第一篇:《优质精品》2018年高考数学分类:专题7不等式、推理与证明
《2018年高考数学分类汇编》
第七篇:不等式、推理与证明
一、选择题
1.【2018北京卷8】设集合A{(x,y)|xy1,axy4,xay2},则
A对任意实数a,(2,1)A
B对任意实数a,(2,1)A D当且仅当aC当且仅当a<0时,(2,1)A
3时,(2,1)A 2xy5,2xy4,2.【2018天津卷2】设变量x,y满足约束条件 则目标函数z3x5y的最大
xy1,y0,值为
A.6
B.19
C.21
D.45
二、填空题
x2y201.【2018全国一卷13】若x,y满足约束条件xy10,则z3x2y的最大值为
y0_____________.
x2y50, 则zxy的最大值为2.【2018全国二卷】14.若x,y满足约束条件x2y30,x50,__________.
3.【2018北京卷12】若x,y满足x+1≤y≤2x,则2y−x的最小值是__________.
4.【2018天津卷13】已知a,bR,且a3b60,则2a1的最小值为.8bxy0,5.【2018浙江卷12】若x,y满足约束条件2xy6,则zx3y的最小值是___________,xy2,最大值是___________.
参考答案
一、选择题 1.D
2.C
二、填空题
1.6
2.9 3.3
4.145.−2;8
第二篇:2018年高考文科数学分类:专题七不等式、推理与证明
《2018年高考文科数学分类汇编》
第七篇:不等式、推理与证明
一、选择题
1.【2018北京卷8】设集合A{(x,y)|xy1,axy4,xay2},则
A对任意实数a,(2,1)A
B对任意实数a,(2,1)A D当且仅当aC当且仅当a<0时,(2,1)A
3时,(2,1)A 2xy5,2xy4,2.【2018天津卷2】设变量x,y满足约束条件 则目标函数z3x5y的最大
xy1,y0,值为
A.6
B.19
C.21
D.45
二、填空题
x2y201.【2018全国一卷14】若x,y满足约束条件xy10,则z3x2y的最大值为
y0_____________.
x2y50, 则zxy的最大值为2.【2018全国二卷14】若x,y满足约束条件x2y30,x50,__________.
2xy30,13.【2018全国试卷15】若变量x,y满足约束条件x2y40,则zxy的最大
3x20.值是________.
4.【2018北京卷13】若x,y满足x+1≤y≤2x,则2y−x的最小值是__________. 5.【2018天津卷13】已知a,bR,且a3b60,则2
a1的最小值为.8bxy0,6.【2018浙江卷12】若x,y满足约束条件2xy6,则zx3y的最小值是___________,最大值是___________.
参考答案
一、选择题 1.D
2.C
二、填空题
1.6
2.9
3.3 4.3
xy2,5.14
6.−2;8
第三篇:高考数学推理与证明
高考数学推理与证明
1.(08江苏10)将全体正整数排成一个三角形数阵:35 68 9 10
。。。
按照以上排列的规律,第n行(n3)从左向右的第3个数为▲.n2n6【答案】 2
【解析】本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n
n2nn2n-1)个,即个,因此第n 行第3 个数是全体正整数中第+3个,即为22
n2n6. 2
2.(09江苏8)在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为▲.【解析】 考查类比的方法。体积比为1:8
3.(09福建15)五位同学围成一圈依序循环报数,规定:
①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;
②若报出的数为3的倍数,则报该数的同学需拍手一次
已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.【答案】:5
解析:由题意可设第n次报数,第n1次报数,第n2次报数分别为an,an1,an2,所以有anan1an2,又a11,a21,由此可得在报到第100个数时,甲同学拍手5次。
4.(09上海)8.已知三个球的半径R1,R2,R3满足R12R23R3,则它们的表面积S1,S2,S3,满足的等量关系是___________.
【解析】S14R1S122
S22R2S32R3,即R1=R1,S1
2,R2=S2
2,R3=S3
2,由R1
2R23R3
5.(09浙江)15.观察下列等式:
1C5C55232,159C9C9C92723,15913C13C13C13C1321125,1593C1C17C17C171C71727125,1
………
由以上等式推测到一个一般的结论:
1594n1对于nN,C4n1C4n1C4n1C4n1*
答案:24n1122n1。【解析】这是一种需类比推理方法破解的问题,结论由二项构成,n
第二项前有1n,二项指数分别为24n1,22n1,因此对于nN
n*,1594n124n1122n1 C4n1C4n1C4n1C4n1
第四篇:2012高考试题分类:推理和证明
推理和证明
1.【2011江西高考理】观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为
()
A.3125B.5625C.0625D.8125 2.【2012高考上海文】若Snsin
个数是()
A、16B、72C、86D、100【答案】C 3.【2011陕西高考理】观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
……
照此规律,第n个等式为__________.
