第一篇:用技术分析判断卖出信号
用技术分析判断卖出信号
老道的投资者在评估股价高低时,一般会认为孤立的股票价格不说明任何问题,而应该更关注股价的比价关系,也就是股价在不同时间的不同位置。这就是所谓的“势”。对股票价格变化把握的关键是“势”。如何判断上涨趋势的头部?这是困扰很多投资者的问题。股票有谚“会买的是徒弟,会卖的是师父”。这正是说明炒股卖点的把握更难。不少投资者也许在行情见顶之时,仅仅为了一点蝇头小利而死守不卖,结果往往是坐过山车,随后深深被套。
当然究其原因,会有很多,包括大盘、个股基本面、技术面以及资金面。我们不妨从技术分析角度来总结几种盘面卖出的信号。
(一)阶段高位十字星和长上影线
上升通道的股票在一定涨幅后,会出现放量滞涨的情况,尤其当日K线出现十字星或长上影线的倒锤形阳线或阴线时,都要引起高度重视。这种图形一般说明有人选择在拉高出货,冲高回落的走势也说明下方承接买盘也不强,升势将尽,老道的投资者更多会选择卖出股票。
(二)双头、多头排列
投资者经常会碰到M型头或者多头排列的K线图形,这也是重要的见顶抛出信号。当股价经过一轮上涨回落后,再次反弹是不能有效突破前期高点时,往往就形成了第二个头,此时应选择卖出。判断双头和多头的重要依据是波段高点和成交量。M字形头部一般右峰低于左峰,有时也会有例外,关键看成交量,如果成交量不配合,可能为诱多,投资者一定要小心。这种图形的演变还有头肩顶、三重顶、圆形顶等,但只要跌破颈线支撑都应及时卖出了结。
(三)均线系统
均线系统是“势”的重要参考指标。均线系统也是判断头部的重要依据。上升通道的股票均线都是多头排列,短期均线在上,长期均线在下。但如果一旦股价开始跌破诸如5日、10日等短期均线,而且短期不能收复时,就要引起警惕。如果随后几天中长期的均线也被带量跌破,就更加确定头部迹象,此时应该坚定卖出。均线空头排列一旦形成,下降趋势就开始确立,投资者应耐心等待持币观望。
第二篇:铁路技术总结(信号)(范文)
技术工作总结
我是电务段调度指挥中心TDCS调度;自1999年参加铁路工作以来,经历了几次工作变动,干过列车员,制动员、信号工,从2006年至2016年11月,我一直工作在电务段,信号工区从事值班故障处理工作,2016年11月调入电务段TDCS,从事TDCS值班工作,2017年1月调入电务段调度指挥中心,任TDCS调度,信号设备值班故障处理这条繁重而又艰苦的工作岗位上,长达10年,在这一工作岗位上,我亲身经历了电务信号设备的大改造-----6502电气集中联锁改微机联锁。
刚参加工作的我,勤奋好学,热爱本职工作。2008年被评为段先进生产工作者,这更加坚定了我钻研业务的信念,很快成为了一名骨干人员,2009参加了技术表演赛,使我对电气集中设备有了初步的了解,经过一段时间的学习,于是倡导利用中修机会整理配线合理化,美观化。标准化。在上级领导的支持下,于2009年我制作了内“轨道电路”“信号点灯单元电路”故障处理便携式演示台,演示台不但加快了轨道电路故障处理学习,更方便了维修演示,线色分明。得到了领导的赞赏。
凭借着我刻苦的学习和向资深师傅们的请教,现在已能熟练解决维修和生产中遇到的诸多难题。自2009年担任
值班工作以来,处理了多次故障,下面例举俩个事例,如2011年8月的一天,我正要去工区值班,客车走到站外时,就接到值班的人员打来电话,说X道发车后遗留红光带,我就边分析边指挥:我先让他测量送电端,结果有220V,我让他再测轨面电压,轨面电压也正常;我让他继续往下测,结果测出受端二次有电压,一次没有电压;这时我对故障原因有了初步判断,正好列车已经进入车站,我立刻下车进入机械室内把BG50备用变压器拿上赶扑现场,我再次用万用表确认,当时I次线圈是连接2、3端子,使用1、4端子。用万用表一测,结果是变压器的I次2、4线圈断线,立即更换变压器,恢复设备正常使用。通过这次故障的处理对轨道电路原理有了更深刻的理解。还有一个事例是在2012年的6月在天窗检修道岔时,室内操纵,室外调整摩擦电流,当道岔转换到第三次时,由定位向反位转换,当道岔转换到“四开”位置时,反位启动保险熔断,道岔无表示,往定位操纵时,道岔能够转换到定位而且有表示。当更换完反位启动保险后,再次向反位操纵时,反位保险又熔断,道岔四开位置,这时我让室内把道岔转回定位,室内往定位操纵时,定位保险熔断无表示。当室内把保险更换完后又一次向定位转换时,道岔转到定位而且有表示。这时,我判定启动电路混线造成,就把道岔的A、B机的插接器拔开,让室内转换道岔,反位启动保险任然熔断,又从分线盘把道岔,2#、4#、6#电
缆甩开,让室内配合人员继续转换道岔,这时保险不在熔断,确定室外电缆混线,经查找4#、6#电缆混线,更换备用电缆后,设备恢复正常。工人们有些不解,为什么定反位保险都熔断?之后我把道岔电路结合现场情况给他们一讲,结果大伙全明白了,通过这件故障的处理,也让工友们学到了新知识,增添了他们学习业务的兴趣。正是因为这样的工作态度和工作热情,工作10多年来,在自己身上没有因为自己工作失误发生过一件责任事故。
综上所述,我多年来在思想上始终和上级保持一致,从不计较个人得失,即使作出一点贡献也是与领导的培养和教导分不开的。同时本人工作上还存在一定的差距,在今后的工作中我将继续钻研专业技术知识,不懈攀登技术高峰,提高操作经验水平,为我局的安全生产做出更大的贡献。
2017年6月
第三篇:法国高速铁路通信信号技术
7.4 法国高速铁路专用通信系统 法国高速铁路专用通信系统主要包括:
(1)区段数据通信
高速铁路设有综合调度中心,在车站信号室内有调度集中分机,在工务、电务、机务、水电维修部门也设有分机或控制终端,在各牵引变电所—分区亭设有电力遥控终端。他们之间通过主干传输系统提供数字通道互联,形成专用通信。
上述调度系统专用的数据通信再加上传统的调度电话业务和图像业务综合成区段通信。高速铁路区段通信采用现代数据通信技术(如IP技术、VPN技术等),实现多媒体业务无疑是最佳选择。
(2)区间通信(区间光环用户环路)高速铁路站间距一般可达20~70km,区间通信更为必要,主要包括:
①车站信号室间、车站信号室与区间信号室间或区间信号室间列控安全数据传输;
②区段联锁系统主站与相邻从站或区间渡线控制点间的安全数据传输;
③天气、地震、线路安全监测站与车站终端的数据传输;
④列车轴温监测站数据传输;
⑤电力遥控终端数据传输;
⑥区间公务人员及应急抢险通信;
⑦常设线路监视系统及救灾监视用图像传输;
⑧通信、信号维护用通信通道等。
采用光纤用户环路再配合光纤/射频传输系统,可以很好地解决区间通信的问题。(3)高速列车无线数据通信
