第一篇:高考必看:推理与证明
推理与证明
一.本章知识网络: 推理与证
推理 证明合情推理 演绎推理 直接证明 间接证明 数学归纳
归纳 类比 综合分析反证
二、推理●1.归纳推理1)归纳推理的定义:从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。
归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问
题和提出问题。但不完全归纳的结论不一定正确,需要证明。
●2.类比推理1)根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似
类比推理的关键是先找到两类事物的相似点(类比点),从而将一类事物的性质的类比到另一个事物,但要有证明的意识。
●3.演绎推理1)演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。
2)三段论式常用的格式为: M——P(M是P)①S——M(S是M)②S——P(S是P)③
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
三.证明:综合法,分析法,反证法,数学归纳法
1.解答证明题时,要注意是采用直接证明还是间接证明。在解决直接证明题时,综合法和分析法往往可以结合起来使用。综合法的使用是“由因索果”,分析法证明问题是“执果索因”,它们是两种思路截然相反的证明方法,分析法便于寻找解题思路,而综合法便于叙述,因此使用时往往联合使用。分析法要注意叙述的形式:要证A,只要证明B,B应是A成立的充分条件。
2.应用反证法时,注意:一是“否定结论”部分,把握住结论的“反”是什么?二是“导出矛盾”部分,矛盾有时是与已知条件矛盾,有时是与假设矛盾,而有时又是与某定义、定理、公理或事实矛盾,因此要弄明白究竟是与什么矛盾.对于难于从正面入手的数学证明问题,解题时可从问题的反面入手,探求已知与未知的关系,从而将问题得以解决。因此当遇到“否定性”、“唯一性”、“无限性”、“至多”、“至少”等类型命题时,宜选用反证法。
x成立;¬ p且¬ q;¬ p或¬ q 3数学归纳法:(两步骤一结论,关键是“用假设、凑目标”)(1)数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n0且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。(2)运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。(3)运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
四.知识应用,巩固提升 一.选择题
1、下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④;C.②④⑤;D.①③⑤.2.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,„ 中,第100项是()A.10 B.13 C.14 D.100
3.在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC
2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A—BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”()A.AB
2+AC2
+ AD2
=BC2
+ CD2
+ BD2
B.S
2ABC
S2ACDS2ADBS2BCD
C.S22S222
ABCSACDADBSBCDD.AB×AC×AD=BC ×CD ×BD
4.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理
出一个结论,则这个结论是()A.正方形的对角线相等B.平行四边形的对角线相等C.正方形是平行四边形 D.其它
5、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。
A.假设三内角都不大于60度; B 假设三内角都大于60度; C。假设三内角至多有一个大于60度;D。假设三内角至多有两个大于60度。
6用数学归纳法证明(n+1)(n+2)„(n+n)=2n
·1·2„(2n-1)(n∈N),从“k到k+1”,左端需乘的代数式为()。A.2k+1B.2(2k+1)C.2k1k1D.2k
3k
17.设a,b,c(,0),则a1b,b1c,c1
a
()A.都不大于2 B.都不小于2 C.至少有一个不大于2D.至少有一个不小于
28.定义运算:xy
x(xy)例如y
(xy),344,则下列等式不能成立....的是()A.xyyxB.(xy)zx(yCz).(xy)2x2y2D.c(xy)(cx)(cy)(c0)9.(11江西理7)观察下列各式:5
5=3125,56
=15625,57
=78125,…,则52011的末四位数字为()
A.3125B.5625C.0625D.8125
二.填空题
11.(11陕西理13)观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
„„
照此规律,第n个等式为。12.(09浙江文)设等差数列{an}的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,,T16
T成等比数列. 1213、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是。三.解答题
15、已知正数a,b,c成等差数列,且公差d0,求证:11
1a,b,c
不可能是等差数列。
16、已知数列{
an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。
17.(09山东卷理)等比数列{a
n}的前n项和为Sn,已知对任意的nN,点(n,Sn),均在函数
ybxr(b0且b1,b,r均为常数)的图像上.(1)求r的值;(11)当b=2时,记 bn2(lo2gan
1)n(N 证明:对任意的)nN,不等式b11b21····bn1bb
b2
n
第二篇:高考数学推理与证明
高考数学推理与证明
1.(08江苏10)将全体正整数排成一个三角形数阵:35 68 9 10
。。。
按照以上排列的规律,第n行(n3)从左向右的第3个数为▲.n2n6【答案】 2
【解析】本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n
n2nn2n-1)个,即个,因此第n 行第3 个数是全体正整数中第+3个,即为22
n2n6. 2
2.(09江苏8)在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为▲.【解析】 考查类比的方法。体积比为1:8
3.(09福建15)五位同学围成一圈依序循环报数,规定:
①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;
②若报出的数为3的倍数,则报该数的同学需拍手一次
已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.【答案】:5
解析:由题意可设第n次报数,第n1次报数,第n2次报数分别为an,an1,an2,所以有anan1an2,又a11,a21,由此可得在报到第100个数时,甲同学拍手5次。
4.(09上海)8.已知三个球的半径R1,R2,R3满足R12R23R3,则它们的表面积S1,S2,S3,满足的等量关系是___________.
