2013年全国高考试题分类:推理与证明

时间:2019-05-13 01:15:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013年全国高考试题分类:推理与证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013年全国高考试题分类:推理与证明》。

第一篇:2013年全国高考试题分类:推理与证明

第十三章推理与证明

考点一 合情推理与演绎推理

1.(2013湖南,15,5分)对于E={a1,a2,„,a100}的子集X={,„,},定义X的“特征数列”为x1,x2,„,x100,其中==„==1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0,„,0.(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;

(2)若E的子集P的“特征数列”p1,p2,„,p100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,„,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为

.答案(1)2(2)17

2.(2013陕西,13,5分)观察下列等式

(1+1)=2×

12(2+1)(2+2)=2×1×

3(3+1)(3+2)(3+3)=2×1×3×

5„„

照此规律,第n个等式可为

.答案(n+1)(n+2)„(n+n)=2×1×3ׄ×(2n-1)

3.(2013湖北,17,5分)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.n3

(1)图中格点四边形DEFG对应的S,N,L分别是;

(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=(用数值作答).答案(1)3,1,6(2)79

4.(2013江西,21,14分)设函数f(x)=a为常数且a∈(0,1).(1)当a=时,求f;

(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;

(3)对于(2)中的x1,x2,设A(x1, f(f(x1))),B(x2, f(f(x2))),C(a,0),记△ABC的面积为S(a),求S(a)在区间上的最大值和最小值

.解析(1)当a=时, f=,f=f=2=.(2)f(f(x))=

当0≤x≤a时,由x=x解得x=0, 因为f(0)=0,故x=0不是f(x)的二阶周期点;

当a

=≠, 222

2故x=为f(x)的二阶周期点;

当a

当a-a+1≤x≤1时,由(1-x)=x解得x=∈(a-a+1,1),因f

=≠,故x=为f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点,x1=,x2=.(3)由(2)得

A,B,则S(a)=·,S'(a)=·,因为a∈,a+a<1,所以S'(a)=· =·>0.或令g(a)=a-2a-2a+2,g'(a)=3a-4a-2 =3,因a∈(0,1),g'(a)<0,则g(a)在区间上的最小值为g=>0,故对于任意a∈,g(a)=a-2a-2a+2>0, S'(a)=·>0

则S(a)在区间上单调递增,故S(a)在区间上的最小值为S=,最大值为S=.考点二 直接证明与间接证明

5.(2013四川,10,5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()

A.[1,e] B.[1,1+e] C.[e,1+e]

D.[0,1]

答案 A 22 22232232

x6.(2013陕西,21,14分)已知函数f(x)=e,x∈R.(1)求f(x)的反函数的图象上点(1,0)处的切线方程;

(2)证明:曲线y=f(x)与曲线y=x+x+1有唯一公共点;

(3)设a

.解析(1)f(x)的反函数为g(x)=ln x,设所求切线的斜率为k,∵g'(x)=,∴k=g'(1)=1,于是在点(1,0)处切线方程为y=x-1.(2)解法一:曲线y=e与y=x+x+1公共点的个数等于函数φ(x)=e-x-x-1零点的个数.∵φ(0)=1-1=0,∴φ(x)存在零点x=0.xxx又φ'(x)=e-x-1,令h(x)=φ'(x)=e-x-1,则h'(x)=e-1,当x<0时,h'(x)<0,∴φ'(x)在(-∞,0)上单调递减.当x>0时,h'(x)>0,∴φ'(x)在(0,+∞)上单调递增.∴φ'(x)在x=0处有唯一的极小值φ'(0)=0,x2x22

即φ'(x)在R上的最小值为φ'(0)=0.∴φ'(x)≥0(仅当x=0时等号成立),∴φ(x)在R上是单调递增的,∴φ(x)在R上有唯一的零点,故曲线y=f(x)与y=x+x+1有唯一的公共点.解法二:∵e>0,x+x+1>0,∴曲线y=e与y=x+x+1公共点的个数等于曲线y=与y=1公共点的个数,设φ(x)=,则φ(0)=1,即x=0时,两曲线有公共点.又φ'(x)==≤0(仅当x=0时等号成立),∴φ(x)在R上单调递减,∴φ(x)与y=1有唯一的公共点,故曲线y=f(x)与y= x+x+1有唯一的公共点.(3)-f