实现高速列车与地面的无线数据传输将有利于高速铁路的行车安全、运输管理、旅客服务。可能的业务有:
①文本方式的调度命令;
②车次号、列车速度,列车位置核查;
③列车运行时的安全状态;
④车辆维修信息;
⑤旅客服务信息等。
(4)专用基础网络
近年开发了信号专用光纤网,把联锁和列控系统、列控系统各信号室设备之间、联锁系统主站与分站间、以及CTC各系统之间用网络联系起来,称为CTC—LAN、EL—LAN和ATC—LAN。
TGV大西洋线、TGV东南线和法国其他高速线所用的传输媒体几乎相同,现描述如下。7.4.1 干线通信电缆
法国高速铁路干线电缆采用综合光缆结构,内含4根单模光纤,42个对称四芯组(0.8mm铜线),分布在6个芯线束中,每个芯线束中含有7个四芯组,其结构如图2—7—15。
〖TPTIET2715,+53mm。111mm,BP,DY#〗图2—7—15 TGV大西洋通信电缆断面图(1)单模光纤
单模光纤供多路复用系统使用,利用4根单模光纤中的2根,开通专门设计的140Mbit/s1920路TN4数字系统;4根光纤被放置在6个螺槽塑料芯的4个之中,槽内填有以硅为基材的凝胶,以便防潮。每根光纤至少比槽长3‰,以便光纤插入后有允许的铺设余量,即光缆可以在此6 000N大的拉力下对光纤不会有任何损害。
(2)对称四芯组
星形四芯组中除部分高频四芯组外,其余大部分均进行加感,大约每隔1 500m左右加入88mH的加感线圈,介于轻加感与重加感之间,用来改善音频线的传输电气特性。为了保证音频电话质量,TGV大西洋线平均35km设置一个音频放大(增音)中心,其位置放在路旁的继电器箱内,全线共设有6个放大中心。对称四芯组的缆芯为直径0.8mm的铜线,每个四芯组有两个50nF/km的电容电路。导线用两层塑料绝缘,一层为蜂窝状聚乙烯,另一层是高密度聚乙烯薄层,铜导线周围用硅脂胶环绕,以防潮气侵入电缆后使电路特性改变。电缆还用粘在大于1.5mm厚的聚乙烯护套上的薄铝带(铝+聚乙烯)保护,以防潮气进入。(3)再生中继
在路旁信号箱或中间联锁装置处,设有再生中继,再生中继之间的最大距离为27km(直线上可更长一些),在巴黎至图尔间共有12个再生中继,装备有供解调和音频转换的设施。(4)热轴探测器系统
这是一个自动红外线测温网,法国TGV高速铁路在沿线每25km设测轴温的检测点,列车通过检测点时能自动地探查轴温情况,采集的数据经地面信道传送给中心由计算机集中处理;它除了起到发生事故的热轴探测器作用外,该系统还能实时向维修部门提供非常有用的关于轴箱温度发生不正常改变的预防性数据。
有关通信电缆电路配置示于图2—7—16。
7.4.2 运输调度通信
运输调度电话采用共线方式(Party line),即在一个区段内所有电话机均并联在运输调度专用电路上,采用威斯坦码以1 024Hz音频进行呼叫。威斯坦码的组合码相当于一组三脉冲群,脉冲群的总数为常数,其分布则可选择所需的电话(如图2—7—17所示)。
此种电话系统与我国过去的音频选号调度或各站选号电话系统相类似,通常称之为集中选择联结方式,用于中央调度台和线路台之间的呼叫,个别呼叫、群呼叫(同时呼叫所有接入的台站)是通过中央调度台来实现的。线路台向中央调度台的呼叫是口头进行的(摘下话筒,压下话筒交流发生器踏板,〖TPTIET2716,+75mm。122mm,X,BP,DY#〗图2—7—16 TGV大西洋线通信电缆电路配置图即可与中央调度台联系)。每位处理此类通信的调度员(或助理调度员)均有一个供发送呼叫用的12个键的十进制键盘,每个线路台由一个两位数字码来辨别,呼叫指示器装在键盘上,当发送装置失灵时,可使用备用呼叫装置,还可使用程控电话或无线调度电话。
除运输调度通信外,还有牵引告警通信和维护通信,它们都是含有中央调度台的发送呼叫装置,总是由铁路沿线的电话机直接到中央调度台,采用四线方式来实现告警和维护通信。
〖TPTIET2717,+70mm。122mm,BP#〗图2—7—17 威斯坦码组合图解 7.4.3 无线通信系统
(1)TGV东南线的无线通信系统
地面与列车的无线通信,用来供司机与调度员之间的联络、无线告警和紧急制动的告警识别信号使用。通过无线告警设备可向列车进行呼叫,并发出告警信号,直至司机开始动作为止;紧急制动的告警识别信号能自动地发出司机出现疏忽的信号。
上述3种通信均由同一条话路进行传输,通过这条话路将中央调度台和沿线各固定(基站)台联结起来;各固定台承担每个无线区域的无线发送和接收,每个固定台均有二位数字呼叫编码;光学控制板(也称为备用的T.C.O,全称为法文Tablean de cantrole optigue),用来检查地面与列车相对应的无线区段电路是否工作正常。地面与列车无线电路的信号被捕捉后,就启动磁带记录器,以记录当时的通话。其原理示于图2—7—18。
①中央调度台进行呼叫
〖TPTIET2718,+55mm。96mm,X,BP#〗图2—7—18 列车无线通信原理图 根据与有线调度通信相似的威斯坦联合码原理,使用1 024Hz音频传送呼叫。此时,调度员(或助理调度员)使用12个键的十进制键盘拨无线区域号码来发出呼叫。同样,调度员通过动作相应的按钮来捕捉来自区段的呼叫。②沿线台呼叫中央调度台
除了与发出呼叫区域有关的信号灯(设置在备用板上)显示“亮灯”以外,无线通信呼叫的接收和有线调度通信方式相同;固定台的辨别和所接收的呼叫类型,即无线电话呼叫、无线告警呼叫或紧急制动的告警呼叫,都是通过频率信号区分的。
沿线固定台在电路上能发送:
a.无线电话呼叫频率F1(低频480Hz、1 380Hz); b.无线告警呼叫频率F2(高频1 440Hz、2 340Hz);
c.紧急制动告警信号频率F1+F2。
F1和F2频率在各个台之间是不同的,以使中央调度台能识别它们。
③调度室与固定台的持续联系
只要中央调度台在地面与列车无线信道上发送1 960Hz的频率信号,固定台的无线设备就一直在工作(保持双向联系)。最终由调度员决定何时把已建立的联系中断。有关运输调度员操作台如图2—7—19所示。
有关调度分机(沿线固定台)控制台示于图2—7—20。
④试验检测装置〖TPTIET2719,+87mm。100mm,BP,DY#〗图2—7—19 运输调度员操作台简图 位于备用光学控制板上的按钮可使调度员(或助理调度员、操作者)检验固定台、中央调度台的地面和列车上的无线设备,并检测铁路沿线通信设备的工作是否正常。
检验过程如下:
a.调度员按下所需要的固定台检验按钮;
b.用6条有线成对电路发送试验的威斯坦联合码;
c.固定台通过发送以下信号进行回答:
在接收线对上,发送2 280Hz的频率信号;
