第一篇:平行线的性质测试题(xiexiebang推荐)
《2.3平行线的性质》同步练习
一、选择题(共4小题,每小题3分,满分12分)
1.(3分)(2005•太原)如图,两条直线a、b被第三条直线c所截,如果a∥b,∠1=50°,那么∠2的度数
13.(3分)如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=120°,第二次拐的角∠
4题图5题图6题图7题图
4.(3分)(2004•宁波)如图,AB∥CD,CE平分∠ACD交AB于E,∠A=118°,则∠AEC等于度.
5.(3分)如图直线a与直线b平行,则|x﹣y|的值是.
6.(3分)(2006•金华)如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,如果∠1=50°,那么∠2的度数是 _________ 度.
7.(3分)(2004•西宁)如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有 个;若∠1=50°,则∠AHG= _________ 度.
8.(3分)如图所示,a∥b,c∥d,试探究∠1与∠2的关系,并说明理由.
9.(3分)如图,已知∠1=80°,∠2=80°,∠3=120°,求∠4与∠5的度数.
10.(3分)如图,∠BEF=70°,∠B=70°,∠DCE=140°,且CD∥AB.求∠CEF的度数.
11.(3分)已知:如图∠1=∠2,∠C=∠D,问∠A=∠F吗?试说明理由.12题图
12.(3分)如图所示,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD的度数为 _________ 度.
14.如图,按下面方法折纸,然后解答问题:若∠1=40°,你能求出∠2的度数吗?试着做一做.
15.如图:
(1)已知AB∥CD,EF∥MN,∠1=115°,求∠2和∠4的度数;
(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来;
(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.
16.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.
17.选做题:如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
18.(3分)下列图形中的两个角互为补角的是()
20.(3分)点P为直线l外一点,点
A,B,C在直线l上,若PA=4cm,PB=5cm,PC=6cm,则点P到直
26.(3分)(2005•常德)如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 _________ 度.
27.(3分)有这样一道题如图所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,试判断∠1与∠2的度数有怎样的关系,并说明理由.小丽的判断是∠1与∠2互余,这是正确的,但是她写的说明不完整,请你给予补充.
因为BE是∠ABC的平分线,所以∠2= _________ .又因为CE是∠BCD的平分线,所以∠1= 1+∠2=(+.
而AB∥CD,根据两直线平行,同旁内角互补,得 _________ + _________ = _________,所以∠1+∠2=90°,即∠1与∠2互余.
28.如图,∠MCN=45°,且AB∥CD,AC∥BD,BE上CN于点E,求∠DBE的度数.
29.如图,已知EF⊥BC,AD⊥BC,∠1=∠2,∠BAC=80°,求∠AMD的度数.
30.如图,已知∠1+∠2=180°,∠3=∠B,试猜想∠AED和∠C的关系,并证明你的结论.
第二篇:平行线的判定和性质测试题
平行线的判定和性质测试题
一、填空题:
1、如右图,直线a、b被直线l所截,a∥b,170,则2.l a
b
2、两条直线被第三条直线所截,总有()
A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对
3、如图1,下列说法正确的是()
A、若AB∥CD,则∠1=∠2B、若AD∥BC,则∠3=∠
4C、若∠1=∠2,则AB∥CDD、若∠1=∠2,则AD∥BC
(1)(2)(3)(4)
4、如图2,能使AB∥CD的条件是()
A、∠1=∠BB、∠3=∠AC、∠1+∠2+∠B=180°D、∠1=∠A5、如图3,AD∥BC,BD平分∠ABC,若∠A=100°,则∠DBC的度数等于()
A、100°B、85°C、40°D、50°
6、如图4所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()
A、40°B、50°C、60°D、不能确定
7、如图5所示,直线L1∥L2,L3⊥L4,有三个命题:①∠1+∠3=90°,②∠2+∠3=90°,③∠2=∠4.下列说法中,正确的是()
A、只有①正确B、只有②正确C、①和③正确D、①②③都正确D
C B F
(6)(5)
8、如图6,把矩形ABCD沿EF对折后使两部分重合,若150°,则AEF=()
A、110°B、115°C、120°D、130°
二、填空题:
1.默写两直线平行的条件:两直线平行的判定:
2.如图,由下列条件可判定哪两条直线平行,并说明根据.
(1)∠1=∠2,________________________.(2)∠A =∠3,________________________.(3)∠ABC+∠C=180°,________________________.
3.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.
4.在同一平面内,同垂直于一条直线的两条直线________.
