续性发展、美化和治理城市环境。
中国环保力度的加大,使中国的水污染控制重点,从工业点源为主的控制,逐步转变为以城市污水污染为主的控制。近年来,各地相继将先进的工艺及设备引进国内,在提高工艺设备技术水平的同时,随着计算机与自动化控制技术的发展以及各种继电器、传感器等电气设备的改进和发展,城市污水处理的自动控制也正进入计算机智能化控制阶段,结束了以往城市污水处理全部用人工或简单的电器控制的落后局面。本文以一个污水处理厂为例,结合工艺流程,介绍污水处理厂实施自动化控制的解决方案。[1]1 工艺流程
根据工艺流程及构筑物的地理分布,依据“实用、可靠、经济、先进”的原则,采用“集中管理、分散控制”模式建立经济可靠的现场监测、过程控制和计算机管理一体化的系统。利用网络通讯实现信息、资源的共享和“现场无人值守、总站少人值班”的目标。污水处理自动控制系统是采用自动化技术、通讯技术、计算机技术、网络技术、数据库技术、图形显示技术构建成的综合自动化远程监控系统。污水处理自动控制系统不仅要求具有良好的安全性、可靠性和稳定性等基本要求,还应考虑系统操作与维护的方便性,并能在传统的自动化控制系统的基础上,加入以优化处理效果和节省运行费用为目标的优化控制。
1.1 污水处理工艺
目前,污水处理的方法一般以生物处理法为主,辅以物理处理法和化学处理法。常用的污水处理工艺有以下几种:传统活性污泥法。传统活性污泥处理法是一种最古老的污水处理工艺,其污水处理的关键组成部分为曝气池与沉淀池,污水中的有机物在曝气池停留的过程中,曝气池中的微生物吸附污水中的大部分有机物,并且在曝气池中被氧化成无机物,然后再沉淀的浓度,沉淀池中,微生物絮体下沉,经过一段时间后,就可以输出清水,同时为了保持曝气池中污泥的浓度,沉淀池中经过沉淀后的一部分活性泥需要回流到曝气池中。
1.2 污泥处理工艺
污水生物处理过程中将产生大量的生物污泥,有机物含量较高且不稳定,易腐化,并含有寄生虫卵,若不妥善处理和处置,将造成二次污染。
污泥处理工艺采用机械浓缩、机械脱水方案,处理后的污泥含水率均能达到80%以下。而污泥稳定的常用工艺包括:厌氧消化、好氧消化、热处理、加热干化和加碱稳定。由于后三种直接稳定处理工艺的投资与运行费用较高,国内污水处理厂鲜为采用。由于受技术力量和经济性的限制,现在的污泥处理方法大多采用填埋的方式,一是比较成熟,同时具有投资和运行成本较低、管理操作方便,[5]
[4][3]
[2]其优点是处理容量大、见效快等诸多优点,这也是污泥填埋处置为目前国内采用最广泛的原因。
1.3 控制难点
污水处理所涉及的控制系统规模较大,系统工艺流程复杂,各工艺过程地理位置较为分散,是一个多变量、多同路、大滞后、非线性的复杂系统。由于污水处理控制系统具有较大的超调量、控制过程短暂、工序存在互锁关系等特点,而某些检测在线参数的检测仪器存在滞后、误差等问题,从而导致控制的实时性和精度难把握。为此需要研究污水控制对象的特性,选择合适的控制参数,保证其控制质量。污水处理涉及到一些生化反应过程,如污水的曝气过程,是一个大滞后的过程,选择既保证控制效果又不能太过于复杂的控制策略是一个重要的研究问题。对于大功率设备节能也是必须考虑的问题。在污水处理的控制系统中存在网络通信,如何实现较高的通信速率和通信质量,开放性的通信接口,建立完整、可靠的综合自动化系统,也是有待研究发展的问题。
[6]2 主要设备
污水处理厂的设备均采用三级控制方式,即现场控制方式、MCC控制方式和微机控制方式。目前,以MCC控制为基础,PLC控制为主导的控制方式始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。
2.1 粗格栅、细格栅、提升泵房的设备控制
粗格栅、细格栅的控制分为现场控制和远程控制两种模式。远程控制模式由PLC和上位机实现,包括微机手动和微机自动,而微机自动控制方式为:①水位差控制方式,通过格栅机运行液位差计的测量值用来反映格栅阻塞程度,并传输到PLC控制器,进行分析计算。当液位差超过预设的数值,控制格栅运行;②时间设置控制方式,在上位机的RSVIEW组态软件中设置格栅机运行时间和停机时间,经PLC控制器的程序运算指挥MCC对格栅机进行控制。
提升泵运行控制以远程控制为主。污水处理厂暂时设1个中途提升泵站,泵站设有1个PLC工作站与厂内主站联络,距污水处理厂约3~4 km。为实现进水提升泵的远程自动控制安全、可靠,水位测量和提升泵的流量测量和数据分析、[8][7]传输、控制等设备是不可缺少的,所以在进水泵房处安装了液位计,测量泵井的水位;PLC工作站担负泵站的设备控制、设备保护、数据采样、远程数据传输等作用。根据测量值对应控制程序,自动控制提升泵的运行组合。这样可以根据厂外来水量准确及时地调整泵运行数量,减少设备疲劳;同时可以取消传统泵站三班倒的人力资源耗费。
2.2 沉砂池、CASS池、沉淀池、污泥回流泵房和鼓风机房的设备控制 砂搅拌器的自动运行通过进水泵站水泵开停控制,而提砂装置的运行状态是由微机对其开、停时间的设置控制的。CASS池的进水阀、搅拌器、空气进气阀、污泥回流泵、污泥剩余泵的开关及运行状态都是由微机触发指令通过PLC控制。曝气池溶解氧的控制、厌氧段与好氧段的控制、污泥浓度的控制是污水处理厂工艺的核心。该系统控制思路:PLC通过对DO的检测,自动调节空气阀的开度}当检测到空气阀的调节不能满足DO的需要时,再行调整鼓风机的进风阀的开度;PLC检测DO计、MLSS计、pH计的值传送上位机进行数据分析,实时掌握厌氧段与好氧段、污泥浓度等状况,及时调整工艺控制。2.3 脱水机房的设备控制
脱水机房的设备主要担负由剩余污泥泵将储泥池的剩余污泥与污泥絮凝剂按比例混合进行脱水处理的任务。污泥与溶解成一定浓度的絮凝剂混合后,污泥中的固体颗粒被凝聚成絮团,并分离出自由水,然后被输送到离心污泥脱水机上,经浓缩脱水一体机的离心脱水后形成滤饼排出。设备的控制思路是以时序的逻辑控制为主导,污泥和絮凝剂混合的比例通过污泥电磁流量计、清水流量计和投药泵实现。
[9]3 自动控制系统的构成
PLC作为一种自动化程度高、配置灵活工业生产过程控制装置,因为其本身的高靠性、允许在较为恶劣的环境下工作而在动控制领域中得到广泛应用。在污水处理控制系统中,除了存在分布区域广、设备分散、控制点多及控制信息复杂等要求外,同时具有控制输入和输出以开关量参数居多
[10],模拟量参数少的特点,而这些都是PLC控制系统的优势所在,因此,以PLC为主体就成为污水处理厂自动控制系统的主要控制模式。PC+PLC系统由高性能个人计算机(PC)和可编程控制器(PLC)组成。中控室设置CP组成的操作监控站和工程师监控站,通过网络联结PLC组成的多个分控站,实时多任务集散型(集中管理、分散控制)网络控制系统,数据处理能力强,能对生产过程进行实时监控,对生产数据自动进行统计处理。系统稳定性能好,开发、维护、操作简便。开发方便,应用也非常灵活。该系统的特点是:
(1)可实现分级分布式控制,可实现“集中管理、分散控制”,大大提高了系统的安全性。
(2)可靠性高、组网方便。硬件系统配置简洁,很容易在网络中增减PLC来实扩展网络的目的。
(3)编程方便、开发周期短、维护简易。(4)系统内配置和调整非常方便。
(5)与工业现场信号直接相连,易于实现机电一体化。自控系统特点
4.1 系统硬件特点
本系统硬件结构采用柔性连接,积木式结构.便于系统扩充.并且模板的编址不受在机柜内的插槽位置影响,在机柜内的任何插槽位置都能执行其功能。性能范围宽广的不同模板町灵活组合[11]
。扩展十分方便。其主要特点有:
(1)用开放式网络通讯协议:一如既往地提供开放、标准,强有力的工业网络,是名副其实的工业网络中心,本系统采用标准的代TCP/IP Ethernet。
(2)功能强大的新486和586CPU及高速背板:使用基于486和586的CPU,存储容量最高可达4M。浮点运算协处理器的使用极大提高了过程控制中对模拟量处理、回路调节等的运算速度。
(3)带电插拔:允许用户带电插拔系统中的任何模块.而不会对模块造成损坏。这样用户就可以在继续维持系统运行的同时更换故障模块。
4.2 系统软件特点
它提供强大的功能,高级诊断能力,可靠的通讯,以及方便易用的界面。它的特点是:
(1)共同的用户界面(2)灵活易用的编辑器(3)选中一点击方式进行输入输出组态(4)强有力的数据库编辑器(5)诊断和排错工具(6)可靠的通讯
5.自动化系统的应用
考虑使整个系统更加灵活安全,将整个系统控制分三层:第一层现场手动;第一二层上位机监控软件控制;第三层上位机脱网PLC自动运行。现场手动:便n殳备的维护和调试,当某个设备圳换到现场于动模式下,该设备就不受和PLC的控制,只接受现场的操作命令;上位机监控软件手动控制:有利于调度室的操作,可以针对每个设备,让它脱离PLC的自动运行状态,由中控室的计算机直接对其进行操作;PLC自动运行:对现场所有设备进行自动控制,它负责整个污水处理工艺的控制,并且对故障,也会有响应。即使PLC和上位机脱离了通信,它也能自己安全的工作。
中控室由l台PC机完成操作员站、工程师站的任务,平时以值班长、操作 员操作为主,操作员应在授权后才能进入操作。工程师能打开相应的功能设定界 而,其他人不得进入该层面。操作员站采用8屏多屏显示,可任意调入各运行图,并可自动翻屏,翻屏的时间可调(默认为15min)。在公司中心调度室设1个远程 监控站,利用市话线路采用拨号方式与污水厂中控室通讯,该站采用四屏多屏显 示,可实现拨号时间间隔设定、可任意调人各运行图,并可自动翻屏,翻屏的时 间可调。
界面主要包括:污水处理厂自动控制系统结构图,污水处理厂工艺流程图,污水处理厂厂区平面图(动态),进水预处理段、泵房运行平面图(动态),水解池、污泥处理运行平面图(动态)、鼓风机运行平面图(动态),脱水机房、井房运行平面图(动态),高低压配电平面图(动态),污水处理厂运行状态总表(动态),进水预处理段、泵房运行状态表(动态),水解池、污泥处理运行状态表(动态),鼓风机运行状态表(动志),变电所、脱水机房、井房运行状态表(动态)。^
6、结语
污水厂自动化系统从理论上来讲是一个完整的、开放的系统,但在实际设计及工程实施过程中也存在一些问题。特别是一些大型设备如鼓风机、离心脱水机、高压配电系统综合智能保护装置等,其控制系统由设备配套带来,一般情况下自成网络,是各自分离的自动化孤岛,使日后的自动化运行、管理、维护及再开发变得很困难。如何在工程设计及招投标中协调好各子控制系统,使之能够与中心控制室的主控机实现安全开放的网络通信并满足工业控制实时性的要求,是今后在工程设计中需要进一步研究的新课题。
参考文献
[1] 吴锡棋等.多级分布式控制与集散系统[M].北京:中国计最出版社,2000 [2] 相会强,刘芬.自动控制在污水处理中的应用[J].仪器仪表学报,2005(8)[3] 邵忍丽.金融危机对我国中小企业的影响[J].企业活力.2009.(1):10. [4] 陈向农.污水处理厂设计与建设中值得探讨的几个问题[J].福建建设科技.2005.