在6条有线电路的信号线对上,发送F1和F2特定频率信号。(2)TGV大西洋线的无线通信系统
与TGV东南线一样,TGV大西洋线的无线系统也采用400MHz(450/470MHz)系列,有以下一些区别:
a.与东南高速线相比较,由于强化了计算机的应用,使容纳供操作(调度)人员操作的设备空间可以更小。
b.调度室已重新设计,加设了多个视频显示器,当数据经由传输系统(从地面向列车)发送时,各车载移动装置是由它们在显示屏上的号码来识别的。c.调度中心与司机间的通信,地面至列车的无线系统均增加了数据传输功能设计,以便在同一个数据载波设备上,灵活使用压扩时分多路复用方式,可同时发送数据和话音。d.扩大了数据传输的应用范围,数传设备也具备了适应多种业务应用的需求,从列车准备工作的遥控、存储和远程写入,到传递监视主要列车部件的实时系统。e.增加了旅客电话新设备。
f.保留了线路修建时的施工无线通信系统;新设大西洋线15km隧道LCX(漏泄同轴)和宽带中继器等。
①地面至列车的无线通信
〖TPTIET2720,+62mm。97mm,BP,DY#〗图2—7—20 调度分机控制台简图 TGV大西洋线地面与列车的无线通信网示于图2—7—21。
〖TPTIET2721,+64mm。70mm,BP#〗图2—7—21 地面与列车无线通信(含数据传输)系统示意图此外,新建大西洋线施工现场装有无线通信链路,它是一个在高处装设的中继系统,在线路主要部分竣工后,现场继续保留该无线系统,用它作为备用和维修手段。
TGV大西洋的移动台通过快速有效的网络,联结到车载计算机系统,路旁电台与本区域内的TGV列车相互联系,并与车上移动无线台对话;联结地面各无线电台和职能中心(车站、车间等)为多点结构,用专用通信接口实现用户之间的对话。有关通信接口示于图2—7—22。
〖TPTIET2722,+44mm。69mm,BP#〗图2—7—22 通信接口示意图由图可见,主要通信接口有: a.司机用的通信接口;
b.列车乘务员用的通信接口; c.供运营和维修人员用的通信接口;
d.旅客通信接口:这个接口是独特的,它主要由设在每个车辆上(在车辆的联结走廊中,外面两个和里面一个)的列车到达指示器所组成,其液晶显示器可示出:列车的车次号和列车名称、车辆的编号、终到站、中途停站名等;
列车乘务员也可用联结走廊的显示器传送100个字符以内的任何类型的信息。
此外,还有告警信号也通过此接口,如果旅客在列车编组任何地方告警,司机室内就有告警音响,并在司机控制台显示车辆号码;也给整个列车触发一种音响信号,以通知列车员,并在每节车辆的设备上显示出告警车辆的编号。安装在车辆设备架中的电子盒能被激活(activated),以取代列车广播系统。
②旅客无线通信
在TGV大西洋线,旅客可以经过名为Radiocom2000的公用蜂窝式无线网,与公用电话网上的24对用户通电话,这是法铁充分利用国家既有通信资源,使铁路无线专用网与国家无线公用网相兼容所取得的成果。
③强化了原TGV东南线的无线通话功能
在TGV东南线,无论何时设在信号箱内或车站上的固定无线通信站、列车无线台及手提式无线通信设备之间,利用基地无线通信站的转播功能均可以通话;TGV大西洋线除保留此功能外,在设备小型化、轻量化以及功能方面都有加强和改善。7.4.4 车载通信网
TGV高速列车上有一个完善的内部通信网,列车上的所有计算机和数字处理器,都经由它收集和交换数据。车载大约39个处理机的数据流,则以同步方式有序地传送。该车载内部通信网具有以下特点:
(1)精确的定时控制
由统一的计算机来负责处理数据内部交换的定时控制,并且以数据包的形式有序地送至网内的各装置。(2)环形结构
为了防止网路上设备发生故障,或传递信息的链路出现中断或短路,以确保网络的可靠性而采用了环形结构,一旦出现故障,此种环形结构可重新组合成有双向收、发的总线;这和法国TGV高速铁路沿线电缆系统配置所采用的结构一致。
(3)网络具有可扩充性
TGV大西洋列车组单个或成对编组运用。当两个列车组挂接在一起时,它可以打开每个列车组上两个独立的网路,并把它们联结在一起,以构成单一的车载网路。(4)采用了HDB3传输码型
为防止铁路环境的电磁干扰和振动影响,TGV大西洋采用了高密度双极性3码型。理论分析表明,该码型是一种窄频谱线码,能量相对比较集中,定时提取也十分方便,具有较好的抗干扰性能。(5)采用大规模集成电路
为保障设备重量轻、体积小和耗电省,采用了大规模集成电路,选用的是HCMOS(高密度互补金属氧化物半导体器件)军用逻辑门阵列电路的集成电路。(6)按HDLC帧结构同步方式发送信息
高级数据链路控制规程HDLC(High Data Link Control)是ISO的标准。分组交换网所使用的X.25规程,仅仅是HDLC中的一个子集(LAMP—B),两者的重要区别之一是:X.25规程中的地址字段为2bit,而HDLC的地址字段可以扩展,对无线组网时要求地址较多的车载通信网十分方便。有关信息格式如表2—7—5所示。
由表可见,法国铁路利用HDLC规程,但又不完全一致,而是根据其实际需要来灵活使用。表2—7—5 每个信息组构成HDLC的帧结构
〖BHDFG3,WK7,K7。3,K8。3W〗消息开始收信人消息形式发送器地址信 息误码检验消息终止8bit8bit8bit8bit最大120字16bit8bit7.5 高、中速信号设备兼容技术 铁路信号系统的结构与配置取决于运输组织。就高速铁路来讲,有3种运输组织模式:一是普通列车与高速列车在高速线上混跑,这是意大利和德国高速线的情况。二是将高速旅客动车组延伸到普通线路上去,这是法国的模式。三是高速线上只跑停站不同的高速列车,运输组织与其他线路完全分开,这就是日本新干线高速铁路的模式。
TGV列车在普通线路上运行,速度只能按既有线具体情况考虑,通常为160~220km/h。以TGV东南线为例,全长417km,但包括延伸到普通线路的TGV列车通达里程达到2 560km;大西洋线全长280km,而包括延伸的高速列车通达里程达到2 380km;这种运输组织模式对缩短旅行时间和吸引客流具有明显的好处。
在考察了世界各国高速铁路的运营情况之后可以发现,几乎大部分高速铁路均组织混跑,法国TGV高速线虽是客运专线,但TGV高速列车也延伸至普通线路运行;法国为韩国设计的高速线,也考虑了混跑的需求。(1)法国TGV高速线出入口信号设置
