第一篇:几种牵引变压器的原理分析与比较选择
几种牵引变压器的原理分析与比较选择
一按照变压器结构种类和接线方式分为:
1.单相结线变压器
2.单相(三相)V,v结线变压器
3.三相YN,d11双绕组变压器
4.斯科特结线变压器
5.YN,结线阻抗匹配牵引变压器
6.YN,结线平衡变压器
7.非阻抗匹配YN,结线平衡变压器
二变压器的工作原理和分析:变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件 1,单相结线变压器原理:
牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。
2,单相V,v结线变压器(三相)原理:
将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60o接线,电流的不对称度有所减少。这种接线即通常所说的60o接线。(三相)原理:将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成。原边绕组接成固定的V结线,V的顶点(A2与X1连接点)为C相,A1,X2分别为A相,B相。副边绕组四个端子全都引出在油箱外部,根据牵引供电的要求,既可接成正“V”,也可接成反“V”。
3,三相YN,d11双绕组变压器原理:
三相YN,d11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27.5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60o,也是60o接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。
4,斯科特结线变压器原理:
实际上也是由两台单相变压器按规定连接而成。一台单相变压器的原边绕组两端引出,分别接到三相电力系统的两相,称为座变压器;另一台单相变压器的原边绕组一端引出,接到三相电力系统的另一相,另一端到M座变压器原边绕组的中点O,称为T座变压器。这种结线型式把对称三相电压变换成相位差为 的对称两相电压,用两相中的一相供应一边供电臂,;另一相供应另一边供电臂。M座变压器原边绕组匝数,电压分别用 表示,两端分别接入电力系统的B,C相;副边绕组匝数,电压分别用 表示,向左边供电臂供电。T座变压器原边绕组匝数,电压分别为,一端接在M座变压器原边绕组的中点O,另一端接到接到电力系统的A相;副边绕组匝数,电压分别为,向右边供电臂供电。T座和M座副边匝数相同,都是,原边匝数不同,T座原边匝数是M座的。实际中,通常把两台单相变压器绕组装配在一个铁芯上,安装在一个油箱内。
5,YN,结线阻抗匹配牵引变压器原理:
副边绕组三角形结线结构即在非接地相增设两个外移绕组。内三角形接线的一角c与轨道,接地网连接。两端分别接到牵引侧两相母线上。由两相牵引母线分别向两侧对应的供电臂牵引网供电。
6,YN,结线平衡变压器原理:根据平衡变压器的工作原理,要求:
① 原边接三相对称电源电压时,副边二相输出端口空载电压对称(即大小相等,相位差为90o)
② 副边二相输出端口带相同负载时,原边三相电流对称。
YN,结线阻抗匹配牵引变压器,虽然满足了上述需要和要求,但是平衡绕组(或)与a(或b,c)绕组的匝数比 和阻抗匹配系数 都是固定值。一般来说,绕组匝数的配合比较容易。而无论从设计上还是制造工艺上来讲,要得到预先确定的某一阻抗匹配系数都是相当困难的。YN,结线阻抗匹配平衡变压器的要求,在设计上和制造工艺上的难度是不言而喻的。
7,非阻抗匹配YN,结线平衡变压器原理:
在前面所述的YN,结线平衡变压器中,当 时,不需要专门进行阻抗匹配,按结构对称性布置绕组,就可以使该变压器达到平衡。这是YN,结线平衡变压器取 的特例。由于它不需要专门进行阻抗匹配,所以称为非阻抗匹配YN,结线平衡变压器。
三变压器的比较和选择
优缺点:
1.单相结线变压器
优点:容量利用率可达100%;主接线简单,设备少,占地面积小,投资少。缺点:不能供应地区和牵引变电所三相负荷用电,在电力系统中,单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。
适用于:电力系统容量较大,电力网比较发达,三相负荷用电能够可靠的由地方电网得到供应的场合。
2.单相V,v结线变压器(三相)
单相:
优点:主结线较简单,设备较少,投资较省。对电力系统的负序影响比单相结线少。对接触网的供电可实现双边供电。
缺点:当一台牵引变压器故障时,另一台必须跨相供电,即兼供左右两边供电臂的牵引网。这就需要一个倒闸过程,即把故障变压器原来承担的供电任务转移到正常运行的变压器。在这一倒闸过程完成前,故障变压器原来供电的供电臂牵引网中断供电,这种情况甚至会影响行车。即使这一倒闸过程完成后,地区三相电力供应也要中断。牵引变电所三相自用电必须改用劈相机或单相-三相自用变压器供电。实质上变成了单相结线牵引变电所,对电力系统的负序影响也随之增大。
三相:
优点:保持了单相V,v结线变压器的主要优点,完全克服了单相V,v结线变压器缺点。最可取的是解决了单相V,v结线变压器不便于采用固定备用及其自动投入的问题,有利于实现分相有载或无载调压。
3.三相YN,d11双绕组变压器
优点:牵引变压器低压侧保持三相,有利于供应牵引变电所自用电和地区三相电力。在两台牵引变压器并联运行情况下,当一台停电时,供电不会中断,运行可靠方便。三相YN,d11双绕组变压器在我国采用的时间长,有比较多的经验,制造相对简单,价格便宜。对接触网的供电可实现两边供电。
缺点:牵引变压器容量不能得到充分利用,只能达到额定容量的75.6%,引入温度系数也只能达到84%,与采用单相结线牵引变压器的牵引变电所相比,主接线要复杂一些,用的设备,工程投资也较多,维护检修工作量及相应的费用也有所增加。
适用于:山区单线电气化铁路牵引负载不平衡的场所。
4.斯科特结线变压器
优点:当M座和T座两供电臂负荷电流大小相等,功率因素也相等时,斯科特结线变压器原边三相电流对称。变压器容量可全部利用。(用逆斯科特结线变压器把对称两相电压变换成对称三相电压)。对接触网的供电可实现两边供电。缺点:斯科特结线牵引变压器制造难度较大,造价较高。牵引变电所主结线复杂,设备较多,工程投资也较多。维护检修工作量及相应的费用有所增加。而且斯科特结线牵引变压器原边T接地(O点)电位随负载变化而产生漂移。严重时有零序电流流经电力网,可能引起电力系统零序电流继电保护误动作,对邻近的平行通信线可能产生干扰,同时引起牵引变压器各相绕组电压不平衡,而加重绕组的绝缘负担。为此,该结线牵引变压器的绝缘水平要采用全绝缘。
5.YN,结线阻抗匹配牵引变压器
优点:当阻抗匹配系数 时,无论副边 或,原边三相电流平衡,即无零序电流。当副边,时,原边三相电流对称,没有负序电流对电力系统的影响。原边三相制的视在功率完全转化为副边二相制的视在功率,变压器容量可全部利用。原边仍为YN结线,中性点引出,与高压中性点接地电力系统匹配方便。副边仍有△结线绕组,三次谐波电流可以流通,使主磁通和电势波形有较好的正旋度。利用斯科特结线变压器把对称两相电压变换成对称三相电压。对接触网的供电可实现两边供电。
缺点:设计计算及制造工艺复杂,造价较高。两供电臂之间的分相绝缘器两端承受的电压为,因此,分相绝缘器的绝缘应注意加强。
适用于:牵引变电所自用电和站区三相电力。
6.YN,结线平衡变压器
优点:其阻抗匹配系数在一定范围内任意选取,因而使变压器的设计和制造更加方便。阻抗匹配系数取值的灵活性对绕组布置具有重要意义。
缺点:需要考虑减小电磁力,环流等问题。
7.非阻抗匹配YN,结线平衡变压器
优缺点与YN,结线阻抗匹配牵引变压器基本相同,但还存在若干不同点: 非阻抗匹配YN,结线平衡变压器与YN,结线阻抗匹配牵引变压器分别是YN,结线阻抗匹配牵引变压器取 与 的特例。在YN,结线平衡变压器中,前者不需要专门进行阻抗匹配,绕组布置最容易,设计制造最方便;后者绕组设计条件(,)最苛刻,设计制造最困难; 取其他值的情况则介于二者之间。