[5] 王洪臣.城市污水处理厂运行控制与维护管理[M].北京:科学出版社.1997. [6] 周晓民.污水处理中自动化控制系统的应用[J].2005,27(1)[7] 余凯成,陈维政.人力资源开发与管理[M].北京:企业管理出版社.2004,(3):134一138.
[8] 相会强,刘芬.自动控制在污水处理中的应用[J].仪器仪表学报,2005(8)[9] 刘锐奇 污水成套设备综合智能自动化系统评述[J]-中华民居2010(9)[10] 齐从谦.PLC技术及应用[M].北京:机械工业出版社,2001 [11] 冯勇.现代计算机控制系统[M].哈尔滨:哈尔滨工业大学出版社.1997.
第三篇:交通信号灯自动控制系统
概述 1.1 设计目的
(1)掌握CPU与各芯片管脚连接方法,提高接口扩展硬件电路的连接能力;
(2)通过对交通灯信号自动系统的模拟控制,进一部提高应用8255A并行接口技术,8253定时功能,8259A中断管理控制器的综合应用能力;
(3)掌握基本汇编源程序编制方法,学会综合考虑各种设计方案的对比和论证。1.2 设计要求
交通信号灯自动控制系统须满足下列要求和功能:(1)首先车行道亮绿灯45s,同时人行道亮红45s;
(2)45s后,车行道黄灯闪烁3次,亮、灭各1s,此时人行道仍维持红灯;
(3)6s后,转为人行道亮绿灯20s,车行道亮红灯20s;(4)20s后,再转到第(1)步,如此循环往复;
(5)当有车闯红灯时,能实现报警信号持续3 s的扩展功能。
1.3 设计方法及步骤
1、设计系统硬件部分
(1)先进行方案论证,确定最终采取硬件定时还是软件定时,是查询方式还是中断方式;(2)在具体甄选设计过程中可能要设计的芯片,分析它们的功能特点,确定它们的工作模式;
(3)按照各芯片的使用特点以及本系统的设计要求逐步连接,画出系统硬件连接图。
2、设计系统的软件部分
(1)先进行程序编制方式的方案论证,讨论分析,确定是采用宏程序调用还是子程序调用模式;
(2)确定本系统设计可能涉及的源程序各个模块,明确各个模块的各自功能,分清它们相互之间的调用关系;(3)画出各个模块的程序流程图;
(4)依据流程图,编制出交通信号灯自动控制系统的完整汇编源程序。
1.4 设计说明
(1)本设计采用共阳极的发光二极管模拟对应的交通信号灯的型式,参见后面“系统硬件部分设计”中“总体设计”这一节;
(2)本设计关于有车闯红灯报警的扩展功能,是通过红外线接收装置实现的,具体分析见后面“可编程芯片说明及其地址范围确定”中“8254定时/计数器”这一节;
(3)在本设计的最初方案中,本来是有电子眼拍摄闯红灯车牌号的这一很实用、很现实化的扩展功能的,但由于实现这种功能的电路芯片资料难以搜集,芯片电路连接复杂以及芯片工作模式,工作环境,工作特点的难以确定,最终被舍弃,只留下报警功能;(4)本设计在很多方面,比如译码器的选择,定时器选型,程序调用方式等等尽量做到不与本组其他成员雷同,程序编制力求简便清晰,硬件连接图在保证每根具体用到的管脚线都能被表示出来的同时,力求线路连接清晰明确,尽量不使线与线之间过于缠绕。2 方案论证
2.1 软件定时与硬件定时
本任务要求交通信号灯能实现自行定时、延时、切换等功能,即能实现交通信号灯自动控制。一般计算机控制系统实现定时或延时有两种基本方法:利用软件定时或使用可编程硬件芯片,即硬件定时。软件定时,即让机器执行一段程序,这个程序没有具体的执行目的,显然利用执行每条指令CPU所花费的时间,可实现延时功能。这种方法容易实现,仅需选用恰当指令并安排循环即可实现,定时时间调整方便,但不能做到精确定时。另外,时间调整是以一条指令执行时间为基准,占用CPU资源,降低CPU利用率。
硬件定时,即使用可编程定时/计数器硬件芯片定时。这种芯片内部有一个可编程定时器,其定时值、定时范围可以很容易地由软件程序改变,定时时间到时可发出某种形式的信号通知外设或CPU。定时器的输出频率和波形等均由程序设定,因而使用灵活,功能强。综合软、硬件定时的各种优缺点,考虑到交通信号灯精确换灯的要求,以及交通信号等需要方便、灵活地调整换灯时间等特点,我选用硬件定时来完成任务。2.2 查询方式与中断方式
定时时间到,比如车道绿灯亮45s后需换成黄灯闪烁,完成这一转换工作,有两种工作方式:查询方式和中断方式。
查询方式即CPU在与外设传输数据(本设计为8086传输数据给8255A从而控制交通信号灯换灯)前,一直不停检查外设状态,当外设准备好时方传输数据(本设计为8086不断测试8255A状态口PC1,当PC1变为低电平时,表明定时时间到),CPU可传输数据,控制信号灯切换。
中断方式可以不让CPU主动去查询外设状态,而是让外设在数据准备好(定时时间到后)之后再通知CPU,CPU继而开始与外设交换数据控制外设工作。
显然查询方式相比与中断方式,使CPU利用率大大降低,因为CPU要用大量时间去执行状态查询程序。但考虑到本课程设计的主要目的是控制信号灯切换,即CPU工作最终目的还是与外设传输数据,控制外设工作,即这种状态查询是有必要的,CPU的不间断的状态查询并非多余的,而且查询方式可使指令执行效率提高,指令执行目的更加明确,软件编程更加简便,避免了中断方式繁琐的中断矢量表的建立,中断程序的汇编等等,因而我选用查询方式来实现交通信号灯的自动控制。
2.3 8253定时/计数器与8254 定时/计数器
8253和8254都是能实现定时,延时功能的可编程定时计数器,可以 轻松地实现所需要的功能。两者的功能与工作方式,工作环境皆类似,区别仅在于8254的工作频率更高,可达到10MHZ。另外,8254比8253还多出回读功能。
考虑到本组大多数人都选用8253,为避免重复雷同,我选用8254定时计数器,实际上两者并没多大区别。
2.4 方案确定
综上所述,我选用的方案最终为利用可编程计数器8254实现硬件定时,用查询方式控制8086工作,用并行I/O接口8255A实现8086与外设(本设计采用发光二极管模拟交通信号灯)数据交换,用中断控制器8259A实现闯红灯报警的扩展功能。硬件部分设计 3.1 总体设计
正如A3图纸系统硬件连接图所示,CPU我选用INTEL公司的8086,它足以满足交通信号灯自动控制系统的功能要求;存储器选用两片型号为6116的静态RAM,一片作为奇片,一片作为偶片,总存储容量可达到4KB,既可以读也可以写,足以满足要求;由于8086CPU有16根地址与数据共用线,故有必要将地址码与数据码分开,8086采用了分时传送的方法,即先传送地址码,再传送数据码,故必须用锁存器将地址码锁存起来。我选用74系列的74LS373作为地址锁存器; 由于外设、内存存取数据速度不匹配,故有必要使用缓冲器来暂时记忆存储数据,我选用74系列的74LS245作为数据缓冲器;存储器译码我采用全译码方式,用74LS688比较译码器可减少逻辑组合电路;可编程芯片8255A,8254,8259A的片选信号译码,我采用线译码方式,这样可以保证其端口地址只有8位,易于程序编写。因而74LS138译码器是最好的选择。至于8255A,8254,8259A的选用目的已在前面解释过,这里不再重复。在具体设计该系统时,我选用发光二极管LED来模拟红,黄,绿灯的亮和灭。由于实际生活中只需要10盏灯就可实现车行道,人行道的通行,如图所示,故这里我也选用10支二极管,其对应关系如表所示。LED1-LED5与8255A PA口相连,LED6-LED10与PB口相连。PC1口作为状态查询口,PC6口输出可实现车闯红灯的报警功能。
图1 信号灯和LED对应图 3.2 CPU选型
CPU我选用的是8086,其管脚分配图如图所示。部分管脚采用分时复用方式,构成了40条管脚的双列直插封装,它有两种工作模式,我采用的是最小模式,故33号管脚应接高电平。
8086内部结构由指令执行部件EU和总线接口部件BIU两部分构成。EU负责执行指令,BIU负责取指令,读出操作数和写入结果。两个单元相互独立工作,有效地加快系统的运算速度。
3.3 存储器选型
存储器我选用两片6116型号的静态RAM,容量为4KB片选信号与A0相连的是偶片,主要用于低8位数据总线上进行字节传送。与BHE选中的是奇片,主要用于高8位数据总线上字节传送。当A0和BHE都选中的时候,可进行16位数据总线字传送。
图3 6116 RAM存储器管脚图
RAM的主要功能是存储程序、变量等。如果计算机关机,这些信息不再存在。本电路中,A12-A19作为片选信号,均为低电平。故存储范围为0H-0FFFH。
3.4 可编程芯片说明及其地址范围确定
3.4.1 8254定时/计数器及其地址范围
8254与8253功能类似,但8254工作频率更高,可达10MHZ,且8254还可进行回读,但这一功能在本设计中用不上,因而对8254的说明也可看作是对8253的介绍,事实上两者管脚图接近完全相同。
8254芯片包含3个功能完全相同的计数通道,称为通道0,通道1,通道2,有6种工作方式。本设计要求实现的最大45s,故必须采用两个计数器级联方式,工作在方式2分频功能。另一个计数器1工作在方式5,OUT1门产生中断,实现闯红灯报警3s的功能。三个计数器具体连接图如A3图纸硬件连接图所示,CLK0,CLK1都通入1.2MHZ的脉冲。OUT0与CLK2端相连,均工作在方式2分频,由OUT2门产生低电平作为状态信号实现延时功能。计数器1工作在方式5,GATE1门上升沿触发。如图3所示,当车行道红灯时,则开中断。当有车闯红灯时,就会阻挡安装在人行道上的红外线发射和接受装置的光线,接收装置可将光信号变为电信号的一个脉冲,通入GATE1门,上升沿触发,在OUT1门输出低电平,将此电平通过非门后连在8259A的IR1端,则可以产生中断。经过中断处理便可以控制相关芯片发出3s的报警信号。当然,在车行道绿灯时,应关中断。
