中考平面几何证明题

时间:2019-05-15 14:10:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《中考平面几何证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中考平面几何证明题》。

第一篇:中考平面几何证明题

初中几何证明题

1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG 求证:S△ABCS△

AEG

2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点

求证:BC=2AO

3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H

求证:AH⊥

BC

BC,HA的延长线交EG于点O

求证:O为EG的中点

5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:

(1)BE=CG

(2)BE⊥CG

6.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 作FM⊥BC,交CB的延长线于点M,作DN⊥BC,交BC的延长线于点N

求证:FM+DN=BC

O是FD中点,OP⊥BC于点P

求证:BC=2OP

8.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点

求证:四边形MNPQ是正方形

第二篇:初中平面几何证明题

九年级数学练习题

1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG

求证:S△ABCS△

AEG

2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:EG=2AO

3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H

求证:AH⊥

BC

4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O

求证:O为EG的中点

5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:

(1)BE=CG

(2)BE⊥CG

6.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 作FM⊥BC,交CB的延长线于点M,作DN⊥BC,交BC的延长线于点N

求证:FM+DN=BC

7.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG、FD O是FD中点,OP⊥BC于点P

求证:BC=2OP

8.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点

求证:四边形MNPQ是正方形

第三篇:初中三年级中考复习近平面几何证明题一题多解

初中三年级中考复习近平面几何证明题一题多解

如图:已知青AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。

分析:本题有好多种证明方法,由于新课标主

要用对称、旋转方法证明,但平行四边形的性

质、平行线性质等都是证题的好方法,我在这

里向初中三年级同学面对中考需对平面几何

证明题的证明方法有一个系统的复习和提高。

下边我将自己证明这道题的方法给各位爱好

者作以介绍,希望各位有所收获,仔细体会每中方法的异同和要点,从中能得到提高。我是

一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱:.证法一∧≌∠⊥∥△□°

证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故FD=DE;

证法二A

证明:过F点作FM∥AE,交BD于点M,则∠1=∠2 = ∠B所以BF=FM,又∠4=∠3∠5=∠E

所以△DMF≌△DCE,故 FD=DE。

F

C

证法三 E

以BC为对称轴作△BDF的对称△BDN,连

接NE,则△DBF≌△DBN,DF=DN,BN=BF,NF⊥BD,∠FBD=∠NBD,又因为∠C=∠FBD

所以∠NBD=∠C。BN∥CE,CE=BF=BN,所以四边形BNCE为平行四边形。故NF∥BC,所以NF⊥NE,因FN衩BD垂直平分,故D

EN是FE的中点,所以FD=DE。(也可证明D是直角△NEF斜边的中点)。

证法四:

证明:在CA上取CG=CE,则CG=BF,AF=AG,所以FG∥DC,又因为∠1=∠2,所以FBCG为等腰梯形,所以

FG∥DC,故DC是△EGF的中位线。所以 FD=DE。

E

证法五

证明:把△EDC绕C点旋转180°,得△GMC,则△EDC≌△GMC

M

CE=GC=BF

连接FG,由于GC=BF,从而AF=AG,∠1=∠AFG FG∥BC,所以FBMG为等腰梯形,所以 FG∥DC,故DC是△EGF的中位线。所以 FD=DE。证法六

证明:以BC为对称轴作△DCE的对称△DCN,则和△DCE≌△DCN;CN=CE=BF ∠2=∠3;又∠1=∠3,∠B=∠1所以

∠2=∠B,BF∥CN,所以四边形BCNF为平

行四边形,DC ∥FG,∠1=∠4,所以 ∠2=∠4=∠CNG,所以 CG=CN=CE; 故DC是DC是△EGF的中位线。所以 FD=DE。

证法七

证明:延长AB至G,使BG=CE,又因AB=AC,BF=CE则AG=AE

ABAG

ACAE

所以BC∥GE,则BD是△FGE

G

E的中位线。所以FD=DE。

第四篇:平面几何证明题的基本思路及方法

平面几何证明题的基本思路及方法 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。

一、直接式思路

首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。

掌握分析、证明几何问题的常用方法:

(一)顺藤摸瓜”法(由因导果)

该类问题特点:条件很充分且直观,一般属于A级难度的题目,需要我们从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决。

(二)逆向思维”法(执果索因)

该类问题特点:一般已知条件较少。从正常思维难以入手,一般属于B或C级难度题目。该类问题从求证结论开始逆向推导,一步一步追溯到已知条件,从而进行求解。

(三)天佑开凿铁路”法(从两头向中间)

该类问题特点:题目条件和结论之间关系比较隐秘,难于直接它们之的必然联系,该类问题属于C级难度的题目。

方法:

1、知条件入手,看能得到什么结果就写出什么结果,与结论相关的辅助线能作就作;

2、结论入手,运用逆向思维,看能推导出什么结果就写什么结果;

3、联想,探索推导两次推导结果之中直接或隐性的关系,然后整理从条件推导结论的推导思路,再一步步写出推导过程。

注:该类问题在写出各种推导结果是需注意条理性,忌杂乱无章!