=-==[--(b-a)].设函数u(x)=e--2x(x≥0),则u'(x)=e+-2≥2-2=0,∴u'(x)≥0(仅当x=0时等号成立),∴u(x)单调递增.当x>0时,u(x)>u(0)=0.令x=,则得--(b-a)>0,∴>f.7.(2013湖北,20,13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1

(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1-A2B2C2的体积V)时,可用近似公式V估=S中·h来估算.已知V=(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.2x2x22xx

解析(1)依题意A1A2⊥平面ABC,B1B2⊥平面ABC,C1C2⊥平面ABC,所以A1A2∥B1B2∥C1C2.又A1A2=d1,B1B2=d2,C1C2=d3,且d1

由A1A2⊥平面ABC,MN⊂平面ABC,可得A1A2⊥MN.而EM∥A1A2,所以EM⊥MN,同理可得FN⊥MN.由MN是△ABC的中位线,可得MN=

BC=a,即为梯形DEFG的高,因此S中=S梯形DEFG

=·=(2d1+d2+d3),即V估=S中·h=(2d1+d2+d3).又S=ah,所以V=(d1+d2+d3)S=(d1+d2+d3).于是V-V估=(d1+d2+d3)-(2d1+d2+d3)=[(d2-d1)+(d3-d1)].由d10,d3-d1>0,故V估

(2)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2

<0.解析(1)函数f(x)的定义域为(-∞,+∞).f '(x)='e+e=e

=e.当x<0时, f '(x)>0;

当x>0时, f '(x)<0.所以f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(2)当x<1时,由于>0,e>0,故f(x)>0;

同理,当x>1时, f(x)<0.当f(x1)=f(x2)(x1 ≠x2)时,不妨设x1

第二篇:2012高考试题分类:推理和证明

推理和证明

1.【2011江西高考理】观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为

()

A.3125B.5625C.0625D.8125 2.【2012高考上海文】若Snsin

个数是()

A、16B、72C、86D、100【答案】C 3.【2011陕西高考理】观察下列等式

1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49

……

照此规律,第n个等式为__________.

4.【2010陕西高考理】观察下列等式:1+2=31+2+3=61+2+3+4=10,…,根据上述规

律,第五个等式为__________. .....5.【2012高考陕西文】观察下列不等式

1

sin

27

...sin

n7

(nN),则在S1,S2,...,S100中,正数的332,3332,33332

1

53,1



1413



5314

……

15

照此规律,第五个不等式为【答案】1...

222

116

.6.【2102高考福建文20】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-sin2(-18°)cos248°(5)sin2(-25°)+cos255°-sin2(-25°)cos255°(Ⅰ)试从上述五个式子中选择一个,求出这个常数

(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

|x||y|2的不同7.【2012高考江西文】观察下列事实|x||y|1的不同整数解(x,y)的个数为4,整数解(x,y)的个数为8,|x||y|3的不同整数解(x,y)的个数为12 ….则|x||y|20的不同整数解(x,y)的个数为

A.76B.80C.86D.92【答案】B

8.【2012高考湖北】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研

究过如图所示的三角形数:

将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn}.可以推测:

(1)b2 012是数列{an}中的第______项;(2)b2k-1=______.(用k表示)

9.【2012高考湖北文】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。他

们研究过如图所示的三角形数:

将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:

(1)b2012是数列{an}中的第______项;

(2)b2k-1=______。(用k表示)【答案】(1)5030;(2)

xx2

5k5k1

10.【2011年高考山东卷理科】设函数f(x)

xx2, x3x4

x7x8

x15x16, , ,(x0),观察:

f1(x)f(x)

f2(x)f(f1(x))f3(x)f(f2(x))f4(x)f(f3(x))



根据以上事实,由归纳推理可得:

当nN且n2时,fn(x)f(fn1(x))11.【2011年高考安徽卷理科】在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列

命题中正确的是_____________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k与b都是无理数,则直线ykxb不经过任何整点 ③直线l经过无穷多个整点,当且仅当l经过两个不同的整点

④直线ykxb经过无穷多个整点的充分必要条件是:k与b都是有理数 ⑤存在恰经过一个整点的直线

12.【2011年高考湖北卷理科】给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着

色方案中,黑色正方形互不相邻的着色方案如下图所示:

....

由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形....相邻的着色方案共有__________种.(结果用数值表示)..