图5 车闯红灯报警信号图
8254的端口地址可由硬件连接图确定,由图可知,8254片选信号由Y2引出,并与A0组成逻辑电路,输出口送入8254的 端。其地址可由上表可看出,为40-46H中偶地址。
3.4.2 8255A并行I/O接口及其地址范围
8255A是一个标准的40管脚芯片,它有3个数据端口,分别为PA口,PB口,PC口。每个端口有8位。8255A有3种工作方式。本设计选用最简单的方式0——基本输入/输出方式。
本设计用到了PA,PB口,它们分别作为发光二极管的并行输出接口。由于发光二极管,由于二极管为共阳极,故当PA,PB输出为0(低电平)时,相应二极管才会亮。另外,PC1口作为状态查询口,于8254 OUT2门相连,当PC1输入为0时,表示定时时间到,可交换数据。PC6口作为输出口,作为报警信号的端口。这些在软件编程时要格外注意,将决定各端口控制字的选择和确定。8255A端口地址可硬件连接图确定,由图可知,8255A片选信号由Y3引出,并与A0组成逻辑组合电路,作为8255A 信号。其地址可由右表看出,为60H-6中偶地址。
3.4.3 8259A中断控制及其地址范围 8259A可编程芯片中断控制器(PIC)称为优先权控制器,它可为CPU处理8级向量中断。本设计中,中断控制器用于扩展电路的报警功能。由硬件图可知,OUT1门低电平经过非门送入IR1端,故其为高电平有效的电平触发方式。
8259A的端口地址可由硬件图确定。由图可知,8259A片选信号由Y4引出,并与A0,A2组成逻辑电路,作为8259A 信号。其地址可由右表看出为80H-82H中偶地址。
3.5 其它选用芯片说明 3.5.1 地址锁存器74LS373
在8086系统中,地址线和数据线时复用的,故有必要锁存地址。74LS373管脚及功能图如图所示。其数据送入是由时钟的约定电平来进行的。E为低电平时,锁存器才能工作。
3.5.2 数据缓冲器74LS245
74LS245是带三态输出的8位双向数据缓冲器,专用于需要双向传输的 数据总线接口。它其实也是一个三态门,为输出使能端,G为低电平时,缓冲器才能工作,M为传输方向控制端。事实上,在8086最小模式时,由于锁存器的作用,数据缓冲器并不是必要的。
3.5.3译码器
3.5.3.1比较译码器74LS688
在存储器扩展时,我选用74LS688作为译码器,其一是为了在全译 码时减少组合逻辑电路,二是为了与本组其他成员相区别。74LS688作译码器时,必须为低电平,且当且仅当对应的8个输入端P与8个输入端Q相等时,才会输出低电平。利用这一特性将 低电平作为存储器的片选信号,可实现其译码片选功能。
由硬件连接图可知,在设计中,我将8个输入端Q全部接地,即低电平,保证了存储器高8位全部为0。实现了存储器从最低地址0H-0FFFH,4KB的存储容量。3.5.3.2 74LS138译码器
74LS138译码器是译码电路中最常用的,在本设计中我也选用74LS138译码器产生8255A,8254,8259A三个芯片的片选信号,如果选用比较译码器74LS688则需要三片,既增加了芯片数量,也增加了电路消耗,同时占用了过多的空间,使线路连接更加复杂,更不直观。由于74LS138的功能及工作模式熟知,这里不再赘述。
3.5.4时钟发生器8284A
8284A是用于8086(或8088)系统的时钟发生器/驱动芯片,它为8086(或8088)以及其他芯片提供所需的信号。
8284A由三部分电路组成:时钟信号发生器,复位生成电路和就绪控制电路。下图是8284A的管脚图。
3.5.5 D触发器
D触发器的工作原理是在CP端脉冲上升沿触发翻转技术,在本电路中,主要用于分频。其将CP端脉冲频率减半,那么为什么要减半频 率呢?
原因是8253的最高工作频率只有2MHZ,因此必须将2.4MHZ脉冲频率减半8253才能工作。因此,在我选用的8254定时/计数器电路中D触发器并不是必要的了,甚至可以完全省去不用,因为8253最高工作频率可达到10MHZ,但为了避免频率过大导致45最长延时时,写入的数据过大,我还是加上了D触发器,无非是为了简化后面的软件编程。3.5.6 7407驱动器
7407TTL集电极开路六正相高压驱动器,其管脚图如下。
3.5.7 功率放大器PWN-2401-EW
该放大器是上海迈高网络技术有限公司生产的,主要工作2.4GHZ ISM频段的WLAN设置的覆盖范围。4 软件总体设计说明 4.1 系统软件部分说明 4.1.1 宏调用与子程序调用
设计延时程序可采用两种方法,一种是子程序调用形式,另一种是宏调用形式。
宏调用形式是在汇编期间展开的,调用一次展开一次,因此它占用的存储空间与调用的次数有关,调用次数越多,占用存储空间越大。宏指令的使用简化源程序,但并不节省内存单元。
子程序是在程序运行期间由主程序调用,在目标代码中只占用它自身内存空间,因而汇编后目标代码少,节省内存空间。但子程序调用每调用一次就要保护断点,保护现场;返回后又恢复现场,恢复断点,增加了额外时间,因此执行时间长,速度慢。宏指令则可免去这些开销,更重要的是,宏调用时用实元取代哑元,调整灵活,程序大大缩减,可读性和可移植性大大提高。
综上所述,我采用宏调用形式,宏程序专门编制待定延时程序,主程序则顺序换灯、循环,而每个过程灯亮时间由宏程序保证。在整个程序的运行期间若发生中断(有车闯红灯),则由中断程序完成相应功能。当然,主程序中也必要包含中断矢量表的建立程序。因而,我所编制的程序由三部分组成:主程序、宏调用程序和中断服务子程序。下面将一一介绍,并且画出其流程图。4.1.2 各时间参数的计算 本设计中涉及的时间参数有:车行道绿灯时间45s,车行道红灯时间20s,车行道黄灯亮、灭的时间各一秒,报警器报警持续时间3s。由于8254 CLK端时钟频率为1.2MHZ,计数器0和计数器2级联按6000×200方式分频,即计数器0写入6000时,在计数器2 CLK2中会有200HZ脉冲。对于1s,需对计数器2写入时间参数TIME1=200;对于3s,TIME2=600;对于20s,TIME3=4000;对于45s,TIME4=9000,都不超过10000,故均可按BCD码写入。
4.2 主程序说明及其流程图
主程序主要实现两项功能:一是填写中断入口地址表,为中断服务提供必要准备;二是实现换灯,循环。其流程图见下图。4.3 宏调用及其流程图
宏程序的功能是实现准确的定时和延时,为主程序中红、黄、绿灯的亮、灭时间,中断服务程序的报警信号持续时间服务。当然,在宏程序中应当特别注意一些寄存器,变量,地址等保护工作,这就需要堆栈。其流程图见下图。
4.4 中断服务程序说明及其流程图
本设计中我编制的中断服务程序显然是为扩展功能——有车闯红灯报警3s服务的。中断服务程序主要是对8255A C口进行操作的,使C口输出高电平,经过放大器后驱动报警装置报警。当然,在编制过程中,也需要注意一些寄存器,变量,地址的保护工作,其流程框图 见下图。
所有三个程序的具体代码及设计编制,见附录。5 总结与体会 5.1 课程设计总结
本次课程设计,要求自制交通信号灯自动控制系统,并能编制该系统工作的汇编源程序。我的设计采用可编制芯片8254硬件定时,用查询方式来控制交通灯的亮与灭,指令执行目的明确,交通灯亮、灭延时时间精确,并且还能实现有车闯红灯的报警功能,因而该系统使用可靠。电路连接也比较简便,芯片花费不多,工作性能良好,能完整地实现城市交通信号灯所需的功能。
我所编制的汇编程序采用宏调用方式,用一个宏程序可实现多种定时功能,有效地避免子程序调用方式模块过多,程序代码繁琐的缺点。并且宏调用方式可以非常简便地调整定时时间,仅仅改变时间参数变量值就可方便地改变灯亮、灭时间,灵活性好这些都是子程序调用无法企及的。
总而言之,我觉得我的设计相角于本组其他同学而言,无论是芯片选择,硬件连接,各种芯片工作模式,源程序编制等等都是比较独特而又不失简便的,我在设计过程尽量避免与本组其他同学的设计雷同,而且尽量将多种方案进行全方位比较与取舍,比如软件定时与硬件定时,查询方式与中断方式,74LS138与74LS688译码器,宏调用与子程序调用,这些我都已在前面说明书中做过很多对比与论证。总之,我对自己的设计比较满意。5.2 感想与体会
关于这次课程设计的体会,我是深有感触的。
首先,我想说,这次课程设计的的确确让我增长了不少见识,使我对《微机接口》这门课程认识更深。比如,在课程设计前,可能都知道CPU与存储器相连能实现存储器扩展,CPU与8255A相连能实现CPU对外设的并行输出和控制,8253能定时计数,8259A能管理中断,但真正的这些芯片之间各端口具体连接,包括每根地址线,数据线的连接,片选信号的产生,8255A,8253,8259A的工作原理和工作模式等等,都是非常模糊的。只有经过这次课程设计的鞭策和逼迫,我们才不得不通过各方面途径去查取相关资料,去自学相关知识,去一个个逐步消解我们学习上的盲点。试想,如果没有这次课程设计,会有多少同学会自觉的那样努力的,刻苦地那样做呢?人都是懒惰的 动物,现实生活中,大多数人不都是言不由衷,违背己意的去做自己不喜欢做,讨厌做却又不得不去做的事情吗?