假定普通列车的最高允许速度不超过160km/h(中速),并且在区段内安装有自动闭塞传统制式的色灯信号,那么不大于160km/h速度的普通列车司机应按地面信号来驾驶运行。TGV线路列车的驾驶应按速差式机车信号来进行。在高速线路与常规线路相连之处要建立速差式机车信号与色灯信号系统之间的过渡区。在进入和驶出TGV高速线路的过渡区的前“过渡点”与后“过渡点”,要设置进入或驶出TGV线路的点式信息传输设备,以使能及时打开或关闭TGV机车信号。列车进入和驶出TGV高速线的速度控制及信号系统(含点式信号)的配置,分别示于图2—7—23和图2—7—24。
〖TPTIET2723,+30mm。68mm,BP#〗图2—7—23 列车进入TGV线路
Ar—进入TGV线路信息定点传输设备; v—速度,km/h;
LBA—色灯信号控制的最后一个闭塞分区;
EBA—使用机车信号的TGV线路的第一个闭塞分区; KS—传统信号系统的色灯信号机;
S—带有TGV字样的信号标记,或其他意义。(2)法国铁路为韩国汉城—釜山线设计的混跑信号配置方案
韩国这条高速线路是引进法国TGV高速线TVM430系统,为了适应韩国的特殊要求,特将TVM430做了适当的修改。
〖TPTIET2724,+42mm。70mm,BP#〗图2—7—24 列车驶出TGV线路(单位:km/h)FS—带有“TGV结束”字样的信号标记; DE—驶出TGV线路信号的定点传输装置; VL—允许以最高速度运行;
VA—提醒下一个色灯信号机是关闭显示,或者是其他意义。①考虑到韩国的牵引电力系统频率为60Hz,因此将上下行轨道电路的载频选择进行了调整:
轨道Ⅰ(下行线)2 040Hz 2 760Hz 2 040Hz 2 760Hz 轨道Ⅱ(上行线)2 400Hz 3 120Hz 2 400Hz 2 130Hz 27bit编码分配不变,仍然是: 6bit用于校验(核)码; 4bit用来传输16种坡度; 6bit用于64种距离的传输;
8bit用于256种可能的速度组合的传输; 3bit用于8种可能的操作方式等。
②根据韩国既有信号的具体情况,对TVM的信息做了必要的调整,以便与现存信号相适应。有关现存信号与TVM信息间的对比,示于表2—7—6。
③进入高速线和离开高速线的过渡区示意图如图2—7—25和图2—7—26所示。
在图2—7—25中,在LGV相对于TGV高速的普通列车进入方向,TVM430必须递送大量供路旁信号使用的ATC系统与既有线关联的命令。
在图2—7—26中,在LGV离开方向,接存既有线路侧的有关信号指示(或许通过自动停车系统传递),以便TVM系统利用。
在上述两种情况下,其目标是从一种类型的信号过渡到另一种类型,应保证信号相互间的连续性。
表2—7—6 韩国既有信号与TVM信息的对比图〖BHDFG16/7,WK16,K10,SK16,K10W〗既有信号TVM信息既有信号TVM信息〖BHDG16/7,WK5,K11,K5。2,SK5,K11,K5。2W〗信号方式自动停车速度控制VcTVM信号方式自动停车速度控制VcTVM〖BHDG32,WK26,SK26W〗〖BHDG152,WK5,K11,K5G(绿)150km/h300V270V270A230A230E170A170E130A110A100A90A80A170 170 170 170 170 170YG(黄绿)105km/h130E 110A 110E 100A 100A 90A 90A 80A 80A 60A(1)60A。
2
W
〗 60A 30A(1)130130110130110130110130110170130110170〖BHDG64,WK5,K11,K5。2W〗YG(黄绿)105km/h30A 30A 0(1)
0 0130110170130110T(黄)65km/h90A 90E 80A 80A 80E 60A 60A 60A 30A 30A 30A 0 0 0100901009080100908010090801009080YY(黄黄)25km/h60E 30A 30E 0 06060306030R(红)0km/hR0 注:表中有(1)的信息,是通过信号的YG方式进行预告,来对司机告警。
〖TPTIET2725,+60mm。70mm,BP#〗图2—7—25 进入高速线(单位:km/h)〖TPTIET2726,+60mm。70mm,BP#〗图2—7—26 离开高速线(单位:km/h)7.6 法国TGV高速铁路在通信信号方面的特点 法国TGV高速铁路在通信信号等方面的特点有:
(1)法国采用“人控优先”的控制原则。列车正常运行由司机驾驶,只有在司机失误并可能出现危险的情况下列控设备才强迫列车制动。法国铁路认为这种人机关系有利于发挥司机的技术能力,加强其责任感。日本新干线ATC系统采用“设备优先”的控制原则。列车减速一般由设备完成,当列车速度减到30km/h以下需要在车站停车时,才需要由司机操纵以保证列车停在正确位置。
列控设备制动后,当列车速度低于目标速度后只给出允许缓解的表示,由司机进行缓解操作。日本新干线ATC当列车速度低于目标速度后自动缓解,这种方式要求列车制动系统连续多次制动后制动力不衰竭。
(2)为确保高速列车的运行安全,以“人控优先”为原则,广泛采用了冗余(多重)技术,发送设备双套,而接收设备也是双套,但采取双套接收系统比较后相互一致才输出。在技术实施上是将一路输出传送至二路输入,进行比较后再输出。
(3)轨道电路内传送的ATC信息,经信源编码和调制后,在发送侧经富氏变换处理后,再进行发送;在接收侧,车载接收系统采用快速富氏变换进行接收,即采用了频谱识别技术,来确认不同的信息。(4)法国高速铁路站间距长,每隔25~30km设置了区间渡线。法国列控系统具有完善的区间渡线安全防护功能,在特殊情况下允许列车像单线自动闭塞那样组织反向行车。
(5)法铁十分注重工程实际需求,他们认为:工程与科研密切相关,但又有所区别,满足工程设计和使用方便是首要的问题。因此,他们的综合调度中心无论在房屋建筑空间方面,还是在设备配置上均没有日本铁路那么“富丽壮观”。
(6)重视既有系统的充分利用,也是法铁的独特之处。以TGV高速线无线系统来说,法国采用450~470MHz系统,并采用多种措施,使铁路无线与法国国家公用无线网相兼容,实现了旅客与公用电话用户直接进行通话。
第四篇:信号联锁( 电务段用 联锁试验规程)
联锁试验规程
1.目的:确保信号设备联锁关系正确,设备正常运用。2.作业规程
2.1 天窗点前试验人员应熟悉设备位置、工作内容及联锁试验范围,联锁试验负责人应备齐联锁图表(编组站、场信号显示关系图;机车信号显示低频频率对照表)和试验表格。
2.2 天窗点前联系登记。
2.3 给点后,联锁试验负责人通知室内外人员。2.4 室外设备联锁试验
