第一篇:浅谈平面几何入门教学的几点体会(写写帮推荐)
浅谈平面几何入门教学的几点体会
固始县第二初级中学汤仕培
学生进入几何的学习,由过去学习代数,研究对象是数,转入研究对象以“形”为主了。对于数的理解、运算、变换,从小学一年级甚至学前时期就开始接触了,而进入平面几何学习,刚开始,学生画图、识图能力都很差,他们不能正确领会作图命题的意义,不会根据要求作出图形;在做证明题时,他们不会把题设和结论与图形特点对照结合起来思考,不会根据图形特征抽象出其性质,即缺乏借助几何直观的抽象思维。因此,有些学生在学习几何一开始就感到不适应,觉得图形错综复杂,变化无穷,学习难度大,甚至失去学习的信心。让学生了解学习几何有什么作用和意义,首先在日常生活和生产实际中有许多物体,它们有各种不同的形状,如教室的课桌面、黑板是长方形的,车轮是圆形的,起重机的支架是三角形等。而后根据实际的需要我们常常要研究物体的大小,如制定农田水利规划时,要测量两地间的距离,计算农田的面积;有的还要研究物体的相互位置关系,如建房要确定他们的位置,几何学就是研究物体的形状、大小和位置关系的学科。
要解决好平面几何入门教学可以从下列方面着手。
1.培养兴趣,激发学生学习几何的欲望。兴趣是最好的老师,平面几何是小学数学知识的延续,初中生初学几何,要引导学生复习、回忆小学学习过的几何图形,用以激发学生探究知识的欲望。可以结合教材的插图,讲述一点几何的起源和发展史,特别是我国古代数学家对几何所做的巨大贡献,由此激发学生的民族自豪感、爱国情和刻苦学好几何的自信心;发掘学生学习几何的积极性和主动性,激发学生学习几何的欲望。
2.使学生正确牢固地掌握概念。
(1)直观、形象地建立概念。启发学生给概念下定义,如角的概念。可先让学生观察教室里的各种各样的角,并由教师在黑板上画出,然后指出:尽管各个角的大小不同,位置各异,但它们都有一个共同的特征,即“两射线合一个公共端点”。这个特点尽量引导学生自己得出,并启发学生给角下定义,最后教师给出角的准确定义。
(2)揭示概念本质属性。要抓住概念的要点、关键及区别其他事物的本质特征,注意归纳,对易混概念加以对比、分析。如点到直线的距离是指由直线外一点向直线作垂线,这点到垂足间的垂线段的长度,教学时要突出“垂线段”的本质,学生容易与两点间距离搞混;又如角平分线是一条射线,而三角形内角平分线是一条线段,应让学生比较、区别。另外,如直角与互相垂直、直线与平角、射线与周角、垂线与高、对边与对应边、命题与定理等易混概念,都应指导学生理解清楚。
(3)举反例,帮助学生理解和巩固概念。如讲对顶角概念后问学生图中,∠1与∠2是否是对顶角,并说明理由。
3.要强化对概念、定理的记忆。
(1)理解记忆,结合图形记忆。概念、定理的记忆一定要在理解的基础上开始,又可结合图形形象地记。教师讲课的艺术性、形象性、趣味性都能创设引人入胜的情景,使学生情绪兴奋,理解力、记忆力得到最大程度的发挥。如学生会使用量角器,马上能用实验法去发现三角形的内角和等于1800。再让学生自己动手,用“纸实验”进行教学,让每个学生都用纸片剪下一个三角形,再撕下两个角与另一个角拼在一起进行验证,两次形象实验,一个重要发现,学生也从中体验到成功的乐趣.。这样学生肯定印象深刻,思维活跃,从而为推理论证打下基础,也使学生牢牢记住了三角形内角和定理。
(2)系统地记。在教学过程中,教师要突出重点,然后每学习一个阶段进行系统归纳。把知识点系统化整理,形成知识网络.。平面几何的知识点主要就是概念、定理,可以把概念、定理编号归类。如平行线性质定理3条,三角形全等判定定理5条等。并要求学生熟记,心中装有知识网,学习几何才会轻松自如。
4.利用多媒体技术,强化几何课教学。
(1)运用多媒体技术,激发学习兴趣.。教师可根据教学内容,应用信息技术,创设新奇的学习环境,去激发与调动学生的学习积极性,将多媒体技术引进课堂,集图、声、色、文于一体,同时作用于学生大脑,易形成鲜明表象,对激发兴趣,激活思维,提高学生学习的主动性、探究性,发展创新思维能力大有帮助。