其次,我想说这次设计过程不开心,不愉快的一些事情。《红楼梦》里关于品尝有云:一杯为品,二杯则是解渴的蠢物,三杯便是饮牛饮驴的。同样,我想说,课程设计,两三个人在一起则是讨论交流;一坨人在一起则是相互推赖,抄袭,敷衍了事。我不明白为什么一个班上只有5个课题设计,一个设计要吸纳七,八个人。就拿我所在组来说,真正为之筹谋计划的少,贪成享乐者甚多。经常是两三个人交流沟通,却要想出五六个不同设计方案为本组其他成员共享。我想说,毕竟大家同学一场,同学之间的企求不好拒绝,所以老师上次“冤枉”我与某人流程图类似让我特委曲难受。参考文献
[1] 张玉清,王春玲.IBM PC 微型计算机原理与接口技术.人民邮电出版社,1997 [2] 彭虎,周佩玲,傅忠谦.微机原理与接口技术(第二版).电子工业出版社,2008 [3] 王永山.IBM PC汇编语言程序设计和接口技术.西安电子科技大学出版社,1989 附录参考程序
TITLE YUWENNIAN.ASM ;程序名
DELAY MACRAO TIME ;延迟宏定义
LOCAL L ;局部说明
PUSH AL PUSH BL
MOV BL MOV AL BCD码写入 OUT 46H MOV AL OUT 40H MOV AL OUT 40H MOV AL 码写入
OUT 46H MOV AL OUT 44H MOU AL 2,TIME,001101001B,AL,00,AL,60,AL , 10110101B , AL , 00 , AL , BL
;计数器0,方式2,;计数器0写入6000 ;计数器2,方式2,BCD ;时间参数写入计数器23
;送延迟参数 OUT 44H , AL MOV AL , 01011011B ;计数器1,方式5,BCD码写入
OUT 46H , AL MOV AL , 5 ;计数器1写入5,5个脉冲后发生中断
OUT 42H , AL L: IN 42H , AL TEST AL , 00000010B JNZ L POP BL POP AL ENDM DATA SEGMENT TIME1 EQU 2 TIME2 EQU 6 TIME3 EQU 40 TIME4 EQU 90 DATA ENDS
STACK SEGMENT PARA STACK DB 100 DUP(?)
;测试PC1
;为1时再测试,直至为0 ;宏定义结束
;黄灯闪烁时间
;报警持续时间
;车道红灯时间
;车道绿灯时间 'STACK' 24
STACK ENDS CODE SEGMENT START: MOV AX , DATA
MOV DS , AX MOV AX , STACK MOV SS , AX CLI
;关中断
CLD MOV AX , O ;建立中断入口地址表
MOV ES , AX MOV DI , 4*51H MOV AX , OFFSET INTPROC STOSW MOV AX , SEG INTPROC STOSW MOV AL , 00011011B ;设置8259A,写ICW1,高电平触发,无级联
OUT 80H , AL
MOV AL , 50H ;写ICW2,中断矢量基值为50H OUT 82H , AL MOV AL , 00000011B ;写ICW4,完全嵌套,非缓冲,自动EOI OUT 82H , AL MOV AL , 11111101B ;写OCW1,仅允IR1中断
OUT 82H , AL MOV AL , 10000001B PC上半口输出,PC下半口输入
OUT 66H,AL STI MOV AL , 0FFH 置0 OUT 60H , AL OUT 62H , AL MOV AL , OFH OUT 64H , AL MYC: CLI
MOV AL , 00001110B 报警
OUT 60H , AL 灯亮
MOV 62H , AL DELAY TIME4
;设置8255A,PA,PB,;灯全灭,PC1置1,PC6;关中断,防止绿灯时;车道绿灯亮,人道红;延迟宏调用,时间45s
YWN: MOV CX , 3 ;设置闪烁次数
MOV AL , 00010110B
;车道黄灯亮
OUT 60H , AL OUT 62H , AL DELAY TIME1
;延迟宏调用,时间1s MOV AL , 000111001B OUT 60H , AL OUT 62H , AL DELAY TIME1 LOOP YWN STI 则中断
MOV AL , 00011001B 亮
OUT 60H , AL OUT 62H , AL DELAY TIME3
MOV AX , 06H MOV DL , OFFH INT 21H JMP MYC LOVE: MOV AH , 4CH
;车道黄灯灭 ;延迟宏调用,时间1s ;开中断,有车闯红灯时;车道红灯亮,人道绿灯;延迟宏调用,时间20s ;判断是否有键按下 27
INT 21H ;返回DOS CODE ENDS ENDS START INTPROC PROC FAR ;中断服务子程序
PUSH AX ;保护现场
PUSH BX PUSHF MOV AL , 00001101B OUT 66H , AL DELAY TIME2 MOV AL , 00001100B OUT 66H , AL POPF
POP BX POP AX IRET INTPROC ENDP
;PC6置1,报警
;延迟宏调用,时间3s ;PC6置0,报警解除 ;中断返回 28
第四篇:《电力拖动自动控制系统》学习心得
《电力拖动自动控制系统》学习心得
进入到大四我们接触到了一门新的课程叫《电力拖动自动控制系统》,几次课上下来发现这门课包含的内容实在是太多了,涉及到了自动控制原理、电机拖动、电力电子和高数等多门学科的知识,让我觉得学起来有点吃力。但经过老师的细细梳理,使我慢慢对这门课程有了新的认识,电力拖动是以电动机作为原动机拖动机械设备运动的一种拖动方式。电力拖动装置由电动机及其自动控制装置组成。自动控制装置通过对电动机起动、制动的控制,对电动机转速调节的控制,对电动机转矩的控制以及对某些物理参量按一定规律变化的控制等,可实现对机械设备的自动化控制。
现代运动控制已成为电机学,电力电子技术,微电子技术,计算机控制技术,控制理论,信号检测与处理技术等多门学科相互交叉的综合性学科。课上老师简单介绍了运动控制及其相关学科的关系,随着其他相关学科的不断发展,运动控制系统也在不断发展,不断提高系统的安全性,可靠性,在课上跟随老师的思路,使我对运动控制系统有了更深刻的理解。
运动控制系统的任务是通过对电动机电压,电流,频率等输入电量的控制,来改变工作机械的转矩,速度,位移等机械量,使各种机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。工业生产和科学技术的发展对运动控制系统提出了日益复杂的要求,同时也为研制和生产各类新型的控制装置提供了可能。在前期课程控制理论、计算机技术、数据处理、电力电子等课程的基础上,学习以电动机为被控对象的控制系统,培养学生的系统观念、运动控制系统的基本理论和方法、初步的工程设计能力和研发同类系统的能力。
课堂上老师全面、系统、深入地介绍了运动控制系统的基本控制原理、系统组成和结构特点、分析和设计方法。
运动控制内容主要包括直流调速、交流调速和伺服系统三部分。直流调速部分主要介绍单闭环、双闭环直流调速系统和以全控型功率器件为主的直流脉宽调速系统等内容;交流调速部分主要包括基于异步电动机稳态模型的调速系统、基于异步电动机动态模型的高性能调速系统以及串级调速系统;随动系统部分介绍直、交流随动系统的性能分析与动态校正等内容。此外,书中还介绍了近几年发展起来的多电平逆变技术和数字控制技术等内容。《运动控制系统》既注重理论基础,又注重工程应用,体现了理论性与实用性相统一的特点。书中结合大量的工程实例,给出了其仿真分析、图形或实验数据,具有形象直观、简明易懂的特点。
第一部分中主要介绍直流调速系统,调节直流电动机的转速有三种方法:改变电枢回路电阻调速阀,减弱磁通调速法,调节电枢电压调速法。
变压调速是是直流调速系统的主要方法,系统的硬件结构至少包含了两部分:能够调节直流电动机电枢电压的直流电源和产生被调节转速的直流电动机。随着电力电子技术的发展,可控直流电源主要有两大类,一类是相控整流器,它把交流电源直接转换成可控直流电源;另一类是直流脉宽变换器,它先把交流电整流成不可控的直流电,然后用PWM方式调节输出直流电压。本章说明了两类直流电源的特性和数学模型。当用可控直流电源和直流电动机组成一个直流调速系统时,它们所表现车来的性能指标和人们的期望值必然存在一个不小的差距,并做出了分析。开环控制系统无法满足人们期望的性能指标,本章就闭环控制的直流调速系统展开分析和讨论。论述哦了转速单闭环直流调速系统的控制规律,分析了系统的静差率,介绍了PI调节器和P调节器的控制作用。转速单闭环直流调速系统能够提高调速系统的稳态性能,但动态性能仍不理想,转速,电流双闭环直流调速系统是静动态性能良好,应用最广的直流调速系统;还介绍了转速,电流双闭环系统的组成及其静特性,数学模型,并对双闭环直流调速系统的动态特性进行了详细分析。