按电信维表 6-2 信号联锁电路检查表㈡进行试验(表格内检查项目用代号填写。√表示正确,×表示错误,△表示无此条件),联锁试验负责人负责记录。
2.4.1 道岔试验:区段锁闭道岔不能搬动,轨道区段占用时道岔不能搬动,折断器断开道岔不能搬动及道岔2mm和4mm试验等。
2.4.2 轨道电路试验:根据日常设备使用情况,观察并记录。2.4.3 信号机试验:逐灯位进行转换报警试验。
2.5 当室外设备检查试验完毕后,依照联锁图表进路进行试验,按电信维表 6-2 信号联锁电路检查表㈠(驼峰按电联检表-1驼峰信号联锁关系试验检查表)逐项检查试验,控制台联锁试验人员负责记录。
2.6 电信维表 6-2 信号联锁电路检查表㈠试验内容
2.6.1 正常开放信号:根据日常设备使用情况,观察并记录。2.6.2 道岔位置不对不能开放信号:以每组道岔为单位,将道岔放置相反位置,拉出单锁按钮单锁后,进路不能选出;按下单锁按钮后,应使该道岔选到规定位置,信号正常开放。
2.6.3 道岔无表示关闭信号:以每组道岔为单位,逐一选排经该道岔定、反位的进路,断开道岔表示,信号自动关闭。
2.6.4 区段占用不能开放信号:试验占用区段后办理进路,此时进路应不能锁闭;开放信号后占用区段,此时信号应自动关闭。试验时,必须对进路内各区段逐个进行试验。
2.6.5 超限区段条件:当侵限区段为无条件侵限时,侵限区段占用,需检查侵限区段的进路能选路不能锁闭,信号不能开放。当侵限区段为条件侵限时,侵限区段内道岔开通平行进路位置,侵限区段占用应不影响进路的选路、锁闭、开放信号,反之道岔开通相反位置时,应检查侵限区段的空闲。信号开放后,占用侵限区段,信号应关闭。但侵限区段占用,不影响引导信号的开放。
2.6.6 带动道岔:办理某条进路时,按进路表规定的所有带动道岔应被带到规定位置;被带动的道岔失去表示时,已开放的信号不应关闭。
2.6.7防护道岔:办理某条进路时,按进路表规定的所有防护道岔应被带到规定位置,并被锁闭在该位置;因故防护道岔不能被带到规定位置时(试验时可将该道岔单锁于不符要求的位置),该进路应不能锁闭;信号开放后,如防护道岔失去表示,该信号应自动关闭。
2.6.8 信号开放后锁闭道岔:进路锁闭信号开放后,单操该进路上所有锁闭的道岔,道岔应不能转换,也不能断表示 ;对于双动道岔平行进路要分别进行,以确定1SJ、2SJ是否作用正确。(包括进路上的所有道岔、不在进路上但与进路上的某组道岔在同一区段的其他道岔、防护道岔等)。
2.6.9 敌对信号:按联锁图表中敌对信号逐一试验,敌对信号不能开放。
2.6.10 敌对照查:对应每一股道办理列车对列车、列车对调车、列车对引导、调车对引导、引导对引导(特殊进路按联锁图表进行),进路不能同时建立。
2.6.11 随时关闭信号:信号开放后,对进路中各区段逐个进行区段故障解锁,应能随时关闭信号。
2.6.12 取消进路解锁:办理进路并锁闭,但信号未开放,或信号已开放但接近区段未占用时,同时按压进路始端按钮和总取消按钮,有关的列车或调车进路应能立即解锁。
2.6.13 接近锁闭:信号开放后,如接近区段被占用即构成接近锁闭;一般情况下,进站(接车进路)接近区段为信号机外方第一区段(自闭四显示为进站外方第一、二两个区段);出站(发车进路)接近区段为股道(设有中间出岔的股道含多个区段),当办理通过进路时,正线出站(发车进路)接近区段延长至进站口(自闭四显示延长至进站外方第一区段);调车进路的接近区段为信号机外方的第一区段;未设接近区段的调车进路一旦开放信号,不论信号机外方有否车列占用,均按接近锁闭处理。检查方法:办理某条进路后,在其接近区段人工短路构成接近锁闭,此时采用取消进路的方式,信号应关闭,进路不能解锁;未设接近区段的调车进路,在信号开放后采用取消进路的方式,信号应关闭,进路不能解锁。
2.6.14 人工限时解锁:进路接近锁闭时,按压进路始端按钮和总人工解锁按钮(破封),办理进路人工解锁,进路能够按照规定时间延时解锁,列车接车进路及正线发车进路的延时解锁,从信号关闭时起延时3分钟;调车进路及侧线发车进路的延时解锁,从信号关闭时起延时30秒。
2.6.15 区段人工解锁:进路锁闭后,按压区段按钮和总人工解锁按钮(破封)(计算机联锁按压区段故障按钮和区段按钮),用故障解锁的方法逐区段进行解锁,各区段应能解锁。
2.6.16 防止重复开放信号:信号开放后,断开信号点灯保险,信号应关闭,保险恢复后不经人工操作,信号不能自动重复开放。
2.6.17 进路正常解锁:模拟列车(分单机和长列车两种情况)运行,在车列出清后,进路内区段从始端至终端依次分段顺序解锁。
2.6.18 调车中途返回解锁:中途返回解锁是指原牵出进路的部分或全部未解锁,当车列经折返信号返回并出清原牵出进路和接近区段,牵出进路的各区段应延时3秒后解锁;所有可作折返调车信号的信号点均应具有调车中途返回解锁功能。
试验时,模拟车列运行,根据每个可作为折返信号的信号点,分两种情况试验:
(1)整条牵出进路未解锁时:一是按中途返回解锁电路工作应能进行解锁;二是原牵出进路存车,车列退出接近区段时不应解锁(人工模拟调车占用接近区段和牵出进路后,去掉接近区段的占用条件);三是退出牵出进路,接近区段仍占用,牵出进路不应解锁(人工模拟调车占用接近区段和牵出进路后,去掉牵出进路占用条件);四是车列刚好全部进入牵出进路,出清接近区段时,即使出现瞬间分路不良也不应使牵出进路解锁(人工模拟调车占用接近区段和牵出进路后,先去掉接近区段占用条件,后去掉牵出进路占用条件)。
(2)部分牵出进路未解锁时:一是按中途返回解锁电路工作应能进行解锁;二是牵出进路部分未解锁的区段存车,车列退出该区段时不应解锁(人工模拟调车占用折返信号机外方的区段,并办理折返进路,模拟车列进入折返进路,保留原牵出进路区段的占用条件,再去掉折返进路的占用条件)。三是折返进路未占用,即使原牵出进路区段失去分路,该区段应不能解锁(人工模拟调车占用至牵出进路的区段后,未办理折返进路或办理折返进路但未占用时,去掉牵出进路的区段占用条件)。
2.6.19自动闭塞离去区段占用:三显示区段一离去、二离去及四显示区段一离去、二离去、三离去分别占用的情况下,核对模拟信号灯光显示是否正确。
2.6.20 半自动闭塞:办理闭塞开放出站信号及取消闭塞试验。(1)接、发车站正常办理及各种表示灯显示,按设计技术要求进行试验。
(2)未办妥半自动闭塞,办理发车进路时,进路能锁闭但信号不应开放。
(3)发车站半自动闭塞区段轨道电路故障,闭塞不能办理。(4)发车信号开放后,发车站轨道电路故障,发车信号应立即关闭,接车站接车表示灯和发车站发车表示灯亮红灯;故障恢复时,闭塞应不能自动复原,需由发车站经人工办理事故复原。
