第一篇:怎样做数学研究
有谁能告诉别人怎样去做研究,怎样去创造,怎样去发现新东 西?几乎肯定这是不可能的.在很长一段时间里,我始终努力 学习数学,理解数学,寻求真理,证明一个定理,解决一个问 题—现在我要努力说清楚我是怎样去做这些工作的,整个工作 过程中重要部分是脑力劳动,那可是难以讲清楚的--但我至 少可以试着讲一讲体力劳动的那一部分.数学并非是一门演绎科学—那已是老生常谈了.当你试图去证 明一个定理时,你不仅只是罗列假设,然后开始推理,你所要 做的工作应是反复试验,不断摸索,猜测.你要想弄清楚事实 真相,在这点上你做的就像实验室里的技师,只是在其精确性 和信息量上有些区别罢了.如果哲学家有胆量,他们也可能像 看技师一样地看我们.我喜欢做研究,我想做研究,我也得做研究,我却不愿坐下来 开始做研究—我是能拖则拖迟迟不肯动手.拥有一个大的,外在的,不收我一直支配的而且我能为之贡献 一生的事业,对我是重要的.高斯,戈耶(Goya), 莎士比亚 和佩盖尼尼(Pagannini)是非凡的,他们的非凡性给我一快乐,我钦佩他们又羡慕他们,他们也是富有奉献精神的人.非凡的 天才只有少数几个人才有,而奉献精神则是人人都可以拥有的 —也应当拥有的—没有这样的精神,生命便失去价值了.尽管我对工作无限眷恋,我仍是不愿意着手去做它;每做一项 工作都像是一场打仗格斗.难道就没有什么事我能(或必须?)先行干好吗?难道我就不能先将铅笔削好吗?事实上我从来不 用铅笔,但―削铅笔‖已成为一切有助于延迟集中创造精力带来 的痛苦的手法的代名词.它的意思可以是在图书馆查阅资料,可以是整理旧笔记,甚至可以视为明天要讲的课作准备,干这 些事的理由是:一旦这些事了结了,我就真正能做到一心一意 而不受干扰了.当卡米查埃(Carmichael)抱怨说他当研究生院主任每周可用于 研究工作的时间不超过20小时的时候,我感到很奇怪,我现在仍 觉得很奇怪.在我大出成果的那些年代里,我每周也许平均用20 小时作全神贯注的数学思考,但大大超过20小时的情况是极少的.这极少的例外,在我的一生中只有两三次,他们都是在我长长的 思想阶梯接近顶点时来到的.尽管我从来未当过研究生院主任,我似乎每天只有干三,四个小时工作的精力,这是真正的―工作‖; 剩下的时间我用于写作,教书,作评论,与人交换意见,作鉴定,作讲座,干编辑活,旅行.一般地说,我总是想出各种办法来―削 铅笔‖.每个做研究工作的人都陷入过休闲期.在我的休闲期中,其他的职业活动,低到并包括教教课, 成了我生活的一种借口.是的,是的,我也许今天没有证明出任何新定理,但至少我今天将 正弦定理解释得十分透彻,我没白吃一天饭.数学家们为什么要研究? 这问题有好几个回答.我喜爱的回答是: 我们有好奇心 – 我们需要知道.这几乎等于说―因为我愿意这样
做‖,我就接受这一回答 –那也是一个好回答.然而还有其它的回答,它们要实在些.我们给未来的工程师,物理学家,生物学家,心理学家,经济学家,还有数学家教数学.如果我们只教会他们借课本中的习题,那不等 他们毕业,他们受到的教育便过时了.即使从粗糙而世俗的工商业 观点来看,我们的学生也得准备回答未来的问题,甚至在我们课堂 上从未问过的问题.只教他们已为人们所知的一切东西是不够的 –他们也必须知道如何去发现尚未被发现的东西.换句话说,他们必 须接受独立解题的训练 – 去做研究工作.一个教师,如果他从不总 是在考虑解题 — 解答他尚不知道答案的题目— 从心理上来说,他就 是不打算教他的学生们解题的本领.做研究工作,有一点我不擅长因而也从不喜欢的是竞争.我不太善于 抢在别人前面已获得荣誉.我争当第一的另一办法是离开研究主流方 向去独自寻找属于我自己的一潭小而深的洄水.我讨厌为证明一个著 名猜想而耗费大量的时间却得不到结果,所以我所干的事无非是分检 出被别人漏掉的概念和阐明富有结果的问题.这样的事在你一生当中 不可能常做,如果那概念和那些个问题真是―正确‖的,它们便会被广 泛接受,而你则很有可能在你自己的课题发展中,被更有能力和更有 眼光的人们甩在后面.这很公平,我能受得了;这是合理的分工,当 然我希望次正规不变子空间定理是我证明的,但至少我在引入概念和 指出方法方面做过一点贡献.不介入竞争的另一个方面就是我对强调抢时间争速度不以为然.