第二部分主要介绍交流调速系统。交流调速系统有异步电动机和同步电动机两大类。异步电动机调速系统分为3类:转差功率消耗型调速系统,转差功率馈送型调速系统,转差功率不变型调速系统。同步电动机的转差率恒为零,同步电动机调速只能通过改变同步转速来实现,由于同步电动机极对数是固定的,只能采用变压变频调速。
本章介绍了基于等效电路的异步电动机稳态模型,讨论异步电动机变压变频调速的基本原理和基频以下的电流补偿控制。首先介绍了交流PWM变频器的主电路,然后讨论正选PWM(SPWM),电流跟踪PWM(CFPWM)和电压空间矢量PWM(SVPWM)三种控制方式,讨论了电压矢量与定子磁链的关系,最后介绍了PWM变频器在异步电动机调速系统中应用的特殊问题。并讨论了转速开环电压频率协调控制的变压变频调速系统和通用变频器。详细讨论了转速闭环转差频率控制系统的工作原理和控制规律,并介绍了变频调速在恒压供水系统中的应用实例。
矢量控制和直接转矩控制是两种基于动态模型的高性能的交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电机模型,然后按照直流电动机模型设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的符号,根据当前定子磁链矢量所在的位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。两种交流电动机调速系统都能实现优良的静,动态性能,各有所长,也各有不足之处。
作为一个即将踏入社会的毕业生,这学期的学习又让我充实了不少,也给自己奠定了基础,非常感谢吕庭老师对我们的帮助,以后进入到工作岗位一定会做到学以致用。
第五篇:车站信号自动控制系统的设计
车站信号自动控制系统的设计
目前,我国铁路车站信号自动控制系统普遍采用的是6502电气集中系统,该系统不仅高效、经济、可靠,更重要的是符合故障-安全原则。本次设计从6502电气集中的两大主要组成部分——选择组和执行组入手,对一个双向四股道车站的信号自动控制系统进行设计。其中包括对选择组的记录电路、选岔电路、开始继电器电路、辅助开始继电器电路和终端继电器电路等的设计;对执行组的信号检查继电器电路、区段检查继电器和股道检查继电器电路以及进路锁闭电路和表示灯电路等的设计。
第1章 绪 论
随着铁路运输的发展需要和科学技术的进步,保证行车安全的措施逐步从管理措施向技术措施过渡,直至发展成今天的自动控制系统。6502电气集中联锁设备作为实现控制车站范围内的道岔、进路和信号机,并实现它们之间的联锁,有着保证行车安全、缩短列车停站时间、提高铁路运输效率、改善行车人员的作业条件、提高车站通过能力等等优点,是一种高效、安全、经济的车站联锁设备。鉴于目前,我国80%左右的车站信号自动控制系统仍然采用的是6502电气集中控制系统,并且该系统以它的安全、可靠在铁路车站信号自动控制系统中,还将继续使用。即使今后推广微机联锁控制技术也仍将会持续发展电气集中。所以,熟悉和掌握6502电气集中控制系统的设计对我们这些即将从事车站信号工作的人员来说是必不可少的。
1.1 国内外发展概况世界上第一个电气集中于1929年在美国出现。20世纪40年代各国开始使用,50年代日趋成熟并大量推广,60年代改进并完善,70年代进一步得到发展。电气集中电路,各国都趋于按进路构成,以按钮方式最为普遍。为便于设计和施工,多采用组合式电路。70年代以来,随着控制范围的扩大,控制方式有所改进,逐步发展为控制和表示分开的方式,有些国家采用按键控制、屏幕显示。增加了控制距离,还采用了进路预办和自动排列进路的方式,增加了车次表示、动作记忆、故障报警、快速检测及定位等功能。此外,还以电气集中为基础发展车站作业综合自动化、枢纽或卫星站的行车集中控制系统、程序式列车运行控制装置、车站调车区排列进路的机车遥控系统、平面调车区的无线调车进路控制等新型车站联锁设备。从70年代末开始,不少国家先后研制成功计算机联锁。它用程序来完成全部联锁关系,采用软件冗余或硬件冗余方式,能满足故障-安全要求。它发挥了计算机快速、容量大的特点,简化了设备,在安全性、可靠性、经济性和多功能性方面远比继电器集中优越,而且设计、施工、维修也大为方便,是车站联锁设备的发展方向。1942年,我国在济南站首次安装了手柄式进路继电集中。1951年,衡阳站安装了按钮式大站电气集中。经过长期的实践,认为6502电气集中是最为成熟的定型电路,为方便使用和维修管理,逐步放弃了其他各种电路而不管大、中、小站都只发展6502电气集中。我国从1983年开始计算机联锁的研制工作,先在企业专用铁路上开通使用,取得经验后逐步在国家铁路上扩大试用。目前已有数百个站投入使用。计算机联锁取得的突破性进展,标志着我国铁路信号技术正向世界先进水平迈进。
1.2 本文的结构安排本文从如何设计车站信号平面布置图、联锁表以及组合排列图入手,然后分别就6502电气集中控制系统中选择组电路当中的记录电路、选岔电路、开始继电器电路、辅助开始继电器电路和终端继电器电路等的设计以及执行组电路当中的信号检查继电器电路、区段检查继电器和股道检查继电器电路、进路锁闭电路和表示灯电路等的设计,详细的阐述如何使用6502电气集中控制系统对一个双向四股道的车站信号自动控制系统进行设计。
第2章 车站信号平面布置图和联锁表的编制
因为车站信号平面布置图所包含的内容将是6502电气集中所有后续技术图纸的设计依据,而且车站信号平面布置图设计的是否合理,关系到车站通过能力、铁路运输效率等等方面,甚至会影响行车作业安全。所以,车站信号平面布置图设计的优劣直接影响6502电气集中整个设计的质量。而联锁表是设计电路的依据,如果联锁表本身编制的不合理,将影响电路图的正确性。因此,熟练地掌握绘制车站信号平面布置图和编制联锁表的方法,是整个车站信号自动控制系统设计的一大关键。下面就以一个双向四股道的车站为背景,分别就如何绘制该车站信号平面布置图和编制联锁表作个详细的介绍。一般是先布置列车信号机,后布置调车信号机。而对于一个装有电气集中设备的车站,列车和调车作业都是通过信号机的显示进行的,因而车站线路设备能否被充分利用,很大程度上决定于信号机的布置。所以,合理的布置信号机(特别是调车信号机)是设计中的一项很重要的工作。
(1)列车信号机的布置
①为了保证列车运行的安全,对由区间线路驶向车站内方的接车进路进行防护,在每个方向的进站口道岔外方,列车运行前进方向线路的左侧,均应设置进站信号机。
②为了禁止或准许列车由车站开往区间,车站内有发车作业的到发线股道上,均应装设出站信号机。
调车信号机的布置调车信号机的布置一般比较灵活,原则上是最大限度的满足调车作业的需要,提高工作效率,尽量缩短机车车辆的走行距离和极大限度的进行平行作业。调车信号机是根据调车作业的具体情况进行布置的。下面结合调车信号机在调车作业中的作用,说明如何布置调车信号机:
1.在咽喉区,道岔岔尖前应设置调车信号机,以便满足调车折返作业的需要。2.为了提高调车作业的效率,应设起阻挡作用的调车信号机。当D5信号机关闭时,就可以保证利用开放的D7信号机进行II、4股道间的转线作业时不影响排列XF或D1至3G或IG的进路。
实际上,一架调车信号机并非仅起一种作用,设于咽喉区的调车信号机对于某一调车作业来说可能是作为折返信号机使用;对另一调车作业来说,就可能作为阻挡信号机使用。信号机、道岔和线路的编号、信号机的编号站内各种信号机名称是以汉语拼音字母表示的。
进站信号机按运行方向上行用字母“S”,下行用字母“X”表示,如果同一咽喉有数个方向进站信号机并排时,在字母“S”或“X”的右下角标以信号机所属区间线路名称汉语的第一个字母。
出站信号机上行用字母“S”,下行用字母“X”表示,并在字母S或X的右下角注明该信号机所属的股道的号码。如S3和X4 就分别表示上行3股道出站信号机和下行4股道出站信号机。
调车信号机用“D”表示,并在右下角注以数字,上、下行咽喉区分别编为双号和单号,并由上、下行列车到达方向顺序编号。
(2)道岔的编号按规定上行咽喉编为双号,下行咽喉编为单号,自进站口向站中心顺序编号。位于同一坐标的道岔先编靠近信号楼的道岔。对于同一端有两个及两个以上方向时,应该先编主要方向的道岔号码。站内的每一道岔均应该进行编号。对于双动道岔应编成连续的单数或双数。
(3)线路的编号车站内每一条线路应该有规定的号码,同一车站内不得有相同的号码。根据规定,将与复线区段相连的正线股道,上行编为双号,下行编为单号,并用罗马字母表示。如IG和IIG。其余站线股道编为3G和4G。进站信号机内方应设置调车信号机而形成的线路区段,根据衔接股道的编号再加A或B表示,下行咽喉加A,上行咽喉加B。如IAG。
联锁表的编制联锁表是反映整个车站内的道岔、进路和信号机之间联锁关系的表格。车站信号平面布置图是编制联锁表的依据。
在编制联锁表时,是以进路为主体,从列车进路(分接车和发车)到调车进路逐条依次顺序编号的。然后将排列进路时需要按下的按钮、防护该进路的信号机名称和显示、进路所要求的有关道岔的位置、进路应包括的轨道区段以及所排进路相敌对的信号等逐项一一填。
第3章 组合排列图
6502电气集中电路为组合式电路,其电路是由各种不同的组合拼接而成的。6502电气集中共有12种定型组合,除方向组合和电源组合外,其余10种定型组合电路都可被选来用拼接成各种不同的电路,这些用不同组合拼接起来的电路组成了整个站场网路。由于6502电气集中的组合是以其对应的道岔、信号机和轨道电路区段作为基本单元设计的。因此,6502电气集中有三种基本组合。分别为,道岔组合、信号组合和区段组合。道岔组合有以下三种类型:
①DD组合,单动道岔组合,用于单动道岔。
②SDZ组合,双动道岔主组合,用于一组双动道岔。
③SDF组合,双动道岔辅助组合,一组双动道岔占用半个SDF组合。信号组合分列车信号组合和调车信号组合两大类。
列车信号组合有四种类型:
①LXZ组合,列车信号主组合,用于进站、出站信号机和接车近路、发车进路信号机。
②1LXF组合,一方向列车信号辅助组合,用于仅有一个发车方向的出站信号机,以及单线区段的进站信号机。③YX组合,引导信号组合,用于带引导信号的进站信号机及接车进路信号机。
调车信号组合有两种类型:
① DX组合,调车信号组合,用于并置等调车信号机。
② DXF组合,调车信号辅助组合。不论是道岔区段还是无岔区段,区段组合均只有一种组合,即:Q组合,区段组合,用于有道岔的轨道区段以及列车进路内的无岔区段。根据已确定下来的车站信号平面布置图,选用不同的组合,绘制了双向四股道车站的组合排列图。下面就如何选用组合绘制组合排列图作个简单的介绍。
(1)进站信号机选用的组合和接车进路信号机应选用的组合在复线单向运行区段,当进站信号机内方有无岔区段并设有同方向调车信号机时,选用1LXF、YX、LXZ和零散组合。调车信号机不另设DX组合。接车进路信号机选用组合的情况与进站信号机相同。
(2)出站兼调车信号机和发车进路兼调车信号机选用的组合对于只有一个发车方向时,出站兼调车信号机选用LXZ和1LXF两个组合。如S3出站兼调车信号机。发车进路兼调车信号机和出站兼调车信号机选用组合是一样的。(3)调车信号机选用的组合每架并置的调车信号机选用一个DX组合。如D5、D7、D9和D11。
(4)道岔选用的组合单动道岔选用一个DD组合,对于双动道岔除了选用一个SDZ组合外还应该选用半个SDF组合。
(5)道岔区段选用的组合每一个道岔区段和列车进路上的咽喉无岔区段一般来说都应该选用一个Q组合。Q组合必须放在利用该区段排列任何进路都必须经过的地方。对于交叉渡线,采用的是组合换位的处理方式。理由是,交叉渡线道岔组合换位后,使得交叉渡线范围内的每个道岔区段只需在关键部分设置一个区段组合。需要特别注意的是,在双向四股道的下行咽喉组合排列图中,1/3道岔和5/7道岔选用的组合在连接时,进行了换位处理。就是属于上述情况。
第4章 车站信号自动控制系统电路的设计
4.1 6502电气集中电路的概述前面两章分别介绍了如何绘制车站信号平面布置图、编制联锁表和按照车站信号平面布置图选用的组合排列图。接下来,将从6502电气集中选择组和执行组入手,详细的介绍如何使用6502电气集中对双向四股道车站信号自动控制系统进行的设计。这部分内容是此次设计的主要也是重点部分。
6502电气集中的主要电路由15条网路线构成。其中1-7线为选路网路(选择组部分),8-15线为执行网路(执行组部分)。选择组网路完成选岔任务之后,即开通执行组网路。执行组网路先由道岔控制电路转换道岔,再由锁闭电路将进路锁闭,最后由信号控制电路使信号开放。在列车或调车车列驶过进路后,由解锁电路将进路解锁。下面先就6502电气集中电路中各继电器的关系及动作顺序归纳如下:
4.2 选择组电路选择组电路是由记录电路和选路电路组成的。而记录电路又是由记录按压进路按钮动作的按钮继电器电路和根据所按压按钮顺序来区分进路的性质和运行方向的方向继电器电路组成。选路电路包括选岔电路和开始继电器电路。1-6线为选岔网路,用来在排列进路的过程中自动选出进路上的各有关道岔所需的位置。7线是开始继电器励磁网路,用以检查所选进路和所排进路的一致性。它们的设计分别如下。
4.2.1 按钮继电器电路的设计D5、D7并置调车信号机按钮的继电器电路。并置按钮继电器电路不论D5A是作进路始端按钮还是终端按钮,只要按压D5A,经D5A的第一组接点接通按钮继电器AJ励磁电源,使AJ↑。记录下车站值班员按压D5A的动作。松手后,AJ通过其本身第六组前接点构成自闭电路以保持继续励磁。D5AJ的自闭电路为:KZ—D5AJ3—4 —AJ62—61 —JXJ63—61—FKJ33—31 —QJ73—71 —XJ73—71 —KF之所以如此设计,是由于:(1)为了AJ在进路选出后自动复原(JXJ↑表示进路选出),因此自闭电路中接入JXJ第六组后接点。(2)为了重复开发信号时不使按钮继电器自闭(重复开放信号,FKJ↑),因此自闭电路中接入FKJ第三组后接点。(3)为了取消进路或人工解锁进路不使按钮继电器自闭(取消进路或人工解锁进路,QJ↑),因此自闭电路中接入QJ第七组后接点。(4)为了防止信号开放后,误按始端信号按钮造成按钮继电器错误保留(信号开放,XJ↑),因此自闭电路中接入XJ的第七组后接点。由于AJ↑,使得选岔电路中的进路选择继电器JXJ↑,而JXJ↑又切断AJ的自闭电路。它们之间的逻辑关系是AJ↑→JXJ↑→AJ↓。为了使JXJ能可靠吸起要求AJ采用缓放型继电器(JWXC—H340)。同时由于AJ的缓放还延长了方向继电器的落下时间,从而可以确保辅助开始继电器FKJ和终端继电器ZJ的可靠吸起。其它按钮继电器与并置调车按钮继电器在结构上大体相同,所以,这里不在累述。4.2.2 方向继电器电路的设计 每一个咽喉共用一套方向继电器电路。只需要用四个方向继电器就可以区别出进路的运行方向和区分进路的性质。这四个方向继电器分别为:列车接车方向继电器(LJJ)、列车发车方向继电器(LFJ)、调车接车方向继电器(DJJ)、调车发车方向继电器(DFJ)。
接下来以下行咽喉为例,说明方向继电器的设计。方向继电器电路首先将全咽喉区能做始端用的按钮继电器按进路的性质和运行方向分成如下四组:(1)作列车接车方向始端的列车按钮有XLAJ;(2)作列车发车方向始端的列车按钮有S3LAJ、SI LAJ、S II LAJ、S4LAJ;(3)作调车接车方向始端的调车按钮有D1AJ、D3AJ、D7AJ和D11AJ;(4)作调车发车方向始端的调车按钮有D5AJ、D9AJ、S3DAJ、SI DAJ、S II DAJ 和S4DAJ。
然后将以上每组按钮继电器的前接点并联后接入对应的方向继电器励磁电路中去。用始端按钮继电器的前接点接通方向继电器电路,用终端按钮继电器的前接点接通方向继电器自闭电路。这样就使得方向继电器只有在进路全部选出,始终端按钮都落下时才落下。在每一方向继电器的励磁电路中接入性质相反的两个方向继电器第一组后接点、性质相同的另外那个方向继电器第二组后接点。这样就使得当某一方向继电器吸起时,用其第一组后接点可以断开与其性质相反的其它两个方向继电器,用其第二组后接点可以断开性质相同的另外那个方向继电器。从而保证了同时只准许一个方向继电器吸起和只准选一条进路。
4.2.3 选岔电路的设计设计选岔电路时,采用的是分线法。
1、2线网路用于选“八”字第一笔双动道岔的反位*纵继电器FCJ;
3、4线网路用于选“八”字第二笔双动道岔的反位*纵继电器FCJ;
5、6线网路用于选双动道岔的定位*纵继电器DCJ和单动道岔的反位*纵继电器FCJ或定位*作继电器DCJ。设计出来的选岔电路必须的满足以下设计要求(1)选岔电路的送电规律必须是:进路左端经AJ吸起向1、3、5线送KZ电源,从左向右顺序传递直至进路右端;进路右端经AJ吸起向2、4、6线送KF电源,一直送到左端。(2)选岔电路的动作规律必须是:先选1、2线和3、4线(若进路中有双动道岔反位时)网路上的道岔,后选5、6线网路上的道岔,不论进路方向如何,选岔网路上的继电器一律从左向右顺序传递励磁。各继电器励磁后均得自闭。进路上所有JXJ在记录电路复原后一起落下,道岔*纵继电器则继续保持吸起到进路锁闭。为了满足以上两个设计要求,选岔网路分别做如下设计。(1)对于5、6线从左向右,分别为始端进路选择继电器(JXJ)→定位*纵继电器(DCJ)„„→终端进路选择继电器(JXJ)。选定位时:左端AJ↑通过5线向始端进路选择继电器JXJ传递KZ,而右端AJ↑一直把KF电源送至左端,所以,进路选择继电器JXJ首先吸起,JXJ↑用其第二组前接点向前的定位*纵继电器DCJ传递KZ电源,定位*纵继电器DCJ得到正电源吸起,用其第三组后接点切断左端电路,用第一组前接点接通其自闭电路并且用其第二组前接点继续向前传递KZ电源。这样一直把KZ电源传递到终端JXJ,JXJ吸起,则表示进路选出。选岔完成(2)在选岔网路中用其FCJ接通5、6线。这样就使得当进路中出现双动道岔反位时,先选1、2线或者3、4线网路上的道岔,然后才选5、6线上的道岔。选岔电路上除了应该布置进路选择继电器JXJ、反位*纵继电器FCJ和定位*纵继电器DCJ之外,为了使选岔网路有防护功能,防止车站值班员办理储存进路以及道岔区段故障或有车占用时不准进路选出,电路中还布置轨道继电器DGJ、传递继电器CJ、区段检查继电器QJJ和轨道检查继电器GJJ。(1)为了防止所选进路上任一道岔区段有车占用或轨道电路故障时选路,在6线网路对应轨道区段处接有轨道继电器DGJ的前接点,有车占用时,DGJ落下,用其第二组前接点切断6线,保证在这种情况下不选路。(2)为了禁止在已锁闭的进路上办理储存进路,在轨道区段组合6线上还接有区段检查继电器QJJ的第六组后接点和传递继电器CJ的第六组前接点。进路锁闭后,该区段的QJJ吸起和CJ落下切断6线KF电源以防止储存近路。(3)为了在向股道建立了进路时,严禁再向该股道建立进路,在此股道端6线处接有股道检查继电器GJJ第三组后接点。已向股道建立了接车或调车进路后,GJJ吸起,将6线KF电源切断,使后办进路的JXJ不能励磁。(4)当信号已开放后,禁止再利用此信号排重叠的进路。信号开放后,信号检查继电器XJJ在励磁状态,对列车进路,在网路中接入XJJ第一组后接点切断列车进路始端向5线传递的KZ电源。对于调车进路是用XJJ第六组后接点切断调车进路始端向5线接入的KZ电源,从而达到禁止再利用此信号排进路的目的。