(2)运用多媒体技术,突出概念的形成过程。数学知识是抽象的,只有化抽象为具体,才能引导学生通过分析、比较、归纳、概括等方法发现规律,促进学生对知识的正向迁移。对于平面几何,教师感到难教,学生感到难学。
(3)运用多媒体技术,提高教学效率。利用多媒体技术,制作出一系列课件,使学生多种感官并用,学习积极性、自主性和合作性增强,为教学的创新和发现学习提供了条件,同时也对高密度、高效率理解知识提供了可能。
总之,教师要引导学生掌握和运用对比、判断、推理、论证,培养逻辑推理能力,让学生对感性材料去粗取精,由表及里地加工和改造,使感性认识转化为理性认识,达到知识的系统化。
第二篇:《平面几何入门教学》读书心得
《平面几何入门教学》读书心得
几何教学特别是初中的几何教学对于老师来说是一个难教的课题,对于学生来说也一直认为是一个难学的内容,读了杨裕前老师的《平面几何入门教学》,觉得非常有收获,此书确实是一本既有理论依据,又有实用价值的好书书。对于我们在一线的教师来书来说无疑是给出了清晰的理论依据和实战经验典范,给了我明确的指导方向,现就自己的阅读谈点滴体会:
一、激发学生的学习兴趣
心理学认为,动机是一切学习的原动力,任何成功的学习都伴有强烈的动机,受内在动机的驱使:而无动机的学习,多畏惧困难,敷衍了事,最后一事无成。平面几何的学习刚进入新天地,好奇心、求知欲十分旺盛,激发学生内在动机,必是学习习近平面几何关键。因此激发学生学习几何的动机,成为我们几何入门教学的引言,现从一下两个方面阐述:1.激发民族自尊心和自豪感。可以给学生介绍我国古代在几何学上的辉煌成就,如:《周骨算经》中写到的“勾三股四玄五”,祖冲之在圆周率的计算上达到了相当的精确的程度等,以激发学生的爱国主义热情,渲染教育民族自尊心和自豪感,使学生有充分的学习信心。2.联系实际从生活找根源。如学习圆的内容时可以从实际出发为什么要学习圆,生活中圆无处不在,特别是我们的交通工具离不开圆。还可以从学生感兴趣的动手“折纸”入手将长方形纸折成正方形、三角形、平行四边形、圆、梯形等基本图形,让学生把几何图形抽象
到实际的可以动手操作的可认识,有据可循的知识上来。
二、抓住几何的基本概念,揭示本质
几何教学从一开始就会出现几何概念,概念多、术语新,难掌握,易混淆,是几何的特点,因此概念教学的成败,极大地影响着几何能否入门,而在课堂上能否深刻揭示几何概念的本质特征,又是概念教学成败的关键,由于人们对客观事物的认识有一个从感性认识到理性认识的发展过程,学生学习一个新的几何学概念,一般有三个阶段,那就是:直观形象——图象抽象——本质抽象。例如一个比较简单的概念——射线,可举出手电筒射出的光线先给学生以射线的直观形象,然后教师画出并引导学生画出从A点出发,沿着某一个固定方向前进的路线,给学生以射线的图象抽象,再阐述它仅有一个端点,它没有长短,也没有粗细,它是直线上的一点一旁的部分,这样便上升为射线的本质抽象,从而给出射线的定义。
三、准确识图,数形转换
几何学是离不开图形的,因此图形的视觉效应是不可忽视的,在图形教学中,还应重视培养学生对较复杂图形的认识能力,随着学习几何内容的逐渐丰富,几何图形也就越来越复杂,复杂的几何图形是多式多样的,主要是图形的交错和变位,当然在几何入门阶段,图形还不能算是很复杂的,但有的学生已感到图形难辨认、分析难下手。因此从几何教学的开始就应该予以重视,如在讲“垂线”概念时,可以画出图形,如图AO⊥OD、BO⊥OC,图中有相等的角吗?为什么?这里有两个直角交错,为了便于学生认别,可以用彩色粉笔画图形的界线,并标注出有关性质符号。对于交错图形,更重要的还应使学生理解交错图形如何分解成一些基本图形,怎样又从简单图形组合成较复杂的图形,这样逐步让学生懂得图形的分解和组合。
四、几何语言的训练和推理论证的培养