【解析】S14R1S122
S22R2S32R3,即R1=R1,S1
2,R2=S2
2,R3=S3
2,由R1
2R23R3
5.(09浙江)15.观察下列等式:
1C5C55232,159C9C9C92723,15913C13C13C13C1321125,1593C1C17C17C171C71727125,1
………
由以上等式推测到一个一般的结论:
1594n1对于nN,C4n1C4n1C4n1C4n1*
答案:24n1122n1。【解析】这是一种需类比推理方法破解的问题,结论由二项构成,n
第二项前有1n,二项指数分别为24n1,22n1,因此对于nN
n*,1594n124n1122n1 C4n1C4n1C4n1C4n1
第三篇:2.2013高考推理证明(2013)
1.(2013 湖南理)(2013 湖南理)设函数f(x)abc,其中ca0,cb0.xxx
且a=b,则(1)记集合M(a,b,c)a,b,c不能构成一个三角形的三条边长,(a,b,c)M所对应的f(x)的零点的取值集合为____。
(2)若a,b,c是ABC的三条边长,则下列结论正确的是.(写出所有正确结论的序号)
①x,1,fx0;
②xR,使xa,b,c不能构成一个三角形的三条边长;
③若ABC为钝角三角形,则x1,2,使fx0.xxx
答案:(1)(0,1](2)①②③
20***21680102.推理证明填空题基础知识2013-09-03
2.(2013 重庆理)对正整数n,记In{1,2,3,„,n
},Pn(1)求集合P7中元素的个数;
(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,..
使Pn能分成两个不相交的稀疏集的并.
In,kIn}.
答案:解:(1)当k
4时,|mI7}中有3个数与I7中的3个数重复,因此P7中元素的个数为7×7-3=46.(2)先证:当n15时,Pn不能分成两个不相交的稀疏集的并.若不然,设A,B为不相交的稀疏集,使A∪B=PnIn.不妨设I∈A,则因1+3=2,故3∉A,即3∈B.同理6∈A,10∈B,又推得15∈A,但1+15=4,这与A为稀疏集矛盾.再证P14符合要求.当k22
1时,|mI14}I14可分成两个稀疏集的并,事实上,只要取 A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1为稀疏集,且A1∪B1=I14.当k4时,集13513|mI14}中除整数外剩下的数组成集,,,,可分解为下面两2222稀疏集的并:A2
当k159113713,,,B2{,.***|mI14}中除正整数外剩下的数组成集{,,,,可分解3333339时,集为下面两稀疏集的并:A3
最后,集C***114,,,B3{,,.3333333333mI14,kI14,且k1,4,9}中的数的分母均为无理数,它与P14中的任何其他数之和都不是整数,因此,令AA1A2A3C,BB1B2B3.则A和B是不相交的稀疏集,且A∪B=P14.综上,所求n的最大值为14.(注:对P14的分拆方法不是唯一的)
20***97962132.推理证明解答题基础知识2013-08-15
3.(2013 陕西文)观察下列等式:
(11)21
(21)(22)2213
(31)(32)(33)23135
„„
照此规律, 第n个等式可为.答案:(n1)(n2)(n3)(nn)2n13(2n1)
20***97810882.推理证明填空题基础知识2013-08-15
4.(2013 陕西文)设[x]表示不大于x的最大整数, 则对任意实数x, y, 有()
(A)[-x]=-[x]
(C)[2x]=2[x](B)[x + 1]=[x] 212(D)[x][x][2x]
答案:D
20***92818362.推理证明选择题基础知识2013-08-15
5.(2013 湖北文)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S1,N0,L4.(1)图中格点四边形DEFG对应的S,N,L分别是;
(2)已知格点多边形的面积可表示为SaNbLc,其中a,b,c为常数.若某格点多边形对应的N71,L18,则S(用数值作答).答案:(1)3,1,6;(2)79
第17题图
20***97507252.推理证明填空题基础知识2013-08-14
6.(2013 湖北理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,„,第n个三角形数为n(n+1)121=n+n,记第n个k边形数为N(n,k)(k3),222
以下列出了部分k边形数中第n个数的表达式:
三角形数N(n,3)=1
2n2+1
2n,正方形数N(n,4)=n2,五边形数N(n,5)=3
2n21