13.观察下列数字

照此规律,2013在第______行第________列 14.观察下列数字

照此规律,2013在第______行第________列 15.观察下列数字

照此规律,第2013个数字是______

第5题第6题

16.【2012高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AEBF

13。

动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为

(A)8(B)6(C)4(D)3 【答案】B

17.【2012高考湖南文16】对于nN,将n表示为nak2kak12k1a121a020,当ik

时ai1,当0ik1时ai为0或1,定义bn如下:在n的上述表示中,当a0,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.(1)b2+b4+b6+b8=__;

(2)记cm为数列{bn}中第m个为0的项与第m+1个为0的项之间的项数,则cm的最大值是___.【答案】(1)3;(2)2.18.【2011高考湖南理】对于n∈N,将n表示为na02ka12k1a22k2ak121ak20,当i=0时,ai=1,当1ik时,ai为0或1.记I(n)为上述表示中ai为0的个数(例如:1=1×20,4=1×22+0×2+0×2,故I(1)=0,I(4)=2),则

127

*

(1)I(12)=______;(2)

2

n1

I(n)

______.19.【2102高考北京文】设A是如下形式的2行3列的数表,满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为第j列各数之和(j=1,2,3);

记k(A)为|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。

对如下数表A,求k(A)的值

设数表A形如

其中-1≤d≤0,求k(A)的最大值;

(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值。

第三篇:高考文科数学试题分类—推理与证明

高中数学

高考文科试题解析分类汇编:推理和证明

1.【高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反3

射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为

(A)8(B)6(C)4(D)3

115123,233

11151222 2343……

照此规律,第五个不等式为....

高中数学

【答案】1

1111111.22324252626

1,【解析】观察不等式的左边发现,第n个不等式的左边=111

2232n1

右边=

11111112n11,所以第五个不等式为122222.

234566n1

5.【高考湖南文16】对于nN,将n表示为nak2kak12k1a121a020,当ik时ai1,当0ik1时ai为0或1,定义bn如下:在n0,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.(1)b2+b4+b6+b8=__;

(2)记cm为数列{bn}中第m个为0的项与第m+1个为0cm是___.【答案】(1)3;(2)2.【解析】(1)观察知1a020,a01,b11;212100,1b21; 一次类推3121120,b30;4120,5122021120,b50;221060,b71,b81,b2+b4+b6+b8=3;(2)由(1)知cm..6.【高考湖北文17】,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成{an}中的第______项;(Ⅱ)b2k-1。(用k表示)【答案】(Ⅰ)5030;(Ⅱ)

5k5k1

n(n1),写出其若2

【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为an

干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故b1a4,b2a5,b3a9,b4a10,b5a14,b6a15.从而由上述规律可猜想:b2ka5k

5k(5k1)

(k为正整数),2

(5k1)(5k11)5k(5k1)

b2k1a5k1,22

故b2012a21006a51006a5030,即b2012是数列{an}中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想

需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.质,并且,因此,不妨设112,由的定义,(A从)c而k(1A)r(1A),k(A)k3k1(A)r1(A2)c(A )c(A)a(b(abcdef)(abf)abf3

因此k(A)1,由(2)知,存在满足性质P的数表A,使k(A)1,故k(A)的最大值为知,1。

8.【高考福建文20】20.(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°

第四篇:2009年高考数学试题分类——推理与证明

高考资源网(ks5u.com)您身边的高考专家

2009年高考数学试题分类汇编

推理与证明

1、(湖北卷理)10.古希腊人常用小石子在沙滩上摆成各种形状来研究数。比如:

他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。下列数中既是三角形数又是正方形数的是

A.289B.1024C.1225D.1378

10.【答案】C

【解析】【解析】由图形可得三角形数构成的数列通项ann(n1),同理可得正方形数构

2n成的数列通项bnn2,则由bnn2(nN)可排除A、D,又由a

数,故选C.n(n1)知an必为奇

22、(江苏卷)8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为.【解析】 考查类比的方法。体积比为1:83、(北京卷理)14.已知数列{an}满足:a4n31,a4n10,a2n

a2009________; 则an,nN,版权所有@高考资源网

a2014=_________.【答案】1,0

【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得a2009a450331,a2014a21007a1007a425210.∴应填1,0.4、(湖南卷)

15、将正⊿ABC分割成n2(n≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= 10,…,f(n)=