二、间接式思路

有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

(一)反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的逆命题成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了结论的逆命题是错误,从而得出结论的正面成立,这种证题方法就叫做反证法。

反证法证题通常有如下三个步骤:

1、反设。作出与结论相反的假设,通常称这种假设为反证假设。

2、归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定

义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

3、得出结论。根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确的,可知原结论成立。

(二)同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:

1、出符合命题结论的图形;证明所作图形符合已知条件;

2、根据唯一性,确定所作的图形与已知图形吻合;

3、断定命题的真实性。

同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

第五篇:初中平面几何证明题及答案

九年级数学练习题

1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG

求证:S△ABCS△

AEG

2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:EG=2AO

3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H

求证:OH⊥

BC

4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O

求证:O为EG的中点

5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE

M、N、P、Q分别是EG、GB、BC、CE的中点

求证:四边形MNPQ是正方形

答案: 1.作CM⊥AB于点M,EN⊥GA,交GA的一次性于点N

∵∠MAN=∠CAE=90°

∴∠CAM=∠EAN

∵∠ANE=∠CMA=90°,AC=AE

∴△ACM≌△AEN

∴CM=EN

∵S△ABC=1/2*AB *CM,S△AGE=1/2*AG*EN

又∵AG=AB,CM=EN

∴S△ABC=S△AEG

2.证明:

延长AO到点M,使OM=OA,连接MG、ME

则四边形AEMG是平行四边形

∴GM=AE=AC,MG‖AE

∴∠MGA+∠GAE=180°

∵∠BAG+∠CAE=180°

∴∠BAC+∠GAE=180°

∴∠BAC=∠AGM

∵AC=AB

∴△AGM≌△BAC

∴BC=AM=2AO

3.OA与OH共线,所以向量AO与向量BC的数量积为0即可证出AH⊥BC

我用AB表示向量AB,即此时字母AB都有方向性,下边的都是如此,2AO=AG+GE

过A作直线BC的平行线交FG于M,交DE于N,2AO*BC

=(AG+AE)*BC

=AG*BC+AE*BC

=-|AG||BC|cos∠GAM+|AE||BC|cos∠EAN

=|BC|*(-|AB|*sin∠MAB+|AC|*sin∠NAC)

=|BC|*(-|AB|sin∠ABC+|AC|sin∠ACB)

设BC上的高长为h,上式=|BC|(-h+h)=0

所以AO与BC垂直,即AH⊥BC

5.连结BE、CG,∵PQ是△BEC的中位线,∴PQ//BE,且PQ=BE/2,同理MN//BC,MN=BE/2,∴MN=PQ,且MN//PQ,∴四边形PQMN是平行四边形,同理MQ=PN=CG/2,在△BAE和△GAC中,BA=GA,AC=AE,∵〈BAG=〈CAE=90°,〈BAG+〈BAC=〈CAE+〈BAC,∴〈BAE=〈GAC,∴△BAE≌△GAC,(SAS),∴BE=CG,∴BE/2=CG/2,∴PQ=MQ,∴四边形PQMN是菱形,设CG和BE相交于O

〈AEB=〈ACG,(全等三角形对应角相等),则A、O、C、E四点共圆,(共用AO底,同侧顶角相等的二三角形四点共圆)〈EOC=〈EAC=90°,∴BE⊥CG,∴PQ⊥MQ,∴四边形PQMN是正方形。

下载中考平面几何证明题word格式文档
下载中考平面几何证明题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考数学证明题

    中考数学证明题O是已知线段AB上的一点,以OB为半径的圆O交AB于点C,以线段AO为直径的半圆圆o于点D,过点B作AB的垂线与AD的延长线交于点E说明AE切圆o于点D当点o位于线段AB何......

    平面几何证明题的一般思路及方法简述

    平面几何证明题的一般思路及方法简述 【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面......

    平面几何证明题的一般思路及方法简述

    平面几何证明题的一般思路及方法简述【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几......

    中考数学猜想证明题

    2012年的8个解答题的类型一实数的计算、整式的化简求值、分式的化简求值、解分式方程、解二元一次方程组、解不等式组并在数轴上表示解集二画图与计算、圆的证明与计算、三......

    中考数学几何证明题

    中考数学几何证明题在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.在图1中证明CE=CF;若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;第一个问我会,求第二......

    中考几何证明题复习

    中考复习(二)中考复习:几何证明题说明一:在直角三角形中,或是题中出现多个直角时,要证明两个角相等,涉及到的知识点:同角(或等角)的余角相等。例1:已知:如图,在△ABC中,∠ACB=90,CDAB于点D,......

    中考几何证明题集锦(精选)

    几何证明题集锦1、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.(10分)E2、已......

    中考数学经典几何证明题

    2011年中考数学经典几何证明题(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;(2)如图2,在......