第一篇:初中平面几何证明题及答案
九年级数学练习题
1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG
求证:S△ABCS△
AEG
2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:EG=2AO
3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H
求证:OH⊥
BC
4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O
求证:O为EG的中点
5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE
M、N、P、Q分别是EG、GB、BC、CE的中点
求证:四边形MNPQ是正方形
答案: 1.作CM⊥AB于点M,EN⊥GA,交GA的一次性于点N
∵∠MAN=∠CAE=90°
∴∠CAM=∠EAN
∵∠ANE=∠CMA=90°,AC=AE
∴△ACM≌△AEN
∴CM=EN
∵S△ABC=1/2*AB *CM,S△AGE=1/2*AG*EN
又∵AG=AB,CM=EN
∴S△ABC=S△AEG
2.证明:
延长AO到点M,使OM=OA,连接MG、ME
则四边形AEMG是平行四边形
∴GM=AE=AC,MG‖AE
∴∠MGA+∠GAE=180°
∵∠BAG+∠CAE=180°
∴∠BAC+∠GAE=180°
∴∠BAC=∠AGM
∵AC=AB
∴△AGM≌△BAC
∴BC=AM=2AO
3.OA与OH共线,所以向量AO与向量BC的数量积为0即可证出AH⊥BC
我用AB表示向量AB,即此时字母AB都有方向性,下边的都是如此,2AO=AG+GE
过A作直线BC的平行线交FG于M,交DE于N,2AO*BC
=(AG+AE)*BC
=AG*BC+AE*BC
=-|AG||BC|cos∠GAM+|AE||BC|cos∠EAN
=|BC|*(-|AB|*sin∠MAB+|AC|*sin∠NAC)
=|BC|*(-|AB|sin∠ABC+|AC|sin∠ACB)
设BC上的高长为h,上式=|BC|(-h+h)=0
所以AO与BC垂直,即AH⊥BC
5.连结BE、CG,∵PQ是△BEC的中位线,∴PQ//BE,且PQ=BE/2,同理MN//BC,MN=BE/2,∴MN=PQ,且MN//PQ,∴四边形PQMN是平行四边形,同理MQ=PN=CG/2,在△BAE和△GAC中,BA=GA,AC=AE,∵〈BAG=〈CAE=90°,〈BAG+〈BAC=〈CAE+〈BAC,∴〈BAE=〈GAC,∴△BAE≌△GAC,(SAS),∴BE=CG,∴BE/2=CG/2,∴PQ=MQ,∴四边形PQMN是菱形,设CG和BE相交于O
〈AEB=〈ACG,(全等三角形对应角相等),则A、O、C、E四点共圆,(共用AO底,同侧顶角相等的二三角形四点共圆)〈EOC=〈EAC=90°,∴BE⊥CG,∴PQ⊥MQ,∴四边形PQMN是正方形。
第二篇:初中平面几何证明题
九年级数学练习题
1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG
求证:S△ABCS△
AEG
2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:EG=2AO
3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H
求证:AH⊥
BC
4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O
求证:O为EG的中点
5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:
(1)BE=CG
(2)BE⊥CG
6.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 作FM⊥BC,交CB的延长线于点M,作DN⊥BC,交BC的延长线于点N
求证:FM+DN=BC
7.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG、FD O是FD中点,OP⊥BC于点P
求证:BC=2OP
8.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点
求证:四边形MNPQ是正方形
第三篇:中考平面几何证明题
初中几何证明题
1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG 求证:S△ABCS△
AEG
2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点
求证:BC=2AO
3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H
求证:AH⊥
BC
BC,HA的延长线交EG于点O
求证:O为EG的中点
5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:
(1)BE=CG
(2)BE⊥CG
6.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 作FM⊥BC,交CB的延长线于点M,作DN⊥BC,交BC的延长线于点N
求证:FM+DN=BC
O是FD中点,OP⊥BC于点P
求证:BC=2OP
8.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点
求证:四边形MNPQ是正方形
第四篇:平面几何证明题的基本思路及方法
平面几何证明题的基本思路及方法 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。
一、直接式思路
首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。
掌握分析、证明几何问题的常用方法:
(一)顺藤摸瓜”法(由因导果)
该类问题特点:条件很充分且直观,一般属于A级难度的题目,需要我们从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决。
(二)逆向思维”法(执果索因)
该类问题特点:一般已知条件较少。从正常思维难以入手,一般属于B或C级难度题目。该类问题从求证结论开始逆向推导,一步一步追溯到已知条件,从而进行求解。
(三)天佑开凿铁路”法(从两头向中间)
该类问题特点:题目条件和结论之间关系比较隐秘,难于直接它们之的必然联系,该类问题属于C级难度的题目。
方法:
1、知条件入手,看能得到什么结果就写出什么结果,与结论相关的辅助线能作就作;
2、结论入手,运用逆向思维,看能推导出什么结果就写什么结果;
3、联想,探索推导两次推导结果之中直接或隐性的关系,然后整理从条件推导结论的推导思路,再一步步写出推导过程。
注:该类问题在写出各种推导结果是需注意条理性,忌杂乱无章!