几何语言是我们于他人沟通的桥梁,是我们进行几何交流思想和进行智力活动的工具,而推理就是用正确的几何语言将其表达出来的一种智力活动。加强学生几何语言的训练,要努力提高学生的说理能力.课堂数学要形式多样,有讲有练,给学生较多的语言训练机会.如要求学生复述定义、定理的意义;教师给出图形,要求学生“看图说话”讲述意义;教师写出各论证,要求学生说出根据,理由等。语言训练中逐步要求学生做到语言精练,表述正确,对于学生模糊不清的口语,要一一加以纠正,毫不放松.语言训练要重视课本的作用.教学中可以引导学生看书,同时对于一些语言方式和习惯用语,如“连结××并延长交××于×点”、“延长××到×,使××等于××”等,可以要求学生熟记,以利于熟练地掌握和正确地使用几何语言。当然适当的反例教学也可以提高学生使用语言的精确性.如教学中经常让学生来辨析诸如下列一类的语句:“到一条线段两端距离相等的点是线段的中点”,“两条线段不平行就相交”;“过线段AB外一点作AB的垂线”;“过M、N两点作直线AB的平行线”等;推理论证的方法也是逐步渗透的,从简单开始,从口头表达开始,明确因果关系,熟悉如何推导。可通过实例介绍推证通法中的演绎法(三段论法):举例:(1)放火的人是坏蛋(大前提)
因为 丁一正在放火(小前提)
所以 丁一是坏蛋(结论)
(2)对顶角相等(大前提)
∵∠1和∠2是对顶角(小前提)
∴∠1=∠2(结论)
以上推理过程由三段组成,所以称之三段论证(演绎法)。通过介绍,使学生感到生活中处处有三段论证,从而减轻了“几何难”的心理压力。并从“∵”、“∴”的句式练习中,可以培养学生学习兴趣和积极性,提高推理论证的能力。同时向学生讲清楚,在证明一个命题时,它的过程往往是由一连串前后连贯的三段论法组成的。
以上是我的点滴体会,由于时间仓促只能从中领悟出这一点内容,相信随着时间的推移,以及看书的遍数的增加还会从中领悟出更深的精髓,希望各位能不吝提出批评。
俞良
第三篇:[平面几何教法研究 ]2关于平面几何课入门阶段的教学[最终版]
[平面几何教法研究 ]2关于平面几何课入门阶段的教学
平面几何课的入门阶段,并无公认的确切范围.在这里,仅就一般的大致体会,把现行课本中的标题为“基本概念”的第一章和标题为“相交线、平行线”的第二章的内容作为入门阶段的内容.
一、教材内容概述
这部分内容,主要有以下各项:
1.基本概念.明显反映出点、直线、量及有关的公理,“两点确定一条直线”、“等量公理”、“不等量公理”、“移形公理”.
2.射线、线段的概念,“两点间线段最短”公理,两点间距离的概念,线段的度量与计算.
3.角的概念,角的度量与计算,角的大小的比较,角的分类,垂直线的概念,点与直线间距离的概念,余角、补角、邻角、对顶角的概念及有关的性质.
4.平行线的概念,平行公理,平行线的判定和性质.
5.基本作图.
6.定义、公理、定理的概念,定理的证明.
二、教学目的
这部分内容涉及的方面是比较宽的,既含有基本概念和公理,也含有不少的定义、定理,还含有几何计算和几何作图的内容.从学生的基础来说,有不少的内容是初学,但也有些是他们在小学数学课中曾经学过的.众所周知,要使学生即使是初步地了解定义、公理、定理的含义以及初步了解与学习定理的推证方法,也得结合一些实例进行教学,才能取得预期的效果.因而在这部分的教学中,先不讲授定义、公理、定理的含义和定理证明的方法,而是先有实无名地使学生学习各项内容,以便既掌握了各项的内容,又容易理解定义、公理、定理的含义和定理的证法.对于各项基本作图题,也只要求学生掌握作法,而不作证明的要求.
因此,对这部分教学内容的各个方面的教学目的是有所不同的.概括起来,大致如下:
1.使学生了解几何学的研究对象;了解各个基本概念的含义;理解与牢记各个公理.
2.使学生掌握有关线段、角和平行线各项基础知识.
3.使学生了解定义、公理、定理的含义,并初步学习定理的推证方法及推证内容的书面表达方法.
4.使学生熟练利用常用的绘图工具——直尺、圆规、三角板、量角器解决“基本作图题”的技能.