第二篇:牵引变压器的保护及故障分析
牵引变压器的保护及故障分析
摘 要:本文介绍牵引变压器的主要运用保护方式,对各种保护元件的原理及结构进行简单介,并对各种保护信号及可能的故障原因进行分析,并提出相应的处理方案。这些保护信号,有的反应的是故障现象,有的反应的是故障隐患。通过对各种保护机理的把握,可以尽早的发现故障隐患和故障现象,并针对性的采取适当的措施,避免故障的扩大,以降低损失。
关键词:牵引变压器 保护 故障分析
中图分类号:U264.7
机车牵引变压器是电力机车上的一个重要部件。无论是直流传动还是交流传动电力机车,都需要将来自接触网上的25kV高压电降压转换,以便于电传动系统中的其他部件使用,最后通过牵引电机实现电力牵引。牵引变压器安全可靠运行是保证电力机车正常运行的基础。为保证牵引变压器的稳定运行,电力机车设置了多种保护方式,在变压器上以及电气回路上设置了多项保护元件,利用机车控制系统进行安全保护。
1.牵引变压器的保护方式
牵引变压器的主要保护方式有过励磁、过流、瓦斯保护、差动保护、接地保护、压力保护、高温保护等。
1.1.过压保护。牵引变压器直接输入网压,如果网压过高,超过变压器的最高允许电压,将会对变压器造成损坏。在机车上配置了电压互感器,用于?z测网侧电压。电压互感器的二次侧通过仪表接入机车控制系统,当机车控制系统检测到网压高于一定的安全值时,会自动报警并切断与供电网的连接。
1.2.过流保护。牵引变压器一般都是高阻抗的变压器,有较强的抗负载短路能力。但是电流过大,会对变压器造成绝缘损坏,并且引起过流的原因也可能是变压器本身的故障。变压器的高压侧和低压侧,均配置了电流互感器,机车控制系统实时监测各回路电流,以实现对变压器以及主电路上主要部件的运用情况进行监控。
1.3.差动保护。变压器差动保护作为变压器的主保护,能反应变压器内部短路、高压侧接地短路及匝间短路故障。差动保护是输入被保护元件两端CT电流矢量差,当两端CT电流矢量差达到设定的动作值时,启动动作元件。差动保护是保护两端电流互感器之间的设备故障,正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同。当发生故障时,在保护段内,两端差动电流大于零。
1.4.瓦斯保护。瓦斯保护的构成:在HXD1、HXD1B、HXD3B等型号电力机车的牵引变压器上安装了布赫继电器(即瓦斯继电器),它安装在变压器油箱与储油柜的连接管道上。布赫继电器的结构见图10一2。BG 25 S型双浮球布赫继电器对牵引变压器内部的绝缘油变化非常敏感。它能有效反应牵引变压器尤为下降、漏油异常,也能反应绝缘击穿、局部发热或放电等故障引起的绝缘油异常情况并产生保护动作。
瓦斯气体报警原理:当牵引变压器内出现局部过过热或放电时,引起绝缘油或绝缘固体逐渐分解产生气体,气体逐渐积累,上升到布赫继电器内,导致布赫继电器内部液位下降,浮球位置下降,当气体体积达到一定的量时(气体量达到200cm3~300cm3),浮球位置变化触动微动开关,发出警告信号。
低液位报警原理:在正常工作状态下,布赫继电器内充满了变压器绝缘油。在浮力的作用下,浮球处在最高位置。当变压器油量不足,储油柜内已经没有变压器油,液位低至布赫继电器浮球液位以下时,布赫继电器内的浮球位置下降,浮球位置变化触动微动开关,发出警告信号。
流量报警原理:机车在运行中,如果牵引变压器内部由于高能量放电产生快速甚至强烈的分解气体,由此产生的压力波引起变压器油流向储油柜的强力涌流,冲击挡板。当流速超过整定值时,挡板翻转触动浮球,微动开关动作向机车控制系统发送开关信号,使得机车主断路器在最短的时间内断开,从而避免故障进一步扩大。