2n,六边形数N(n,6)=2n2-n
„„
可以推测N(n,k)的表达式,由此计算N(10,24)=_________________。
答案:1000
20***40787772.推理证明填空题基础知识2013-08-14
7.(2013 陕西理)观察下列等式:
121
12223
1222326
1222324210
„„
照此规律, 第n个等式可为.答案:122232421n1n2(1)n1nn1
20***67501202.推理证明填空题基础知识2013-08-14
8.(2013 陕西理)设[x]表示不大于x的最大整数, 则对任意实数x,y,有()
(A)[-x] = -[x](B)[2x] = 2[x]
(C)[x+y]≤[x]+[y](D)[x-y]≤[x]-[y]
答案:D
20***59217992.推理证明选择题基础知识2013-08-14
第四篇:推理与证明
第3讲 推理与证明
【知识要点】
1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理
2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。3.类比推理的一般步骤:
①找出两类事物之间的相似性或者一致性。
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)【典型例题】
1、(2011•江西)观察下列各式:7=49,7=343,7=2401,„,则7
34201
1的末两位数字为()
A、01 B、43 C、07 D、49
2、(2011•江西)观察下列各式:5=3125,5=15625,5=78125,„,则5A、3125 B、5625 C、0625 D、8125
3、(2010•临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到()A、空间中平行于同一平面的两个平面平行 B、空间中平行于同一条直线的两条直线平行 C、空间中平行于同一条平面的两条直线平行 D、空间中平行于同一条直线的两个平面平行
4、(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()
A、(a*b)*a=a B、[a*(b*a)]*(a*b)=a C、b*(b*b)=b D、(a*b)*[b*(a*b)]=b
5、(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()
A、15 B、16 C、17 D、18
6、(2006•陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A、4,6,1,7 B、7,6,1,4 C、6,4,1,7 D、1,6,4,7
7、(2006•山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()
A、0 B、6 C、12 D、18
7201
1的末四位数字为()
8、(2006•辽宁)设⊕是R上的一个运算,A是V的非空子集,若对任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A、自然数集 B、整数集 C、有理数集 D、无理数集
9、(2006•广东)对于任意的两个实数对(a,b)和(c,d),规定:(a,b)=(c,d),当且仅当a=c,b=d;运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d),设p,q∈R,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=()A、(4,0)B、(2,0)C、(0,2)D、(0,-4)
10、(2005•湖南)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),„,fn+1(x)=fn′(x),n∈N,则f2005(x)=()
A、sinx B、-sinx C、cosx D、-cosx
11、(2004•安徽)已知数列{an}满足a0=1,an=a0+a1+„+an-1,n≥
1、,则当n≥1时,an=()A、2 B、n
C、2 D、2-
1n-1n
12、若数列{an}满足a1=1,a2=2,an=(n≥3且n∈N*),则a17=()
A、1 B、2 C、D、2-987
13、如图所示的三角形数阵叫“莱布尼兹调和三角形”,有,则运用归纳推理得到第11 行第2个数(从左往右数)为()A、B、C、D、14、根据给出的数塔猜测1 234 567×9+8=()
1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111.