三、教法方面的注意事项
1.上好导言课
长期以来,初中平面几何课的入门阶段的教学,常常不易取得良好的效果.究其原因,与学生不明确学习目的,不清楚数学的研究对象有很大关系.学生在学习几何课以前,他们认为学习数学,学的就是“计算”,别无所知.而几何课的入门阶段,涉及的计算问题不多且又非常简易,大部分是一些图形的概念和性质(公理和定理).这就引起学生的“只背条文,索然无味”的感受.对于各项性质,又因事理明显、论述简单,学生也对何以需要推理论证感到困惑.凡此种种都抑制了学生的学习积极性,自然也就难以取得预期的学习效果了.
为此,作为新课开始的导言课,对于初中平面几何课来说,就有了突出的作用了.通过导言课,使学生明确数学的研究对象;几何学的研究对象;对学习几何课的各项要求等.
导言课可如下地进行:
(1)引导学生回忆在小学数学课中学过的几何内容及学习过,而后予以分析、整理,以显示由名称及含义(实即定义)到性质、再到公式(小学数学课中,几何知识最终落实到求积公式)的逻辑体系.
(2)介绍几何学的产生和发展概况,借以明确数学的研究对象,几何学的研究对象以及学习几何学的重要意义.
(3)指明学习几何课的一般要求及这些要求的必要性.
2.根据学生实际基础进行概念和性质的教学
关于几何课中知识的教学,在§1中已作了一般要求的论述.这里不再重复.但在入门阶段,由于有些内容已是学生在小学数学课中学过的,但掌握得不够,有必要重学,又不能按新知识进行教学——不能引起学生注意,因而应以复习形式出现,才能使学生注意力集中,取得良好的学习效果.如在平行线概念的教学中,可先使学生回忆并叙述“什么叫做平行线”;当学生答出“不相交的两条直线叫做平行线”后,以异面二直线的教具演示,使他们自己发现原答案不正确.而后再对照实例,得出正确的答案:同平面内不相交的两条直线,叫做平行线.
由于公理事理明显、论述简单,不能引起学生的重视,在教学中应以显出公理特点的办法引起学生重视,从而深刻的理解并记牢.如在公理“两点确定一条直线”的教学中,采取实践比较的过程来进行.即,先使学生过一个定点画直线,可知有无数条——解不定;再使学生过两个定点画直线,可知有且只有一条;再以问题形式使学生考虑并实验同时过三个定点能否有直线、有多少条,至发现未必有解后,比较并突出:只有同时过两个定点的直线才有唯一的解,其它情况或是解不定、或是未必有解.从而使学生认清这公理确是特殊的性质.
在定理(未出定理名称前,一般叫做性质)的教学中,也应根据学生的心理特征,先通过实验使他们理解并相信结论的正确,而后再教以推证方法(未讲定理证明前,暂把推证叫说理),最后再写出推证的内容.这样既便于使学生理解,也为继续讲定理及定理的推证方法时,奠定良好的基础.如在定理“对顶角相等”的教学中,可先引导学生观察两条交于O点的直线AB、CD(图5-1)交出的4个角的关系,看出可分两类:一类是邻补角关系的;一类是非邻补角的关系.然后继之给对顶角定名释义.然后使学生度量两对对顶角的大小而得出结论∠AOC=∠BOD,∠COB=∠DOA.再教以说理的方法,而后写出说理的主要内容:
∵∠AOC+∠AOD=180°,∠BOD+∠AOD=180°,∴∠AOC+∠AOD=∠BOD+∠AOD.
∴∠AOC=∠BOD.
3.较详细地讲解定理的推证方法
在“定理的推证”的教学中,以及此后一段的教学中,学生常常不易按逻辑顺序把定理的推证内容表达得正确清楚.其原因之一,在于学生没经历过推证的复合三段论法,而只学简化的三段论法的缘故.
复合三段法指的是推证的过程不止用一次三段论法时,就把这种推证方法叫做复合三段论法.在数学中,对于定理的推证内容,并不详尽完整地表达成复合三段论法的形式,而反映的是简化了的三段论法.这样,初学的学生如果一开始就学简化的三段论法,由于不知是怎样简化的,自然就会产生不合逻辑顺序的“推证”了.因而在教学中,应把复合三段论法的内容显示给学生,如何简化取舍也显示给学生,才能使学生认清推证的逻辑顺序.如仍以定理“对顶角相等”的推证为例:
已知 如图5-1,直线AB和CD交于点O,∠AOC和∠BOD是对顶角.