1.5.温度保护。牵引变压器冷却系统的正常工作,是保证牵引变压器工作在安全温度下的保证。变压器在运行中,如果发成长时间过载,或冷却系统工作不正常,都会导致变压器温升过高。在牵引变压器的冷却回路中安装油流继电器可以实时监测变压器的冷却系统是否正常工作;在变压器油的最热点安装温度传感器或温度计实时监控变压器的温度状态。这些信号接入机车控制系统,系统可以及时根据标定值做出信号判断并采取适当的措施保证系统安全。例如:HXD1型机车牵引变压器油温超过85℃时,牵引逆变器开始线性降低功率;当油温达到90℃时,功率降低到额定功率的70%;在油温超过90℃后,牵引逆变器被锁止;当油温超过95℃时,系统自动分断主断路器。
1.6.压力保护。无论是变压器内部故障还是管路故障导致的变压器内部压力增加,多变压器的运行都是极端危险的。所以几乎所有的变压器都设置了压力释放阀,以释放变压器内瞬间或缓慢变化导致的压力过高。压力释放阀上配置有微动开关,当因变压器压力过高而发生释放动作时,微动开关动作,向机车控制系统发送信号,以快速断开机车主断路器,避免事故的扩大。
2.牵引变压器故障诊断
2.1.压力释放阀故障。产生压力释放阀故障的原因主要有:
压力释放阀失效:压力释放阀本身的微动开关失效,造成故障。当压力释放阀报故障时,需要查看压力释放阀是否有释放动作及喷出变压器油,没有变压器油喷出,则可基本判定为开关失效,需要对开关进一步检查排除故障。
变压器油回路故障:这种故障一般会在故障信号发生时伴有变压器油喷出。变压器与储油柜之间的连接如果不畅通,则在变压器运行时,随着油温度的上升,油箱内压力增高到一定程度时,可以导致压力释放阀动作,释放压力。
变压器内部绝缘击穿:如果变压器内部发生绕组之间高电压击穿或绕组对地等绝缘击穿时,会产生瞬间的高温高压,并释放大量气体。由于变压器与储油柜连接的管路无法瞬间释放压力,则会导致压力释放阀动作释放压力。此种情况一般会伴随较大的放电声音、过流、变压器油喷出等现象,对变压器油取样进行色谱分析一般会气体含量超标,三比值法判断结果会显示高能量放电等结果。
2.2.布赫继电器故障(瓦斯保护)。根据布赫继电器的结构及原理,报警原因主要有:冷却系统组装后空气未排净、变压器内部绝缘故障击穿、油泵故障烧损导致变压器油裂解。
瓦斯保护对变压器的故障情况比较灵敏,因此,在布赫继电器报警后,都要立即确认是否有其他异常情况发生,如是否有过流、压力释放阀动作、变压器差动保护等异常,如果没有其他伴随现象,则可确认是否为布赫继电器本身故障。无论何种情况,都需要对变压器进行取油样检测,通过色谱分析,利用三比值法判断变压器油是否异常。对于含气速率超出标准值的需要尽快对变压器进行解体检查。
2.3.差动保护。根据基尔霍夫第一定律,;变压器在正常运行或外部故障时,若忽略励磁电流损耗级其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护中的两个电流相等。当变压器内部故障时,若平衡除去流入流出的负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流。例如:当变压器发生高压绕组接地故障、在T型头和高压A端子故障等情况时,两端电流互感器的电流值会出现偏差
3.总结
本文介绍了牵引变压器的多项保护系统,并针对各种保护信号,提出了原因分析。根据在线运行的系列机车牵引变压器反馈的报警信息及后续对产品的故障处理情况看,大部分的故障发生在各保护元件以及外部配件上,有部分的报警信息则真实的反应了牵引变压器的本身故障。因此对于线上发生的故障报警信息,需要综合各保护信号的情况综合判断。对于纵差保护、瓦斯保护、压力保护等,必须立即现场检查,确认报警原因。在未确认是各传感元件本身故障而误报的情况下,不得对变压器进行送电运行,以避免故障的进一步扩大。
第三篇:牵引变压器安装技术记录
CEEB
牵引变压器安装技术记录
施变—4
施工地点:XX牵引变电所施工日期:吊芯检查日期设备型号:见铭牌制 造 厂:见铭牌
出厂日期:见铭牌相数:见铭牌 额定频率:见铭牌Hz冷却方式:见铭牌连接组别: YN/ V