A、11111110 B、11111111 C、11111112 D、11111113
15、将n个连续自然数按规律排成右表,根据规律,从2008到2010,箭头方向依次是()
A、B、C、D、16、下列推理过程利用的推理方法分别是()(1)通过大量试验得出抛硬币出现正面的概率为0.5;(2)函数f(x)=x2-|x|为偶函数;
(3)科学家通过研究老鹰的眼睛发明了电子鹰眼. A、演绎推理,归纳推理,类比推理 B、类比推理,演绎推理,类比推理 C、归纳推理,合情推理,类比推理 D、归纳推理,演绎推理,类比推理
17、下列表述正确的是()①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A、①②③ B、②③④ C、②④⑤ D、①③⑤
18、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,„这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为()A、n B、1、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 照此规律,第五个等式应为 5+6+7+8+9+10+11+12+13=81.
2、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 „
照此规律,第n个等式为 n+(n+1)+(n+2)+„+(3n-2)=(2n-1)2 .
C、n-1 D、2
第五篇:推理与证明
推理与证明
学生推理与证明的建立,是一个漫长的过程,这个过程的开始可以追溯到小孩牙牙学语时候起,小孩在爸爸妈妈跟前不停的问为什么,可以看做推理的雏形。接着到幼儿园、小学,教材里也有简单的说理,小学教材里有简单地说理题,意在培养学生的逻辑思维。
初中新教材对推理与证明的渗透,也是从说理开始的,但内容比较少,也就是教材中的直观几何内容。很快便转向推理,也就是证明。刚开始推理的步骤,是简单的两三步,接着到四五步,后面还一定要求学生写清楚为什么。在学习这一部分内容的时候,好多学生在后面的括号里不写为什么,我便给他们举例小孩子学走路的过程,一个小孩刚开始学走路的时候,需要大人或其他可依附的东西,渐渐地,她会脱离工具自己走。学习证明的过程亦如此,起先在括号里写清为什么,并且只是简单的几步,然后证明比较难一点的,步骤比较多的。
随着社会的进步,中学教材加强了解析几何、向量几何,传统的欧式几何受到冲击,并且教材对这一部分的编排分散在初中各个年级,直观几何分量多了还加入了变换如平移变换、旋转变换、对称变换,投影等内容。老师们对内容的编排不太理解,看了专家的讲座,渐渐明白了:这样编排不是降低了推理能力,而是加强了推理能力的培养,体现了逐步发展的过程,把变换放到中学,加强了中学和大学教材的统一,但一个不争的事实是,对演绎推理确实弱了。
关于开展课题学习的实践与认识
新课程教材编排了课题学习这部分内容,对授课的老师,还是学生的学习都是一个全新的内容,怎样上好这部分内容,对老师、对学生而言,都是一个创新的机会。至于课题学习的评价方式,到现在为止,大多数省份还是一个空白,考不考?怎样考?学习它吧,学习的东西不能在试卷上体现出来,于是,好多老师对这部分采取漠视的处理方法;不学习吧,课本上安排了这部分内容。还有一部分老师觉得,课题学习是对某一个问题专门研究,很深!老师不知讲到什么程度才合理,学生不知掌握到什么程度。
经过几年的实践与这次培训的认识,我觉得课题学习是“实践与综合应用”在新课课程中的主要呈现形式,是一种区别于传统的、全新的,具有挑战性的学习,课本的编写者安排的主要目的是:
1.希望为学生提供更多的实践与探索的机会。
2.让学生通过对有挑战性和综合性问题的解决,经历数学化的过程。
3.让学生获得研究问题地方法和经验,使学生的思维能力、自主探索与合作交流的意识和能力得到发展。
4.让学生体验数学知识的内在联系,以及解决问题的成功喜悦,增进学生学习数学的信心。
5.使数学学习活动成为生动活泼的、主动的和富有个性的过程。
课题学习首先提出一个主问题(问题是一个载体),然后给出资料,利用资料挖掘知识。在这个过程中,多关注知识的价值,淡化数学术语,让学生充分经历数学化的过程,激发学生参与的热情,使其体会到学习数学的乐趣,始终以学生为主体,明白课题学习是为学习服务的。