二、间接式思路
有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。
(一)反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的逆命题成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了结论的逆命题是错误,从而得出结论的正面成立,这种证题方法就叫做反证法。
反证法证题通常有如下三个步骤:
1、反设。作出与结论相反的假设,通常称这种假设为反证假设。
2、归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定
义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。
3、得出结论。根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确的,可知原结论成立。
(二)同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。
例如,同一法证平面几何问题的步骤如下:
1、出符合命题结论的图形;证明所作图形符合已知条件;
2、根据唯一性,确定所作的图形与已知图形吻合;
3、断定命题的真实性。
同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。
在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。
第五篇:初中三年级中考复习近平面几何证明题一题多解
初中三年级中考复习近平面几何证明题一题多解
如图:已知青AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。
分析:本题有好多种证明方法,由于新课标主
要用对称、旋转方法证明,但平行四边形的性
质、平行线性质等都是证题的好方法,我在这
里向初中三年级同学面对中考需对平面几何
证明题的证明方法有一个系统的复习和提高。
下边我将自己证明这道题的方法给各位爱好
者作以介绍,希望各位有所收获,仔细体会每中方法的异同和要点,从中能得到提高。我是
一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱:.证法一∧≌∠⊥∥△□°
证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故FD=DE;
证法二A
证明:过F点作FM∥AE,交BD于点M,则∠1=∠2 = ∠B所以BF=FM,又∠4=∠3∠5=∠E
所以△DMF≌△DCE,故 FD=DE。
F
C
证法三 E
以BC为对称轴作△BDF的对称△BDN,连
接NE,则△DBF≌△DBN,DF=DN,BN=BF,NF⊥BD,∠FBD=∠NBD,又因为∠C=∠FBD
所以∠NBD=∠C。BN∥CE,CE=BF=BN,所以四边形BNCE为平行四边形。故NF∥BC,所以NF⊥NE,因FN衩BD垂直平分,故D
EN是FE的中点,所以FD=DE。(也可证明D是直角△NEF斜边的中点)。
证法四:
证明:在CA上取CG=CE,则CG=BF,AF=AG,所以FG∥DC,又因为∠1=∠2,所以FBCG为等腰梯形,所以
FG∥DC,故DC是△EGF的中位线。所以 FD=DE。
E
证法五
证明:把△EDC绕C点旋转180°,得△GMC,则△EDC≌△GMC
M
CE=GC=BF
连接FG,由于GC=BF,从而AF=AG,∠1=∠AFG FG∥BC,所以FBMG为等腰梯形,所以 FG∥DC,故DC是△EGF的中位线。所以 FD=DE。证法六
证明:以BC为对称轴作△DCE的对称△DCN,则和△DCE≌△DCN;CN=CE=BF ∠2=∠3;又∠1=∠3,∠B=∠1所以
∠2=∠B,BF∥CN,所以四边形BCNF为平
行四边形,DC ∥FG,∠1=∠4,所以 ∠2=∠4=∠CNG,所以 CG=CN=CE; 故DC是DC是△EGF的中位线。所以 FD=DE。
证法七
证明:延长AB至G,使BG=CE,又因AB=AC,BF=CE则AG=AE
ABAG
ACAE
所以BC∥GE,则BD是△FGE
G
E的中位线。所以FD=DE。