(5)发车站列车出发后,接车站半自动闭塞轨道电路故障,闭塞应不能自动复原,需由接车站办理事故复原。
(6)引导接车时,需由接车站采用事故复原方法办理复原。(7)发车站办理取消时应先取消发车进路再办理取消闭塞手续。(8)办理闭塞并在列车出发后,接车站在列车未到达时不得办理闭塞复原。
(9)办理闭塞后,如未办理发车进路,发车站可利用发车轨道电路进行调车。
2.6.21引导信号:进站、进路信号机对应相应股道引导信号能正常开放,引导信号内方第一区段红光带引导信号不能自闭。按压引导总锁闭按钮后,全咽喉联锁道岔均应锁闭,拉出引导总锁闭按钮后道岔应全部解锁。开放引导信号有引导进路锁闭和引导总锁闭两种方式。按引导进路锁闭方式开放信号(先将进路上所有道岔操纵到规定位置,再按压引导信号按钮)和解锁(同时按压进路始端按钮和总人工解锁按钮);接车进路上的道岔(包括中岔)无表示或位置不符,进路锁闭式引导信号应不能开放;采用引导总锁闭方式开放引导信号(先按下引导总锁闭按钮,再按压引导信号按钮),使本咽喉道岔处于锁闭状态,列车全部进入股道后拉出引导总锁闭按钮使道岔解锁;某轨道区段故障,办理了进路锁闭式引导信号后,如轨道电路故障恢复,应立即使该区段转为进路锁闭状态(用单操该区段的道岔能否转换来检验);进路锁闭式或引导总锁闭引导信号开放、列车压上进站内方第一轨道区段时,引导信号应自动关闭;进站内方第一轨道区段故障,开放引导信号时,应长按压引导信号按钮至列车占用该轨道区段时止;进站信号机红灯灭灯,引导信号应不能开放。
2.6.22机务段同意:由集中区向机务段入库排列调车进路时,须得到机务段同意,调车信号才能开放。一旦机务段按压同意按钮(JTA)后,除机车进入自动取消同意外,机务段无权人工取消同意,此时信号楼控制台的机务段同意表示灯应点亮白色灯。试验方法:机务段未按压同意按钮,检查进入机务段的有关调车信号是否能开放;开通机务段的调车信号开放且机车未进入时,检查机务段是否有权取消同意。
2.6.23非进路调车:在集中楼控制台上设有非进路调车按钮(二位非自复式),非进路调车表示灯(白灯)在办理非进路调车时,应先确认调车进路处于空闲状态,并且未排列其他进路后,按下非进路调车按钮,非进路调车表示灯闪白灯,进路上有关道岔转换到规定位置并锁闭、非进路调车进路上的有关信号机均开放,非进路调车表示灯亮稳定白灯(办理非进路调车时有的车站点亮白光带,有的车站点不亮白光带,但有车占用时均点亮红光带,以便于值班员监督)。调车作业完毕,确认进路上无车占用时,拉出非进路调车按钮,非进路调车表示灯闪白灯,但进路不立即解锁,等30秒后非进路调车进路自动解锁。
2.6.24 局部控制:集中楼需要将局部控制道岔交由现地操纵时,按下局部控制按钮,使局部控制道岔及有关道岔自动转换至规定位置,局部控制表示灯闪红灯。现场按下接受局部控制按钮,集中楼局部控制表示灯变为稳定红灯,至此交给现地操纵的局部控制道岔即可由现场操纵,集中楼失去控制权。在局部控制道岔时,道岔不受区段锁闭的控制,即区段有车占用时,只要不压尖轨就允许扳动道岔。需要恢复集中操纵时,现场将按钮恢复定位,集中楼局部控制表示灯又闪红灯,表示现场已同意恢复道岔的集中控制,集中楼可将局部控制按钮拉出。
2.6.25到发线出岔:中间道岔不在规定位置,进路不能锁闭,有关进站、出站信号不能开放。进行有关中间道岔的解锁和带动试验。
2.6.26进路表示器核对:显示应与进路开通方向相一致,结合信号机显示核对进行。有多个方向的出站信号机,如每个方向均设有表示器,主体信号开放可不检查表示器DJ的前接点;如主要方向未设表示器时,在开放次要方向的主体信号时,必须检查该方向表示器DJ的前接点;进路表示器与主体信号的联锁关系按设计要求进行试验。
2.6.27道口通知:道口设备使用站内联锁条件时,应对其接近报警及到达复原时机进行校核,观察继电器状态是否正确。
2.6.28 道口遮断关闭信号:站内道口及邻近站内道口利用进、出站信号机代替遮断信号机时,道口使用遮断应关闭有关列车信号或该信号不能开放。
2.6.29 6‰坡道:接车进路的建立应检查延续进路的空闲和锁闭,列车头部进入股道3分钟后延续进路自动解锁,整列到达股道后,按压特设按钮代替限时解锁,能够取消延续进路。(注:接车进路未解锁前,延续进路不能解锁)
2.6.30 改变运行方向电路:正常办理改变运行方向电路,能正常改变方向,表示灯显示正确。辅助办理改变运行方向电路,按规定步骤操作能改变方向,表示灯显示正确。
2.6.31 排列长调车进路:电气集中满足进路逐段锁闭,信号由远至近开放;(短调车进路指从始端的防护调车信号机开始,到下一架阻拦信号机为止的一个单元调车进路。长调车进路是由两个以上的单元调车进路组成的调车进路)
2.6.32驼峰编尾电路:编发线上的出站信号机,应在溜放进路有关分路道岔被锁在开向其它线路条件下方能开放,出站信号机开放后,应再次锁闭有关分路道岔。出站信号机关闭,列车出清股道(或发车进路第一区段解锁)后,应恢复驼峰楼对该分路道岔的控制。
2.6.33信号非正常关闭报警:非列车正常越过信号机或取消进路而列车信号机因故关闭时,应发出报警。
2.7 电联检表-1驼峰信号联锁关系试验检查表试验内容 2.7.1开放信号:以联锁图表为依据,根据进路号码排列进路,检查进路是否锁闭,信号是否能够正常开放。2.7.2 敌对信号:按联锁图表中敌对信号逐一试验,敌对信号不能开放。
2.7.3 敌对照查:向驼峰推送的车列占用的股道与另一端向该股道的接车或调车进路不能同时开放。
2.7.4 锁闭道岔:办理进路开放信号后,逐组单独操纵与该进路有关的道岔(包括进路上的所有道岔、不在进路上但与该进路上某组道岔同一个区段的其他道岔、防护道岔等),这些道岔应处于锁闭状态。
2.7.5 断道岔表示:以每组道岔为单位,逐一选排经该道岔定、反位的进路,在组合架侧面断表示保险进行关闭信号试验。
2.7.6 分流轨道电路: 信号开放后,占用进路内的区段,立即关闭信号。
2.7.7 分流超限绝缘:当侵限区段为无条件侵限时,侵限区段占用,需检查侵限区段的进路能选路不能锁闭,信号不能开放。当侵限区段为条件侵限时,侵限区段内道岔开通平行进路位置,侵限区段占用应不影响进路的选路、锁闭、开放信号,反之道岔开通相反位置时,应检查侵限区段的空闲。信号开放后,占用侵限区段,信号应关闭。
2.7.8 带动道岔:办理进路时,按进路表规定的所有带动道岔应被带到规定位置;被带动的道岔失去表示时,已开放的信号不应关闭。
2.7.9 防护道岔:办理进路时,按进路表规定的所有防护道岔应被带到规定位置,并被锁闭在该位置;因故防护道岔不能被带到规定位置时(试验时可将该道岔单锁于不符要求的位置),该进路应不能锁闭;信号开放后,如防护道岔失去表示,该信号应自动关闭。