我问 我自己,落后于最近的精美的成果一两年又有什么关系呢?一点关系 都没有,我这样对自己说,但即使对我自己来说,这样的回答有时也 不管用,对那些心里构成和我相异的人们来说,这样的回答总是错的.当罗蒙诺索夫(Lomonosov)(关于交换紧算子的联立不变子空间)和 斯科特.布朗(Scott Brown)的(关于次正规算子)消息传开时,我激动的就像我是第二位算子理论家似的,急切的想迅速的知道详情.然而这种破例的情形是少有的, 所以我仍然可以在我一生大部分时间 中心安理得地生活于时代之后.回答是我写作.我在我的书桌前坐下,提起一杆黑色的圆珠笔,开始在一张8 1/2 x 11 见方的标准用纸上写作.我在右上角上写
上个―1‖,然后开始:―这些笔记的目的是研究秩为1的摄动在… 的格上的影响.‖在这一自然段写完后,我在稿纸边上标上个
黑体―A‖字,然后开始写 B 段,页数字和段落字构成了参考系
统,常常可以一连写上好一百页:87C 意味着87页上C 段.我将这些页手稿放入三环笔记夹中,在夹脊上贴上标签:逼近论,格,积分算子等等.如果一个研究项目获得成功,这笔记本便成为一篇论文,但不管成功与否,这笔记本是很难扔掉的.我常在我的书桌旁的书架上放上几十本,我仍然希望那些未完成的笔记 将继续得到新的补充,希望那些已成为文章发表的笔记以后会被 发现隐含着某种被忽视了的新思路的宝贵萌芽,而这种新思路恰 恰是为解决某一悬而未决的大问题所需要的.我继续尽可能长时间地坐在我的书桌前 – 这可以理解为,我只要有精力,或者只要有时间,我就这样坐在书桌前,我努力整理笔记到一个弱拍出现 为止,如一个引理的确定,或者,在最坏的情况下,一个未经过仔细研究 但明显不是没希望解答的问题被提出.那样,我的潜意识可以投入工作了,并且在最好的时候,在我走向办公室时,或者给一个班上课时,甚至在夜 间睡眠中,我取得意外的进展.那捉摸不透的问题解答有时让我无法入睡,但我似乎养成了一种愚弄我自己的办法了.在我翻来覆去一会后,时间并 不长 – 通常仅为几分钟 – 我―解决‖了那问题;那问题的证明或反例在闪 念中出现了,我心满意足了,翻了个身便睡着了.那闪念几乎总被证明是 假的;那证明有个巨大的漏洞,或者那反例根本就不反对任何东西.可不 管怎么说,我对那个―解‖相信的时间,长的足够是我睡个好觉.奇怪的事 情时,在夜间,在床上,在黑暗中,我从未记得我怀疑过那―思路‖;我百 分之百地相信它可是件大好事.对一些情形它甚至被证明是正确的.我不在乎坐在钟边工作,当因为到了上课的事件或者到了除去吃饭的时间,而我必须停止思考时,我总是高兴地将我的笔记收起来.我也许会在下楼 去教室的路上,或者在发动我的汽车,关闭我车库门时仔细思考我的问题; 但我并不因为这种打扰而生气(不像我的一些朋友们说的那样,他们讨厌 被打断思绪).这些都是生活的组成部分,一想到几小时候我俩 – 我的 工作和我 – 又要相聚时,我就感到很舒坦.好的问题,好的研究问题,打哪儿来呢?它们也许来自一个
隐蔽的洞穴,同在那个洞穴里,作家发现了他们的小说情节,作曲家则发现了他们的曲调 – 谁也不知道它在何方,甚至在偶然之中闯进一辆此后,也记不清它的位置.有一点是肯定的:好的问题不是来自于做推广的模糊欲念.几乎正相反的说法倒是真的:所有大数学问题的根源都是特例,是具体的例子.在数学中常见到的一个似乎具有很大普遍性的概念实
质上与一个小的具体的特例是一样的.通常,正是这个特例
首次揭示了普遍性.阐述―在实质上是一样‖的一个精确明晰的方法就如同一个定理表述.关于线性泛函的黎兹(Riesz)
定理就很典型.固定一个在内积中的向量就定义了一个有界
线性泛函;一个有界线性泛函的抽象概念表面上看来具有很
大的概括性;事实上,每个抽象概念都是以具体特定的方式
产生出来的,那定理也是.这是我和狄多涅(Dieudonne)似乎各执己见的许多论题中的 一个.在马里兰,我曾做过一次学术报告,那正好也是狄多涅 访问那里的许多次中的一次.那次报告的主题是正逼近.我那 次选定的问题是:已知一希尔伯特(Hilbert)空间上的任意 算子 A, 求一个正(非负半定的)算子 P 极小化 ||A-P||.我很幸运:结果发现有一个小的具体的特例,它包含了一切概 念,一切困难,一切为理解和克服它们所需要的步骤.我使我 的报告紧紧围绕那个特例,由矩阵
/01