4.2.4 辅助开始、开始和终端继电器电路的设计 在进路选出,记录电路复原之前,为了继续始端按钮继电器、方向继电器和终端继电器的工作。通过JXJ和方向继电器供出的条件电源,设计出FKJ和ZJ。使FKJ励磁,从而接替JXJ和方向继电器的工作,启动7线网路。ZJ励磁继续记录进路的终端。辅助开始继电器电路是利用进路始端的JXJ的前接点和与进路性质方向相符合的方向电源来接通KFJ的励磁电路,由其1-2线圈构成自闭电路。当信号机开放(XJ励磁吸起)或取消进路或人工解锁时,辅助开始继电器复原。终端继电器是用进路终端处的JXJ吸起和同方向的调车的方向电源构成其励磁条件。终端继电器被用来确定调车进路的终端,也同时被用来作为执行组网路的区分条件。开始继电器电路的一个重要作用就是检查进路的选排一致行。为此,在设计开始继电器电路的时候,电路中接入了进路上各道岔的DCJ和FCJ的前接点以及DBJ和FBJ的前接点。当DCJ或FCJ吸起,则表示进路选出。对应的DBJ或FBJ吸起,则代表进路排出。这样KJ要通过7线接通励磁,就必须通过进路上每个道岔的DCJ前接点和与之对应的DBJ前接点或FCJ的前接点和与之对应的FBJ前接点检查选排一致后才能吸起。这种设计使得道岔在转换完毕至进路锁闭前,道岔*纵继电器与道岔表示继电器有一段时间同时在吸起状态,因此开始继电器KJ有足够多的时间通过7线接通KZ电源而励磁。在开始继电器的自闭电路中接入进路内方第一个区段的锁闭继电器(或起锁闭继电器作用的QJJ和1LJ与2LJ),这样就使得KJ励磁吸起后,将一直保持到进路解锁后才复原。这样开始继电器的接点就成为了执行组网路的区分条件。
开始继电器电路开始继电器所在的7线同时还串有每组道岔的锁闭继电器SJ的前接点,以此来反映该进路上的道岔在解锁状态。由于要与11线网路共用道岔表示继电器的前接点以及反映道岔区段的锁闭情况,7线网路在每个道岔表示继电器接点的前后各接了一组SJ前接点。排列进路时,7线通过SJ的前接点接通,说明进路处于解锁状态。进路锁闭后,SJ落下将道岔表示继电器接点接入11线信号网路,以证明进路上的道岔已锁在所要求的位置,此后不准7线再接通KJ励磁电路。
第四章 执行组电路
执行组电路是在选择组电路完成选岔任务的基础上开通进路的,使防护该进路的信号开放,进路使用完毕后解锁进路。执行组电路的动作顺序是,先由道岔控制电路转换道岔,再由锁闭电路将进路解锁,最后由信号控制电路使信号开放。
在列车或调车车列驶过进路后,由解锁电路将进路解锁。所以执行组电路设计的正确与否,直接影响行车安全和车站作业效率。下面分别就信号检查继电器电路、区段检查和股道检查继电器电路、信号继电器电路和进路解锁网路的设计作个介绍。
4.3.1 信号检查继电器电路的设计在完成选岔网路之后,要锁闭进路和开放信号,还需检查8线上的联锁条件。若联锁条件符合,则信号检查继电器XJJ励磁。信号检查继电器XJJ的励磁理所当然的成为了锁闭进路和开放信号的先决条件。因此,XJJ电路的设计是执行组电路设计当中的一个重要环节。开放信号的基本条件是进路空闲、道岔位置正确和未建立敌对进路。因此,分别从这三个联锁条件入手对信号检查继电器(即8线)进行设计。
(1)进路空闲。把各个轨道区段的轨道继电器DGJ的第一组前接点接入8线网路中,若某条进路上的所有轨道区段的DGJ的第一组前接点均在接通状态,则可以证明该进路空闲。
(2)进路上的道岔位置正确。在8线上接入KJ的第一组前接点。之所以这样子设计,是因为7线上接有各道岔的DBJ和FBJ的前接点。KJ经7线网路检查选排一致后才励磁,只有进路上道岔位置正确才能使KJ励磁。这样,就可以通过KJ第一组前接点间接的实现对进路上道岔位置的检查。这里也有一个问题,当进路锁闭后,KJ是通过SJ落下自闭吸起的,此时KJ的吸起就不能反映道岔位置是否正确。为此,在开放信号时还需要在信号继电器电路中对道岔位置再次进行检查,这在后面XJ电路的设计中会提到。
(3)未建立敌对进路。XJJ的这个功能可分别通过敌对的开始继电器KJ和终端继电器都落下来实现未建立本咽喉敌对进路,通过本端照查继电器ZCJ接在同股道另一端的网路,当本端照查继电器的落下来实现未建立同股道另一股道的迎面进路。
4.3.2 区段检查和股道检查继电器电路的设计区段检查继电器QJJ是为了实现6502电气集中逐段解锁而设置的。因此,区段检查继电器在每个道岔区段和咽喉区有列车经过的无岔区段都要设置。而股道检查继电器是为了锁闭另一咽喉的迎面进路而设置的。因此,股道检查继电器只需在能接车的股道的那段设置。当向股道办理接车进路时,GJJ吸起与进路最后一个道岔区段的锁闭继电器SJ相配合,使照查继电器ZCJ落下,将ZCJ前接点接在股道另一端执行组网路中,用以锁闭另一咽喉的敌对进路,使其不能建立。
区段检查继电器虽然是为了实现6502电气集中逐段解锁而设置,但它的直接作用却是通过本身的励磁吸起使锁闭继电器SJ落下,达到锁闭进路的目的。而锁闭进路前,必需得检查联锁条件是否满足,即前面提到的进路是否空闲、进路道岔位置是否正确和是否建立了敌对进路。因此,在设计区段检查继电器的时候,是通过XJJ第二组前接点来接通QJJ电路的。而为了达到逐段解锁的目的,在QJJ励磁电路中,接入本段GDJ的前接点,自闭电路中接入本段FGDJ的后接点,当列车驶入本段,GDJ落下,FGDJ吸起,前者断开了本段QJJ的KF电源,后者断开了本段QJJ的自闭电路,这样就使QJJ得以落下,为本段解锁做好了准备。设计QJJ电路时,还在它的自闭电路中接入了进路继电器,这样,当QJJ落下时,通过进路继电器继续先前送KF电源,使前面的QJJ继续保持励磁。
股道检查继电器GJJ设置在股道端,由其1-2线圈经终端继电器ZJ的第二组前接点接在9线上,与同股道另一端照查继电器ZCJ的第二组前接点并联后接在9线网路上。而GJJ的3-4线圈接在12线网路上,作取消进路和人工解锁用。4.3.3 信号继电器电路的设计 信号检查继电器检查了开放信号的基本条件符合后,由区段检查继电器对进路上的道岔进行锁闭;敌对进路的开始继电器和终端继电器的落下,排除了本咽喉建立敌对进路的可能;照查继电器的落下,将同一股道另一咽喉的迎面进路锁在了未建立状态。这些都为开放防护该进路的信号做好了准备。在开放信号前必须能完成以下这些联锁条件。即:(1)开放信号时,必须检查进路在空闲状态;(2)开放信号时,必须检查敌对进路在未建立状态,并确定被锁在未建立状态;(3)开放信号时,必须检查进路上道岔位置正确,并确定被锁闭在规定位置上;(4)信号必须在车站值班员的*纵下才能开放,信号关闭后应能防止自动重复开放;(5)车站值班员应能无条件地随时关闭信号,取消或人工解锁进路时信号应随着被关闭;(6)列车信号在列车进入进路后自动关闭,调车信号在调车车列全部进入调车信号后自动关闭,在调车中途返回时退出调车信号机内方时自动关闭;(7)信号允许灯光——黄灯或绿灯熄灭时应能自动改点红灯。
下面以调车信号机为例,分别就这几条联锁条件,对DXJ电路进行设计。(1)在DXJ的励磁电路中增加与8线共用的网路。前面在XJJ电路的设计中提到,由于XJJ有防护自闭电路,不能通过XJJ的吸起来检查进路空闲。增加了与8线共用的网路之后,就可以通过检查进路上DGJ的吸起,来检查进路空闲;(联锁条件1)(2)通过敌对进路的KJ和ZJ处于落下状态来证明未建立敌对进路,而确定被锁在未建立状态,是使得进路一旦建立,敌对进路的KJ和ZJ就不能再励磁。这条联锁条件可以通过与11线共用的8线网路来实现;(联锁条件2)(3)使DXJ电路所在的11线通过SJ接入7线网路。这样11线网路就与7线共用DBJ(DBJF)或FBJ的前接点和锁闭继电器SJ的后接点,如此不仅节省了继电器接点,而且能检查进路上道岔位置正确并把道岔锁在了规定位置;(联锁条件3)(4)在DXJ的励磁电路中接入的XJ励磁,否FKJ第四组前接点。
这样,XJ的励磁必须在FKJ励磁的前提之下才能完成,而XJ励磁吸起,通过第七组前接点断开了FKJ的自闭电路,使FKJ落下,由其自闭电路保持吸起。若一旦信号关闭XJ落下,则须经办理重复开放信号手续,使FKJ再次吸起才能使调车信号的XJ励磁,否则信号不会重复开放;(联锁条件4)(5)在DXJ电路中接入QJ第四组后接点。这样,不论是单独关闭信号,还是取消进路和人工解锁进路关闭信号,QJ都会励磁。这样就断开了XJ电路;(联锁条件5)(6)调车信号设计了白灯保留电路,该白灯一直要等到整个调车车列全部进入信号机内方后才能关闭。这样开放的调车信号就可以在调车车列的占用情况下自动关闭;(联锁条件6)(7)在XJ自闭电路中接入灯丝继电器DJ第一组前接点,这样,当允许信号灭灯时DJ落下,切断了XJ的自闭电路,使其改点禁止灯光;(联锁条件7)LXJ与DXJ在励磁电路和所检查的联锁条件完全一致,所以,这里就不重复。