5.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________. 6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
三、解答题
1、如图,AD∥BC,AC,说明AB∥DC.2、如图,已知DE∥BC,12,CDAB于点
C3、如图所示,已知AB∥CD,A110,C140,求P的度数.4、已知如图,AB//CD,试解决下列问题:(1)∠1+∠2=______;(2)∠1+∠2+∠3=_____;
(3)∠1+∠2+∠3+∠4=_____;
(4)试探究∠1+∠2+∠3+∠4+…+∠n=_____。
BB11E
21E2
F32
B
ED
12N
C
B
C
D
C
D
D8、根据题意结合图形填空:
已知:如图,DE∥BC,∠ADE=∠EFC,将说明∠1=∠2成立的理由填写完整.解:∵ DE∥BC()
∴∠ADE=______()∵∠ADE=∠EFC()∴______=
______
∴DB∥EF()B∴∠1=∠2()
9、如图,AB、CD被EF所截,MG平分∠BMN,NH平分∠DNM,已知∠GMN+ ∠HNM=90°,试问:AB∥CD吗?请说明理由。
D
E
F
C10、已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线 吗?若是,请说明理由。
11、如图所示,潜望镜的两个镜子是平行放置的,光线经过镜子反射后,有∠1=∠3,∠4=∠6,请你解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的?
第三篇:平行线性质
平行线性质
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
第四篇:平行线性质
《平行线的性质》教学设计
作者: 来源: 时间:2009-5-18 10:19:16 阅读47次 【大 中 小】
一、教学目标
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、教学过程
问题与情境
师生互动
设计意图
活动1 你身边的问题
问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起, 活动2: 探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3: 运用与推理
问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b.所以∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3, 类似地,对于性质3,你能说出道理吗? 想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4 巩固与提高
问题1:如图直线a,b被直线c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4为多少度。为什么?
2、如果∠1=60?∠3=120?直线a、b有什么关系?为什么? 问题2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3为多少度? 解:因为∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因为 ∠2 =60?()所以 ∠4=∠______=______()又因为 ∠4与∠3________()所以 ∠3=180?_____=______?BR> 问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因为∠1=∠ABC, 所以 AD∥_____()(2)因为 ∠3=∠5 所以 AB∥_____()(3)因为∠2=∠4 所以 ______∥______()(4)因为∠1=∠ADC 所以______∥______()(5)因为∠ABC ∠BCD=180 所以 _______∥______()问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100?为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、平行线的性质和判定的不同。
2、几何推理证明的要领。
3、正确分清推理中因为和所以所表达的意义
通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力
第五篇:平行线性质
孔子教育文化辅导学校
5.3平行线的性质
【知识点】
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
【典型例题】
1、如图,已知a∥b,c、d都是a、b的截线,∠1=80°,∠5=70°,∠
2、∠
3、∠4各是多少度?为什么? c
a
b12345d
(2)已知:AB∥EF,∠F=78°时,∠
3、∠4各等于多少度?为什么?
A
E12BCD34F3、如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行,第一次拐的角
∠B是142°,第二次拐的角∠C是多少度?为什么?
C4、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,你能算出
∠EAD、∠DAC、∠C的度数吗?
EB
AD
BC
5、如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B′有什么关系?为什么?
A
A′
BD C
C′B′
【模拟试题】
一、选择题
(1)两直线被第三条直线所截,则()
A、同位角相等B、内错角相等 C、同旁内角互补D、以上都不对
(2)如果一个角的两边分别平行于另一个角的两边,则这两个角()
(第1页,共4页)
A、相等B、互补C、相等或互补D、这两个角无数量关系(3)如图,下列判断不正确的是()A、∵∠1=∠2∴ ∠ 3= ∠ 4B、∵∠2=∠5 ∴ ∠ 6= ∠ 7
C、∵∠ 5+ ∠ 8=1800 ∴ ∠1=∠2D、∵∠ 3+ ∠ 4=1800 ∴ ∠1=∠2
4.如图a所示,AB∥CD,则与∠1相等的角(∠1除外)共有()
A.5个B.4个C.3个D.2个
AC
B
D
A
ACEDFB
D
(a)(b)(c)
5.如图b所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于()A.78°B.90°C.88°D.92°
6.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;
④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④
7.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交
8.如图c所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°9.如图d所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
D
EF
B
F
E
G
(d)(e)
10.如图e所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个
二、填空
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.C F 1 BB ED DF
B C A B D
图1 图2(第2页,共4页)图图
33.如图3所示
(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠= 180°,则AE∥BF. 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.
5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.
E C
l
1AF 2 B F G
l2D
F D C C A G
图7 图8 图6图
56.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.
三、解答下列各题
9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.A CF
D
图9 10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
E
B C
图10
11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)
BE
C D
12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.图 1
1求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.
B A
D C F
四、探索发现:
(第3页,共4页)
图1
2如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP
B
A
PC
D
B
AC
PBD
AC
P
BD
(1)(2)(3)(4)
五、中考题与竞赛题:
1.(2002.河南)如图a所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______.AC
E
B
A
D
E
BD
C
(a)(b)
2.(2002.哈尔滨)如图b所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE=________.(第4页,共4页)