4.【2010陕西高考理】观察下列等式:1+2=31+2+3=61+2+3+4=10,…,根据上述规
律,第五个等式为__________. .....5.【2012高考陕西文】观察下列不等式
1
sin
27
...sin
n7
(nN),则在S1,S2,...,S100中,正数的332,3332,33332
1
53,1
1413
5314
……
15
照此规律,第五个不等式为【答案】1...
222
116
.6.【2102高考福建文20】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°(5)sin2(-25°)+cos255°-sin2(-25°)cos255°(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
|x||y|2的不同7.【2012高考江西文】观察下列事实|x||y|1的不同整数解(x,y)的个数为4,整数解(x,y)的个数为8,|x||y|3的不同整数解(x,y)的个数为12 ….则|x||y|20的不同整数解(x,y)的个数为
A.76B.80C.86D.92【答案】B
8.【2012高考湖北】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研
究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn}.可以推测:
(1)b2 012是数列{an}中的第______项;(2)b2k-1=______.(用k表示)
9.【2012高考湖北文】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。他
们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(1)b2012是数列{an}中的第______项;
(2)b2k-1=______。(用k表示)【答案】(1)5030;(2)
xx2
5k5k1
10.【2011年高考山东卷理科】设函数f(x)
xx2, x3x4
x7x8
x15x16, , ,(x0),观察:
f1(x)f(x)
f2(x)f(f1(x))f3(x)f(f2(x))f4(x)f(f3(x))
根据以上事实,由归纳推理可得:
当nN且n2时,fn(x)f(fn1(x))11.【2011年高考安徽卷理科】在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列
命题中正确的是_____________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k与b都是无理数,则直线ykxb不经过任何整点 ③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线ykxb经过无穷多个整点的充分必要条件是:k与b都是有理数 ⑤存在恰经过一个整点的直线
12.【2011年高考湖北卷理科】给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着
色方案中,黑色正方形互不相邻的着色方案如下图所示:
....
由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形....相邻的着色方案共有__________种.(结果用数值表示)..
13.观察下列数字
照此规律,2013在第______行第________列 14.观察下列数字
照此规律,2013在第______行第________列 15.观察下列数字
照此规律,第2013个数字是______
第5题第6题
16.【2012高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AEBF
13。
动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为
(A)8(B)6(C)4(D)3 【答案】B
17.【2012高考湖南文16】对于nN,将n表示为nak2kak12k1a121a020,当ik
时ai1,当0ik1时ai为0或1,定义bn如下:在n的上述表示中,当a0,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.(1)b2+b4+b6+b8=__;
(2)记cm为数列{bn}中第m个为0的项与第m+1个为0的项之间的项数,则cm的最大值是___.【答案】(1)3;(2)2.18.【2011高考湖南理】对于n∈N,将n表示为na02ka12k1a22k2ak121ak20,当i=0时,ai=1,当1ik时,ai为0或1.记I(n)为上述表示中ai为0的个数(例如:1=1×20,4=1×22+0×2+0×2,故I(1)=0,I(4)=2),则
127
*
(1)I(12)=______;(2)
2
n1
I(n)
______.19.【2102高考北京文】设A是如下形式的2行3列的数表,满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为第j列各数之和(j=1,2,3);
记k(A)为|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。
对如下数表A,求k(A)的值
设数表A形如
其中-1≤d≤0,求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值。
第五篇:数列不等式推理与证明
2012年数学一轮复习精品试题第六、七模块 数列、不等式、推
理与证明
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在等比数列{aa
2n}中,若a3a5a7a9a11=243,则a的值为()1
1A.9B.1
C.2D.
32.在等比数列{aaa
n}中,an>an7·a11=6,a4+a14=5,则+1,且a等于()16
A.23B.32
C16D.-563.在数列{aa-n}中,a1=1,当n≥2时,an=1+aa
n-1n=()
A.1
nB.n
C.1nD.n2