求证 ∠AOC=∠BOD.
证明
(复合三段论法)
∵两补角的和等于180°,现在∠AOC和∠AOD是互补的角,∠BOD和∠AOD是互补的角,∴∠AOC+∠AOD=180°,∠BOD+∠AOD=180°.
∵等于同一个量的两个量相等,现在∠AOC+∠AOD、∠BOD+∠AOD都等于180°,∴∠AOC+∠AOD=∠BOD+∠AOD.
∵等量减同一个量所得的差相等,现在∠AOC+∠AOD、∠BOD+∠AOD是等量,∠AOD是同一个量,∴∠AOC+∠AOD-∠AOD=∠BOD+∠AOD-∠AOD.
即∠AOC=∠BOD.
(简化的三段论法)
∵∠AOC和∠AOD互补,∠BOD和∠AOD互补(已知),∴∠AOC+∠AOD=180°,∠BOD+∠AOD=180°(补角定义).
∴∠AOC+∠AOD=∠BOD+∠AOD(等量公理).
∴∠AOC=∠BOD(等量公理).
经过一段时间这样的对比,学生便能在理解的基础上,无误地把定理的推证表达清楚了.
第四篇:刍议初中平面几何教学
刍议初中平面几何教学
摘 要: 提高平面几何教学质量,一直是初中数学老师的追求,也是困扰师生的一个难题。作者就如何从代数过渡到平几教学,平几入门教学方法,对学生采取适当的帮助,平几教学的板书设计等方面,诌议初中平几教学的做法和体会。
关键词: 初中平面几何 过渡教学 教学方法
提高平面几何教学的质量,一直是初中数学老师的追求,也是困扰师生的一个难题。笔者就如何从代数过渡到平几教学,平几入门教学方法,对学生采取适当的帮助,平几教学的板书设计等方面,诌议初中平面几何教学的做法和体会。
一、过渡教学中注意学生思维迁移的逐渐性和连贯性
几何课程的引入是学生逻辑抽象思维的质变阶段。初中学生的数学成绩好与差的分化是由此开始的。对刚开始学习几何的学生而言,无论是理解概念的外延,还是分析问题、逻辑推理、空间观念等诸方面,对学生能力的要求和培养都是一个飞跃,所以在教学中注意学生思维迁移的逐渐性和连贯性十分重要。例如在教授有理数的运算时,应重视讲解运算性质的推导和解题过程,强调每步骤的根据:
3.15-2.75-2.15-4.25
=3.15-2.15-2.75-4.25(加法交换律)
=(3.15―2.15)+(-2.75-4.25)(加法结合律)
=1+(-7)(有理数减法、加法法则)
=-6(加法法则)
改变过去代数教学重演算,轻算理的弊端,促使代数的解题思维方法顺利向几何证题方法过渡。而作为几何初期教学应重视几何语句和符号语言的培养,利用图形建立和深化概念,证明训练应立足于一次推理和看懂证明过程,使学生有思维平稳迁移的过程。
二、平几入门教学提倡“精讲?D精练?D辩错”
为什么不提倡“精讲多练”?笔者认为精讲多练存在因教材而异,因学生和教师的素质而异的问题。特别在平几入门阶段,学生的概念尚不准确,分析与综合能力尚未形成,对平几有一定的陌生感和恐惧心理,此时就忌“多练”,否则将欲速则不达,增加学生的负担,使错误根深蒂固,影响复习、小结、预习的落实。因此,笔者认为在这个阶段应提倡“精讲?D精练?D辩错”这种闭环反馈式的教学原则。辩错大至可有两条途径:一是预见学生有可能发生错误的类型和在课堂练习中发现的错误予以预防和纠正。另一种是将课外作业中有代表性或典型的错误类型汇总讲评,不断减少错误类型、降低出错率意味着进步。要认真纠正错误,不精练,在时间和精力上师生都是办不到的。我们希望学生对其所学的知识都完全弄清,扎扎实实地学到或巩固知识点,使师生双方尝到甜头,增强信心,培养学习兴趣,增进师生间的相互信赖,提高教与学的效率和质量。所以在这一阶段忌搞“题海”或盲目地做“补充练习”,不能贪多、求快,应以参吃透课本练习,习题为主。否则,他们不消化,错答接连,最后害怕几何一门学科。
三、认识和运用几何论证方法
