平面几何证明题的一般思路及方法简述

时间:2019-05-14 21:42:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《平面几何证明题的一般思路及方法简述》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平面几何证明题的一般思路及方法简述》。

第一篇:平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述

【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。

【关键词】平面几何 证明题 思路 方法

平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。

一、直接式思路

证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。

1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。

(1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B„„最终追溯到命题中的某一题设条件。

(2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。

(3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。

(4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。

2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型:

(1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。

(2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。

(3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

件关系松散且难以利用时,就要去有意识地寻找、选择并应用媒介实现过渡,这样的综合法就称之为媒介型综合法。

(4)解析型综合法。解题时,运用解析法的思想制定解题的大体计划和方向,然后并不真用解析法来实现这个计划,而用综合法来实现,这种综合法被称为解析型综合法。

在具体证题时,这两种方法可单独运用,也可配合运用,在分析中有综合,在综合中有分析,以进行交叉使用。

二、间接式思路

有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

1.反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的反面成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了“结论反面成立”的假设是错误的,从而得出结论的正面成立,这种证题方法就叫做反证法。当结论的反面只有一个时,否定了这一个便完成证明,这种较单纯的反证法又叫做归谬法;而当结论的反面有若干个时,就必须驳倒其中的每一个,这种较繁琐的反证法又称为穷举法。

反证法证题通常有如下三个步骤:

(1)反设。作出与结论相反的假设,通常称这种假设为反证假设。

(2)归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

(3)得出结论。根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确的,可知原结论成立。

2.同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:作出符合命题结论的图形;证明所作图形符合已知条件;根据唯一性,确定所作的图形与已知图形吻合;断定命题的真实性。

同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

第二篇:平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述

【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。

【关键词】平面几何 证明题 思路 方法

平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。

一、直接式思路

证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。

1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。

(1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B„„最终追溯到命题中的某一题设条件。

(2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。

(3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。

(4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。

2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型:

(1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。

(2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。

(3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条件关系松散且难以利用时,就要去有意识地寻找、选择并应用媒介实现过渡,这样的综合法就称之为媒介型综合法。

(4)解析型综合法。解题时,运用解析法的思想制定解题的大体计划和方向,然后并不真用解析法来实现这个计划,而用综合法来实现,这种综合法被称为解析型综合法。

在具体证题时,这两种方法可单独运用,也可配合运用,在分析中有综合,在综合中有分析,以进行交叉使用。

二、间接式思路

有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

1.反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的反面成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了“结论反面成立”的假设是错误的,从而得出结论的正面成立,这种证题方法就叫做反证法。当结论的反面只有一个时,否定了这一个便完成证明,这种较单纯的反证法又叫做归谬法;而当结论的反面有若干个时,就必须驳倒其中的每一个,这种较繁琐的反证法又称为穷举法。

反证法证题通常有如下三个步骤:

(1)反设。作出与结论相反的假设,通常称这种假设为反证假设。

(2)归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

(3)得出结论。根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确的,可知原结论成立。

2.同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:作出符合命题结论的图形;证明所作图形符合已知条件;根据唯一性,确定所作的图形与已知图形吻合;断定命题的真实性。

同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

第三篇:平面几何证明题的基本思路及方法

平面几何证明题的基本思路及方法 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。

一、直接式思路

首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。

掌握分析、证明几何问题的常用方法:

(一)顺藤摸瓜”法(由因导果)

该类问题特点:条件很充分且直观,一般属于A级难度的题目,需要我们从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决。

(二)逆向思维”法(执果索因)

该类问题特点:一般已知条件较少。从正常思维难以入手,一般属于B或C级难度题目。该类问题从求证结论开始逆向推导,一步一步追溯到已知条件,从而进行求解。

(三)天佑开凿铁路”法(从两头向中间)

该类问题特点:题目条件和结论之间关系比较隐秘,难于直接它们之的必然联系,该类问题属于C级难度的题目。

方法:

1、知条件入手,看能得到什么结果就写出什么结果,与结论相关的辅助线能作就作;

2、结论入手,运用逆向思维,看能推导出什么结果就写什么结果;

3、联想,探索推导两次推导结果之中直接或隐性的关系,然后整理从条件推导结论的推导思路,再一步步写出推导过程。

注:该类问题在写出各种推导结果是需注意条理性,忌杂乱无章!

二、间接式思路

有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

(一)反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的逆命题成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了结论的逆命题是错误,从而得出结论的正面成立,这种证题方法就叫做反证法。

反证法证题通常有如下三个步骤:

1、反设。作出与结论相反的假设,通常称这种假设为反证假设。

2、归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定

义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

3、得出结论。根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确的,可知原结论成立。

(二)同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:

1、出符合命题结论的图形;证明所作图形符合已知条件;

2、根据唯一性,确定所作的图形与已知图形吻合;

3、断定命题的真实性。

同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

第四篇:初中平面几何证明题

九年级数学练习题

1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG

求证:S△ABCS△

AEG

2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:EG=2AO

3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H

求证:AH⊥

BC

4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O

求证:O为EG的中点

5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:

(1)BE=CG

(2)BE⊥CG

6.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 作FM⊥BC,交CB的延长线于点M,作DN⊥BC,交BC的延长线于点N

求证:FM+DN=BC

7.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG、FD O是FD中点,OP⊥BC于点P

求证:BC=2OP

8.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点

求证:四边形MNPQ是正方形

第五篇:中考平面几何证明题

初中几何证明题

1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG 求证:S△ABCS△

AEG

2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点

求证:BC=2AO

3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H

求证:AH⊥

BC

BC,HA的延长线交EG于点O

求证:O为EG的中点

5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:

(1)BE=CG

(2)BE⊥CG

6.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 作FM⊥BC,交CB的延长线于点M,作DN⊥BC,交BC的延长线于点N

求证:FM+DN=BC

O是FD中点,OP⊥BC于点P

求证:BC=2OP

8.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点

求证:四边形MNPQ是正方形

下载平面几何证明题的一般思路及方法简述word格式文档
下载平面几何证明题的一般思路及方法简述.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分析立体几何证明题思路的方法[五篇模版]

    应用分析法分析立体几何证明题思路 立体几何是高中数学中很重要的一部分知识,对培养学生空间想象能力有很重要的意义,虽然近些年高考中立体几何的难度有所降低,但一直是高考的......

    初中平面几何证明题及答案(共5篇)

    九年级数学练习题1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG求证:S△ABCS△AEG2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的......

    平面几何常用证明方法5则范文

    平面几何常见证明方法 1,分析法 分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思......

    几何证明题方法

    (初中、高中)几何证明题一些技巧初中几何证明技巧(分类)证明两线段相等1.两全等三角形中对应边相等。2.同一三角形中等角对等边。3.等腰三角形顶角的平分线或底边的高平分底边......

    初中几何证明题思路范文合集

    学习总结:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代......

    审计思路的简述

    审计思路的简述今天在公司里指导底稿复核时,就如何做审计与同事做了一个简短的归纳,实际上只是对审计准则的一个简单总结和讨论。个人感觉准则的贯彻还需要年年讲、月月讲、天......

    证明题的方法(5篇)

    作业:1.从上述案例中选择一个进行分析与评价。《等腰三角形》的性质这一案例,本身这是最传统的一种几何知识的教学,如何做到传统的知识教学与新课程改革相联系,这是我们要考虑的......

    数学证明题解题方法

    数学证明题解题方法第一步:结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是......