31(n+1)(n+2)6

15.【答案】:101,(n1)(n2)36

【解析】当n=3时,如图所示分别设各顶点的数用小写字母表示,即由条件知abc1,x1x2ab,y1y2bc,z1z2ca

x1x2y1y2z1z22(abc)2,2gx1y2x2z1y1z

26gx1x2y1y2z1z22(abc)2 即g11110而f(3)abcx1x2y1y2z1z2g1 3233

进一步可求得f(4)5。由上知f(1)中有三个数,f(2)中 有6个数,f(3)中共有10个数相加,f(4)中有15个数相加….,若f(n1)中有an1(n1)个数相加,可得f(n)中有(an1n1)个数相加,且由

363331045f(1)1,f(2)f(1),f(3)f(2),f(4)5f(3),...3333333

版权所有@高考资源网

n1,所以 3

n1n1nn1nn13f(n)f(n1)f(n2)...f(1)3333333

n1nn13211(n1)(n2)=3333336可得f(n)f(n1)

5、(浙江卷)15.观察下列等式:

1C5C55232,159C9C9C92723,15913C13C13C13C1321125,159C1C13C7C17C171717152172,………

由以上等式推测到一个一般的结论:

1594n1对于nN,C4n1C4n1C4n1C4n1. *

答案:24n1122n1

nn【解析】这是一种需类比推理方法破解的问题,结论由二项构成,第二项前有1,二项指

数分别为24nn1,,2

n因此对于nN*,1594n124n1122n1 C4n1C4n1C4n1C4n1

版权所有@高考资源网

第五篇:高考必看:推理与证明

推理与证明

一.本章知识网络: 推理与证

推理 证明合情推理 演绎推理 直接证明 间接证明 数学归纳

归纳 类比 综合分析反证

二、推理●1.归纳推理1)归纳推理的定义:从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。

归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问

题和提出问题。但不完全归纳的结论不一定正确,需要证明。

●2.类比推理1)根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似

类比推理的关键是先找到两类事物的相似点(类比点),从而将一类事物的性质的类比到另一个事物,但要有证明的意识。

●3.演绎推理1)演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。

2)三段论式常用的格式为: M——P(M是P)①S——M(S是M)②S——P(S是P)③

其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

三.证明:综合法,分析法,反证法,数学归纳法

1.解答证明题时,要注意是采用直接证明还是间接证明。在解决直接证明题时,综合法和分析法往往可以结合起来使用。综合法的使用是“由因索果”,分析法证明问题是“执果索因”,它们是两种思路截然相反的证明方法,分析法便于寻找解题思路,而综合法便于叙述,因此使用时往往联合使用。分析法要注意叙述的形式:要证A,只要证明B,B应是A成立的充分条件。

2.应用反证法时,注意:一是“否定结论”部分,把握住结论的“反”是什么?二是“导出矛盾”部分,矛盾有时是与已知条件矛盾,有时是与假设矛盾,而有时又是与某定义、定理、公理或事实矛盾,因此要弄明白究竟是与什么矛盾.对于难于从正面入手的数学证明问题,解题时可从问题的反面入手,探求已知与未知的关系,从而将问题得以解决。因此当遇到“否定性”、“唯一性”、“无限性”、“至多”、“至少”等类型命题时,宜选用反证法。

x成立;¬ p且¬ q;¬ p或¬ q 3数学归纳法:(两步骤一结论,关键是“用假设、凑目标”)(1)数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n0且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。(2)运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。(3)运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

四.知识应用,巩固提升 一.选择题

1、下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④;C.②④⑤;D.①③⑤.2.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,„ 中,第100项是()A.10 B.13 C.14 D.100

3.在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC

2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A—BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”()A.AB