平几的论证展开方式是严格地从已知到未知,从题设到结论,这对于综合无疑是完美的。但教师对初学者不能毫无保留地推荐这种方式,否则学生将很容易听懂每一步骤,将非常感叹教师的灵感,但轮到他们自己解题时却无从入手。我们应该在重视学生综合能力培养的同时,重视分析能力的培养。具体可先利用直观察看、类比法、倒推法等给出解题思路,构成已知到未知的分析桥梁,让学生懂得关键步骤的动机和目的,然后再向学生推荐平几的论证展开方式。分析是制订一个解题计划,综合则是执行这个计划;分析与综合秩序经常相反;分析是创造,综合是执行。开展素质教育,分析与综合能力的培养都是极其重要的,制订解题计划需要一定时间,却是值得的。
四、在教学中教师对学生采取适当的帮助
教师对学生的帮助是一门值得研究且高深的教学艺术。教师对学生的帮助应当不多不少,恰使学生有一份合理的工作,使学生感觉自己是在独立工作的,并使之成为课堂的主人。这是大家的共识,也是最易被忽略的问题。一个班中学生的智能有一定差异,如何面向中等兼顾两头呢?这是不易办到的。当一道有一定难度的题目出现时,不妨给学生一定的时间拟订解题计划,此时中上等学生独立构思,而中下等生仍感到困难,这就要把握时机,提示解题思路,并酌情把题目分成几个局部小题,使最差的学生可能解决一些局部小题。这样既使好的学生有独立解题的机会,又使“差生”得到及时援助,又能不同程度地进入角色,使人人都有事可做。教师对学生给予有效而又自然的帮助是一门高深的教学艺术。
五、板书的科学设计对平几教学的促进作用
板书教学大略分为两个阶段。第一阶段应把板书教学看作概念教学的重要组成部分,重点抓因果关系的结构形式。要提高该阶段教学效率和质量,关键在于揭示因果关系中单因对单果,单因对多果,多因对单果,多因对多果这几种概念形式与板书结构形式的对应关系。由于学生对多因或多果的共同作用问题不够明确,甚至对单因或单果搞不清,教师应从概念的角度加以阐明对照,从而规范其板书。
板书的第二阶段应结合分析,采用模块、框图、网络等现代学习方法进行布局教学。此时若把一些推进的常见组合或局部推证当做模块,借助一系列子模块进行嵌套和拼接(在处理思想上类似代数的换元法,计算的子程序原理,在结构上类似几何积木),无疑可使问题化繁为简,并产生很强的几何直观性。
采用模块、框图、网络的方法进行板书教学,不仅可使学生从接触现代学习方法,更重要的是可借助几何的直观性,探索其布局的合理性、紧凑性、对称性,把几何美充分展示给学生,使他们爱上几何。若学生怕几何,将使教师的一切说教徒劳无功,爱几何将使劳动结成累累硕果。
平面几何教学是极具策略性的,因而需要不懈地探索。
第五篇:如何进行平面几何教学
如何进行平面几何教学
一、充分重视平几的教学作用
中学数学教学大纲明确指出:初中数学教学目的是使学生掌握几何的基础知识和基本技能,进一步培养运算能力发展逻辑思维能力和空间观念.大纲还特别指出:发展学生的逻辑思维能力是培养能力的核心.由此可见,发展学生的逻辑思维能力在整个中学数学教学中占有突出地位.
二、精心培养学生学习兴趣
兴趣往往是推动人们去探求知识、理解事物的积极力量.古今中外的学者之所以能走向科学的殿堂,正是由于他们对科学产生了浓厚的兴趣.罗素曾说过,他对科学的兴趣来自数学,而对数学的兴趣又来自欧几里德几何.这说明欧氏几何中蕴含着激发兴趣启迪思维的极有利因素.但不当的教学方法又往往使初学几何的学生望而生畏,一开始就失去学习信心.因此,在平几教学中,要注意以下几点:
第一,高度重视平几导言课的教学,精心设计并以极大的热情讲好导言课,使学生产生一种要学好平几的良好愿望.这对培养学生学习兴趣起奠基作用.
第二,要善于挖掘教材的实质,联系学生感兴趣的生活原型,使抽象的几何知识变得直观具体形象,从而激发学生的求知欲.
第三,配合教学内容介绍中外数学家在几何方面的成就,使他们把几何学习与崇高的理想结合起来,以此激励学生学习兴趣,使兴趣化为主动学习的内驱力.