2.7.10 区段占用不能开放信号:以每一个区段为单位,占用该区段,办理经由该区段的进路,进路不能建立,信号不能开放。
2.7.11 区段占用道岔不能扳动:区段占用时该区段的道岔不能扳动。
2.7.12 随时关闭信号:按压切断信号按钮,驼峰主体信号应立即关闭;同时按压总取消(总人解)按钮和进路始端按钮,有关的调车信号立即关闭。
2.7.13 取消解锁:同时按压进路始端按钮和总取消按钮,有关的调车进路应能取消解锁。
2.7.14 正常解锁:模拟车列运行,在车列出清后,进路内区段从始端至终端依次分段顺序解锁。
2.7.15 人工解锁:接近区段占用时,按压进路始端按钮和总人工解锁按钮(破封),办理进路人工解锁,进路能够从信号关闭时起延时30秒后自动解锁。
2.7.16 中途返回解锁:模拟车列运行,在车列中途折返后所有区段都应正常解锁。
2.7.17 断丝检查:允许灯光灯丝双断应不能开放信号或自动关闭信号。
2.7.18 防止重复开放信号:信号开放后,断开信号点灯保险,信号应关闭,保险恢复后不经人工操作,信号不能自动重复开放。
2.7.19 信号显示正确:核对信号机显示正确。2.8 各种特殊零散电路,如电码化、站(场)间联系等电路试验,应按设计的技术条件和有关规程,逐项逐个条件进行试验。
第三节 施工联锁试验规程
1.目的:保证大修(新、扩建)、联锁变更等情况设备联锁发生变化后联锁关系正确,设备正常运用。
2.作业规程
2.1 开通前模拟联锁试验
在室内工程完工后,不接入室外设备,人为设定区间条件,作好模拟信号点灯电路和模拟道岔电路,并设置能模拟列车运行的轨道电路模拟盘,在此基础上进行全面的室内电路联锁试验。(模拟试验前应先做好图物核对工作)2.1.1 模拟试验前准备工作
2.1.1.1 电源屏电源对地绝缘测试、互混测试,若不良,视试验无效。
2.1.1.2 零层电源(包括各种条件电源)互混测试、电压值和电源性质测试。
2.1.1.3 断开零层各电源保险,确认相关继电器状态。2.1.1.4 模拟室外条件试验:确定模拟条件与控制台、组合架、分线盘一致性试验。
⑴在控制台将道岔全部操纵到定位(反位),核对道岔组合2DQJ与DBJ、FBJ的状态,逐个断开组合架侧面表示保险,相应道岔表示灯(光带)应熄灭。⑵逐个断开组合架侧面信号点灯保险,则该信号机的复示器闪光。
⑶在轨道电路模拟盘上,逐个断开区段占用开关,对应区段的轨道继电器应落下,控制台相应区段亮红光带。
⑷区间条件已设定好,任一股道能开放出发信号。
3.具体试验项目,与联锁试验作业规程相同的内容这里就不再重复,对没有讲解的部分进行补充。
3.1.3车站计算机联锁试验内容
3.1.3.1 电务段带齐相关图纸及联锁试验表格到研制生产单位进行全面仿真联锁试验。
3.1.3.2 根据《计算机联锁技术条件》及《电气集中联锁试验技术条件》的要求,按照信号平面图、信号显示图、联锁表,结合室内继电设备(包括各种结合电路),在现场采用模拟盘进行全面联锁试验。
3.1.3.3 对双机热备、2×2 取2结构的计算机联锁系统应对双套机柜分别进行联锁试验。
3.1.3.4 以上试验必须在备机同步的情况下进行。3.1.3.5 进行同步故障倒机及人工切换等项试验。
3.1.3.6 开通时联锁试验:除按联锁进路表试验外,重点核对室外设备与室内继电器和表示设备三者一致,包括信号机、轨道电路、转辙机。
3.1.3.7 电源屏各种电源对地绝缘及逻辑地线不符合标准,联锁试验无效。
3.1.3.8 已开通计算机联锁车站站场局部改造联锁试验内容 ⑴ 电务段带齐相关图纸及联锁试验表格到研制生产单位进行全面仿真联锁试验。
⑵ 联锁设备开通前,应在双套设备同步的情况下对双套机柜分别进行联锁试验。
⑶ 进行同步故障倒机及人工切换等项试验。
⑷ 开通时联锁试验内容同 2.1.3.6或由研制单位书面提供试验内容、范围。
3.1.3.9 已开通计算机联锁车站联锁软件版本升级,联锁试验内容同3.1.3.8。
3.1.3.10 已开通计算机联锁车站联锁软件局部修改试验内容同3.1.3.8。
3.1.3.11 已开通计算机联锁车站控显机软件局部修改试验内容如下:
⑴ 电务段带齐相关图纸及联锁试验表格到研制单位进行全面仿真联锁试验。
⑵联锁设备开通前,应按照研制单位书面提供的试验范围进行试验。
3.1.3.12 已开通计算机联锁车站硬件局部修改,应按照研制单位书面提供的试验范围进行试验。
3.1.3.13 对不影响联锁的软件、硬件修改,试验内容应按照研制生产单位书面提供的试验范围进行试验。
3.1.4 各种特殊零散电路,如电码化、站(场)间联系等电路试验,应按设计的技术条件和有关规程,逐项逐个条件进行试验。对自动化、半自动化驼峰设备的联锁管理比照车站计算机联锁的有关规定执行。
3.1.5 模拟联锁试验除上述内容以外,还应重点检查试验以下项目:
3.1.5.1 电源影响试验:
⑴ 排好最大限度的平行进路,进行主、副电源的人工和自动切换,不应影响已开放的信号(铁磁式25HZ电源屏除外),进路不应解锁。进行电源屏手动、自动调压时,不应影响开放的信号。
⑵ 轨道电源、控制电源分别断电恢复后,已开放的信号关闭,但进路不能解锁。
⑶ 表示灯电源断电恢复后,不影响原已开放的信号,进路亦不会解锁,控制台表示灯应恢复断电前状态。
⑷ 整个电源系统瞬间断电(>0.15 秒)恢复后,已开放的信号关闭,但进路均不应解锁。
⑸ 在排列最多进路的情况下,所有信号灯泡断丝,报警设备均在报警状态,控制电源和闪光电源频率均应正常。
3.1.5.2 错误办理试验:
⑴ 以同向的并置信号点和反向的单置信号点为终端的调车进路不能选排。⑵ 选排进路时,在终端和始端分别按压不同性质的按钮(列、调),进路应不能排出(但以股道为终端的列、调车进路除外)。
⑶ 按压通过按钮、股道列车按钮或按压两端的列车按钮,(通过)进路均不应选排。
⑷ 基本进路不能选出时,不能自动改选变通进路,在基本进路与变通进路无重叠关系的基本进路段上将轨道电路占用,按选基本进路方式按压按钮,观察变通进路能否选出。
⑸ 其它错误办理情况进路不能排出。3.1.5.3 表示报警电路试验:
⑴ 主付电源倒接报警试验:Ⅰ、Ⅱ路电源倒换时,控制台电铃鸣响,主、付表示灯转换正常。
⑵ 灯丝、熔丝报警试验:任一列车信号机主丝和零层熔丝断丝,控制台应报警。
⑶ 挤岔报警试验:道岔断开表示13秒后发出报警。⑷ 各种冗余设备转换报警正常。4.2 开通时联锁试验