4.3.4 进路解锁网路的设计进路锁闭后开放信号,列车或调车车列按信号显示驶过进路后,进路就必须正常解锁。在办理进路后因故要取消该进路,分不同情况有取消和人工解锁。此外,在调车作业中还存在调车中途返回解锁。这些都是由进路解锁网路来完成的。进路的解锁,是通过设置在区段组合中的进路继电器1LJ和2LJ、轨道反复示继电器FDGJ、锁闭继电器SJ、传递继电器CJ以及条件电源KZ-GDJ等实现的。
下面就分别从这几个继电器入手对进路解锁网路进行设计。
(1)条件电源KZ-GDJ为了防止轨道电路电源停电故障后又恢复造成进路的错误解锁,专门为解锁网路设计了条件电源KZ-GDJ。用条件电源KZ-GDJ来控制与解锁有关的进路继电器、轨道反复示继电器、股道检查继电器和传递继电器。在发生轨道电路供电停电时,使上述继电器迅速断电落下。而在停电恢复供电后,轨道继电器先吸起后,条件电源KZ-GDJ才向上述继电器供电,从而使得已锁闭的进路不会错误解锁。
(2)道岔反复示继电器FDGJ电路道岔轨道继电器DGJ平时是吸起的,有车占用时,则落下。因此,在道岔反复示继电器FDGJ电路中接入道岔轨道继电器DGJ第四组后接点,当DGJ落下时,FDGJ励磁。车出清区段后DGJ再次吸起,FDGJ励磁电路被切断,为了使电路实现正常解锁、取消进路解锁、人工解锁及调车中途返回解锁,在FDGJ电路中设计了一个电阻和电容。这样就使FDGJ具有3~4秒的缓放时间。同时,在FDGJ的励磁电路中还接入了QJJ第五组前接点,用它来检查10线及FDGJ线圈上所并联的电阻电容的完整性和电容是否被击穿。
(3)传递继电器CJ和进路继电器LJ电路具体执行进路锁闭与解锁的电路实际上是轨道区段组合中的进路继电器1LJ和2LJ电路。由于故障解锁和正常解锁等都于传递继电器CJ有密切的关系,因此将CJ与1LJ、2LJ电路一起进行分析。传递继电器的主要作用是传递12线解锁电源。
另外在特殊情况下不能关闭已开放的信号机时,可用故障解锁的办法使CJ吸起来断开信号继电器电路,达到关闭信号的目的。进路继电器的作用是参与进路的锁闭和解锁,同时用其后接点点亮*纵台上的进路光带表示灯。平时进路继电器1LJ、2LJ由各自的3-4线圈接通自闭电路而保持吸起,由它们的前接点接通锁闭继电器SJ励磁电路,使SJ吸起,使该区段处于解锁状态。此时,CJ的3-4线圈经1LJ和2LJ前接点及轨道反复示继电器FDGJ后接点而励磁,并经其本身第二组前接点保持自闭。各继电器在建立进路时的逻辑关系如下:1LJ↓XJJ↑→QJJ↑→ →SJ↓2LJ↓由以上各继电器的逻辑关系可知:当QJJ吸起时,断开了1LJ和2LJ的自闭电路,使它们落下,并用它们的前接点断开SJ励磁电路,使区段处于锁闭状态。同时,1LJ和2LJ的落下也断开了CJ的3-4线圈的励磁电路,使CJ落下。因此从电路关系上看,CJ的落下也可以表示区段处于锁闭状态,这也就是为什么在选岔网路6线中用CJ的第六组后接点来表示区段处于锁闭状态的原因。所以,当锁闭继电器接点不够用时,表示区段的锁闭和解锁也可用传递继电器CJ的接点来代替。进路继电器电路有传递继电器的电路可知,平时CJ靠其3-4线圈保持在励磁吸起状态,建立进路后,由于1LJ、2LJ的落下,使CJ落下。CJ的3-4线圈励磁电路中接入轨道反复示继电器FDGJ第一组后接点,它控制CJ的励磁时间,使CJ具有滞后励磁特性和及时励磁特性。将进路上的各道岔和敌对进路锁闭好后,开放防护该进路的信号机,允许列车或调车车列驶入此进路。列车或调车车列驶过进路后,则要求进路解锁。进路的解锁必须得到列车或调车车列确实进入该进路使信号关闭,占用和出清了进路上的各个道岔区段的证明之后方可进行。作为车曾占用过和已出清道岔区段的证明,对轨道电路的动作来说,就是该区段的轨道继电器一度落下后又吸起。实践证明,采用三点检查法来解锁道岔区段最为安全。在电路的设计中之所以在每个道岔区段设置1LJ和2LJ两个进路继电器,目的也就是为了实现正常解锁的三点检查(所谓三点检查,就是用三个区段的轨道电路作为解锁的检查条件。一个区段的解锁不仅要检查占用过并已出清本区段,而且还要检查车占用过并已出清前一区段,已进入后一区段)。
例如从左向右解锁进路,当车占用过并已出清前一区段且占用本区段时,进路继电器1LJ吸起作为记录,当车出清本区段并占用下一个区段时,进路继电器2LJ吸起作为记录。1LJ和2LJ都吸起,就完成了该区段的三点检查。反之,从右向左解锁进路,则是占用过并已出清前一区段且占用本区段时2LJ先吸起,出清本区段并占用下一个区段时1LJ后吸起。两个进路继电器的电路设计成相互对称的结构,目的是使得进路的各种解锁方式具有更强的规律性。
4.3.5 道岔控制电路的设计6502电气集中系统对道岔控制电路的设计采用的是四线制,分别由道岔启动电路和道岔表示电路两部分组成。(1)道岔启动电路采用分级控制方式控制道岔转换,为三级动作,由1DQJ检查道岔解锁SJ励磁吸起后,1DQJ才励磁。再向2DQJ转极控制电动转动方向。最后由电机使转辙机将道岔转向定位或反位。(2)道岔表示电路,当道岔转换完后,由1DQJ落下接通道岔表示电路,按道岔开通位置的规定,以自动开闭器的定位接点接通DBJ;以自动开闭器的反位接点接通FBJ,反映道岔开通的位置。
4.3.6 表示灯电路的设计这里主要说的是轨道光带表示灯电路。控制台上主要的表示灯是与站场线路相似的线路光带,它直观地反映出所排进路上道岔的位置、进路的锁闭、列车或调车车列在进路上的运行情况。因此,轨道光带表电路必须设计成站场网路,它们组成了执行组的14线和15线网路。整条进路的光带,是由进路中各轨道电路区段的光带组成的。在设计时,用道岔表示继电器DBJ和FBJ前接点决定构成光带的形状。在每个道岔的岔前、辙叉后的直股和侧股部分都设置有白灯和红灯表示灯。直股部分的白灯和红灯分别用定位白灯DB和定位红灯DH表示;侧股部分用反位白灯FB和反位红灯FH表示;岔前部分用岔前白灯QB和岔前红灯QH表示。白灯设计成14线控制,红灯由15线控制,其着灯和灭灯情况由该道岔Q组合中1LJ和2LJ及DGJF和FDGJ的接点决定。平时光带不着灯,当该道岔区段被建立于进路中,进路锁闭时,由进路继电器1LJ和2LJ第八组后接点将交流表示电源JZ接入14线,按道岔的位置将光带灯点亮。其它所有道岔区段光带表示灯电路构成情况均与此情况相同。
第5章 总结
5.1 成果此次毕业设计的最终成果也就是设计出双向四股道下行咽喉的网状电路图。双向四股道下行咽喉网状电路图的设计,总结如下。
(1)首先得明白的是,网状电路图是根据组合排列表中各组合的先后顺序依次联接起来的。而每一个组合里面所包含的电路都是确定的。倘若改变其内的电路,不仅不利于工厂的预制,而且也不方便以后的维修。所以,一般情况下是不改变其内电路,使用的都是定型组合内的固定电路。几个主要的定型组合里所包含的电路列举如下:
①1LXF:列车兼调车的LAJ电路、DAJ电路、ZJ电路和ZCJ电路等; ②LXZ:列车和调车共用的FKJ电路、LKJ电路、QJ电路、JYJ电路等; ③Q:本区段的FDGJ电路、DGJ电路等;
④DX:调车的DAJ电路、FKJ电路、KJ电路、QJ电路、JYJ电路等;(2)设计网状电路图时不是根据组合来设计的,而是根据组合里所包含的电路组成的网路线进行设计(即根据1-15线)。其中1-7线为选路电路,8-15线为执行电路。在选路电路的7条网路线中,1-6线为道岔*纵继电器动作网路线,组成六线选岔网路,用来在排列进路的过程中自动选出进路上的各有关道岔所需的位置;第7线为开始继电器电路,用以检查所选进路和所排进路的一致性;在执行电路的8条网路线中,8线为信号检查继电器电路,用来检查开放信号的可能性,即进路空闲、没有建立敌对进路、道岔位置正确;9线为区段检查继电器和股道检查继电器电路,用来检查区段空闲,实现进路锁闭;10线是区段检查自闭电路,用来防止利用区段故障解锁方式使进路迎面错误解锁;11线为信号继电器电路,检查进路上各区段处于锁闭状态、道岔位置正确,以及迎面敌对进路检查,符合条件即可开放信号;12和13线为进路继电器网路,用来实现进路锁闭,完成进路的正常解锁、取消、人工解锁、调车中途返回解锁以及引导锁闭等;14和15线则为控制台表示灯电路。除了这15条网路线之外,双向四股道下行咽喉的网状电路图还包括一些局部电路,如按钮继电器电路、取消继电器电路、接近预告继电器电路、照查继电器电路等。
5.2 结论6502电气集中系统之所以被目前大部分铁路车站采用,是因为它有着其它系统所不具备的诸多优点,如6502电气集中采用的双按钮进路式选路方法,这使得*作起来形象化、简便而且不易出错;几乎全套继电器电路都是使用定型组合拼接而成的,这就使得工程设计简便、施工周期短便于维修,而且当站场改建时,也利于修改。
当然,6502电气集中也还存在着一些有待改进的问题。例如:(1)进站信号机开放后信号灯断丝,在列车接近后要想开放引导信号时必须先办理人工解锁,等3分钟后才能引导接车;(2)在信号开放后,如果进路中某一道岔区段发生了故障,轨道继电器失磁落下,则进路就不能解锁,必须等故障修复后才能解锁;(3)6502电气集中电路中一些防护进路一旦发生断线,在正常运用过程中既发现不了,断线后又不能再起防护作用。前两项影响效率,后一项不利于安全,都有待改进。