2+AC2

+ AD2

=BC2

+ CD2

+ BD2

B.S

2ABC

S2ACDS2ADBS2BCD

C.S22S222

ABCSACDADBSBCDD.AB×AC×AD=BC ×CD ×BD

4.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理

出一个结论,则这个结论是()A.正方形的对角线相等B.平行四边形的对角线相等C.正方形是平行四边形 D.其它

5、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。

A.假设三内角都不大于60度; B 假设三内角都大于60度; C。假设三内角至多有一个大于60度;D。假设三内角至多有两个大于60度。

6用数学归纳法证明(n+1)(n+2)„(n+n)=2n

·1·2„(2n-1)(n∈N),从“k到k+1”,左端需乘的代数式为()。A.2k+1B.2(2k+1)C.2k1k1D.2k

3k

17.设a,b,c(,0),则a1b,b1c,c1

a

()A.都不大于2 B.都不小于2 C.至少有一个不大于2D.至少有一个不小于

28.定义运算:xy

x(xy)例如y

(xy),344,则下列等式不能成立....的是()A.xyyxB.(xy)zx(yCz).(xy)2x2y2D.c(xy)(cx)(cy)(c0)9.(11江西理7)观察下列各式:5

5=3125,56

=15625,57

=78125,…,则52011的末四位数字为()

A.3125B.5625C.0625D.8125

二.填空题

11.(11陕西理13)观察下列等式

1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49

„„

照此规律,第n个等式为。12.(09浙江文)设等差数列{an}的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,,T16

T成等比数列. 1213、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是。三.解答题

15、已知正数a,b,c成等差数列,且公差d0,求证:11

1a,b,c

不可能是等差数列。

16、已知数列{

an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。

17.(09山东卷理)等比数列{a

n}的前n项和为Sn,已知对任意的nN,点(n,Sn),均在函数

ybxr(b0且b1,b,r均为常数)的图像上.(1)求r的值;(11)当b=2时,记 bn2(lo2gan

1)n(N 证明:对任意的)nN,不等式b11b21····bn1bb

b2

n

下载2013年全国高考试题分类:推理与证明word格式文档
下载2013年全国高考试题分类:推理与证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考数学推理与证明

    高考数学推理与证明1.(08江苏10)将全体正整数排成一个三角形数阵:2 34 5 67 8 9 10。 。 。 。 。按照以上排列的规律,第n行(n3)从左向右的第3个数为▲. n2n6【答案】 2【解析】本......

    2011年高考数学试题分类 推理与证明、创新题

    十三、推理与证明、创新题b1,a,aab.设函数b,ab11.(天津理4)对实数a和b,定义运算“”:f(x)x22xx2,xR.yf(x)cx若函数则实数c的取值范围是A.的图像与轴恰有两个公共点,,21,32B.,21,34【......

    推理与证明试题与答案

    1、求证:(1)a2b23abab);(2) +>22+5。2、设a,b,x,y∈R,且3、若a,b,c均为实数,且,,, (8分)求证:a,b,c中至少有一个大于0。(8分)4、用数学归纳法证明: 1222n2n(n1)(Ⅰ);(7分) 1335(2n1)(2n1)2(2n1)......

    2014年全国高考理科数学试题选编9.推理与证明试题解析

    2014年全国高考理科数学试题选编九.推理与证明试题一.选择题和填空题3.(安徽21满分13分)设实数c>0,整数p>1,n∈N*. 证明:当x>-1且x≠0时,(1+x)p>1+px; 数列{an}满足a1c,1pan+1p1cana......

    2018年高考文科数学分类:专题七不等式、推理与证明

    《2018年高考文科数学分类汇编》 第七篇:不等式、推理与证明 一、选择题 1.【2018北京卷8】设集合A{(x,y)|xy1,axy4,xay2},则 A对任意实数a,(2,1)A B对任意实数a,(2,1)A D当且仅......

    《优质精品》2018年高考数学分类:专题7不等式、推理与证明

    《2018年高考数学分类汇编》 第七篇:不等式、推理与证明 一、选择题 1.【2018北京卷8】设集合A{(x,y)|xy1,axy4,xay2},则 A对任意实数a,(2,1)A B对任意实数a,(2,1)A D当且仅当aC......

    2011年高考数学试题分类十三 推理与证明、创新题[最终定稿]

    金太阳新课标资源网十三、推理与证明、创新题,b1,aaab.设函数b,ab11.(天津理4)对实数a和b,定义运算“”:f(x)x22xx2,xR.yf(x)cx若函数则实数c的取值范围是A.的图像与轴恰有两个公......

    2.2013高考推理证明(2013)

    1. (2013 湖南理) (2013 湖南理) 设函数f(x)abc,其中ca0,cb0. xxx且a=b,则(1)记集合M(a,b,c)a,b,c不能构成一个三角形的三条边长,(a,b,c)M所对应的f(x)的零点的取值集合为____。......