4.2.1 由段技术科提出停电转线施工方案,绘制设备大修停电转线人员组织示意图,制定施工安全技术组织措施,明确联锁试验方案,报上级部门审批。
4.2.2 点前室内、外施工人员应按施工方案熟悉设备位置、工作内容及联锁试验范围,控制台联锁试验人员备齐联锁图表(编组站、场信号显示关系图;机车信号显示低频频率对照表)和试验表格。4.2.3 根据施工方案或电报进行登记要点。
2.2.4 给点后,室内机械室施工配合人断开老设备一、二路电源闸刀,断开室内新设备道岔启动、表示保险(扩建开通断开既有室内设备道岔启动、表示保险),然后联锁负责人通知室外施工人员。
4.2.5 室外在接到给点通知后,开始施工。
4.2.6 室外设备具备试验条件后,首先进行单项联锁试验。4.2.7 由各道岔施工组长请求施工负责人,通知室内接通相关启动、表示保险,室内外配合进行扳动道岔试验,转动良好后,按通用和施工专用表格项目试验,联锁试验负责人负责记录。
4.2.8 道岔试验
4.2.8.1逐台核对道岔位置:室外道岔开通位置,其道岔开通方向与室内继电器 DBJ、FBJ、2DQJ位置一致,与控制台表示灯、光带显示一致。
4.2.8.2 断定反位表示接点、移位接触器接点,室内继电器 DBJ、FBJ落下,控制台定反位表示灯灭灯。
4.2.8..3 断开定反位启动熔丝及启动、安全接点,扳动试验道岔不能启动。
4.2.8.4 道岔2mm、4mm扳动试验。
4.2.8.5 道岔区段占用(使用轨道电路分路残压线进行)扳动道岔不能转动。
4.2.8.6 道岔自闭电路试验:道岔启动后道岔区段占用(使用轨道电路残压分路线进行),道岔应能转换到位。4.2.8.7 道岔被阻后转换试验:道岔加入4mm铁板道岔转换不到位后,能操纵转换到另一位置(自动溜放状态下驼峰道岔遇阻应能自动返回、提速道岔30秒后停转)。
(以下为分动外锁闭道岔特有项目)4.2.8.8 断相保护:当三相电源缺一相时,为保护三相电机应自动切断动作电路;应对每个牵引点的每一相电源进行试验;试验时,逐相断开各个牵引点的每一相电源(可拔掉该相的动作熔丝),转辙机应不能动作;在动作过程中断开某相电源,转辙机应自动停止转动。
4.2.8.9 多机牵引总保护:多机牵引的道岔,某个牵引点的转辙机因故不能正常转换时,应切断其他牵引点的转辙机动作电路;在正常转换过程中,某牵引点因故停止工作时,应保证其他牵引点转辙机继续工作。试验时,对应每个牵引点,将道岔动作电路断开,操纵该组道岔,所有牵引点的转辙机均不应转换;在道岔正常转换过程中,断开某个牵引点的动作电路,其他牵引点的转辙机在规定时间内应正常转动。
4.2.8.10多机牵引总表示:多机牵引的道岔应校核每个牵引点的表示与道岔总表示一致;试验时,依次断开每个牵引点的表示(可拔表示熔丝),总表示继电器均应落下,控制台表示灯等均应灭灯。
4.2.9 轨道电路试验
4.2.9.1 核对占用表示:逐个区段占用轨道电路核对与相应室内轨道继电器、控制台光带显示占用一致。
4.2.9.2 一送多受区段:应在受电端分别进行分路核对试验。4.2.9.2 发码电路: 核对正、侧线发码信息是否正确,发码电流是否达标。
4.2.10 信号机试验
4.2.10.1 核对信号显示:逐一排列进路开放信号与现场人员核对信号显示及灯位。
4.2.10.2 断丝检查:逐灯位进行转换报警试验。装有灯丝转换装置的信号机,断开点灯状态的主丝,应能自动点亮副丝;信号机禁止灯光灭灯时控制台对应的信号复示器应闪光;设有断丝报警装置的信号机,点灯状态的主丝断开,控制台应给出声光报警;双黄、绿黄或双绿灯的二黄或二绿不能点亮时,对应的一黄或一绿灯应不能点亮;双黄、绿黄或双绿灯信号开放后,任意一个灯位灭灯时,对应的另一个灯位应随即关闭。可根据各种不同内容,拔掉室外信号机灯泡或断开室内信号机2DJ熔丝,分别检查是否符合要求。
4.2.10.3 红灯断丝不能开放信号:正线列车信号机,红灯断丝信号不能开放。
4.2.10.4 灯光转移:自动闭塞区段的进站信号机红灯断丝试验,红灯应能转移至前一架自动闭塞通过信号机。
4.2.11 信号联锁电路检查试验
4.2.11.1 信号正常开放试验:以联锁图表为依据,检查接发车进路及调车进路。
4.2.11.2 办理股道迎面敌对进路试验。
4.2.11.3 各种特殊零散电路,如站(场)间联系等电路试验,应按设计的技术条件和有关规程,逐项逐个条件进行试验。
第五篇:信号与测试技术实验安排(2014)
2014年信号与测试技术实验安排
实验内容:
实验1:基本信号分析,包括傅里叶变换及相关运算
实验2:传感器测量原理:
活塞压力计实验(必做),按静态标定方式进行3个循环测量并进行数据处理。温度传感器实验,电感式传感器实验,要求从中至少选择1个。
金属箔式应变计实验、光纤光电传感器实验、超声测距实验、电涡流传感器实验、霍尔传感器实验、电容式传感器实验,要求从中至少选择3个。
实验时间:10学时,其中实验一4学时,实验二6学时
实验形式:
实验1:每组不超过2个人
实验2:分组分别使用不同实验台进行实验,完成后,轮换至其他实验台实验,要求每组不超过2个人
各班级实验时间安排:
21班:第5、7、8、9、10周周一上午10:00-12:00
22班:第5、6、7、8、10周周五上午10:00-12:00
23班:第5、7、8、9、10周周一上午08:00-10:00
24班:第5、7、8、9、10周周五晚上18:30-20:30
25班:第4周周一上午08:00-10:00,周五上午10:00-12:00;第7、8、9周周三上午10:00-12:00 26班:第4周周一上午10:00-12:00,周二上午08:00-10:00;第7、8、9周周三下午14:00-16:00
27班:第5、6、7、8、10周周四上午08:00-10:00
28班:第5、6、7、8、9 周周二上午08:00-10:00
实验教师董韶鹏上课班级:21、23、27、28
实验教师张军香上课班级:22、24、25、26
学生实验课上网选择实验组步骤:
1、网址:211.71.14.172/zkzx2、登陆:登陆按钮在网页的右上角。初始用户名和密码均为学号,首次登陆后需更改密码,填写相关信息。密码修改后请牢记,后面上传实验报告,查看实验成绩都需要密码。
3、登陆后,单击主菜单的“选课系统”,可查看与自己相关的实验课程。
4、单击对应实验课程的操作里的“学生选课”,会列出实验课程的所有分组。每个学生会有一个默认的分组,如果实验时间不合适,可以自己调整(仅限第一个实验开始前调整),但需要首先退出原来的实验分组。
5、对应实验课程的操作里的“个人实验”用于上传实验报告,查看实验成绩。