额定容量:见铭牌KvA 额定电压:110kv额定电流:A 阻抗电压:见铭牌%空载阻抗:空载损耗值W 短路损耗:负载损耗值W 油器 身 重:见铭牌kg 绝缘油规格:25#套管形式:油纸电容式
抽头电压:115500V、112750V、110000V、107250V、104500
充氮运输表压力:MPa器身检查日期:
相对湿度:% 器身外露时间:起、止时间 铁心有无移位或变形: 无线圈绝缘是否完整:是铁心有无多点接地:无
各部螺栓是否紧固:是引出线绝缘是否完好: 是绝缘摇表型号规格:ZC11D-10
穿心螺栓对夹铁绝缘电阻:MΩ穿心螺栓对夹铁芯绝缘电阻:MΩ 铁芯对夹铁绝缘电阻:实测值MΩ有载调压装置传动机构固定是否可靠:切换装置工作程序是否符合出厂记录:检查负责人:技术员签字工作人员:
冷却装置传动机构固定是否可靠:是储油柜安装前有无清洗:胶囊是否完好:有无漏气现象:充油套管油位是否正常:正常有无渗油现象:无吸剂是否干燥: 干燥 箭头是否指向储油柜:是
安全气道安装前内壁是否擦拭干净:是密封是否良好:是
安装、检查负责人:技术员签字工作人员:厂名:售后服务人员签字 备注:由厂方技术人员指导安装、检查,确认安装质量符合国标和产品技术标准。监理工程师(建设方代表)
第四篇:变压器原理教案
变压器的结构及原理
授课老师:黄易平
复习引入
一、电子线路中常见变压器:电源变压器、开关变压器、耦合变压器等 新课讲授:
一、变压器的基本结构: 变压器主要由:铁芯、线圈。
1、铁芯:变压器的磁路部分
由含硅量5%,厚度0.35mm或0.5mm硅钢片叠加而成。其特点是在较低的外磁场作用下能产生较高的磁感应强度,并随外磁场的增加磁感应强度很快达到饱和,磁场去掉后,材料磁场基本消失,剩磁很小。由于硅的加入钢片电阻率增大,涡流损耗降低,不易发热且老化现象减小。
2、绕组:变压器的电路部分
由漆包线绕制而成,分初级绕组和次级绕组。
二、变压器电路符号:
三、变压器的种类及作用:
变压器的种类很多, 有在电力系统中用电力变压器;有在电子设备和仪器中常用小功率电源变压器;有在放大电路中用耦合变压器起传递信号或进行阻抗的匹配。变压器虽然大小悬殊, 用途各异, 但其基本结构和工作原理却是相同的。
变压器是利用电磁感应原理传输电能或电信号的器件, 它具有变换电压、变换电流和变换阻抗的作用。
四、电磁感应原理实验(1):
四、电磁感应原理实验(2):
五、电磁感应实验结论:
1、在线圈中感应电压的大小方向与线圈中,磁通的大小的变化率成正比。即: E= N ΔΦ/Δt
2、磁通量大小与电流大小成正比,即 NΦ=Li,其中L是电感系数,于是, E=NΔΦ/dt=ΔLi/dt。
3、楞次定律:
当穿过线圈的磁通量发生变化时,感应电流的方向总是要阻碍线圈中原磁通量的变化。
六、PROTUES实验仿真:验证变压过程。
第五篇:变压器工作原理
变压器工作原理
变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
一、变压器的制作原理:
在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。
二、分类
按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。
按防潮方式分类:开放式变压器、灌封式变压器、密封式变压器。
按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。按电源相数分类:单相变压器、三相变压器、多相变压器。
按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器。
三、电源变压器的特性参数
工作频率
变压器铁芯损耗与频率关系很大,故应根据使用频率来设计和使用,这种频率称工作频率。
额定功率
在规定的频率和电压下,变压器能长期工作,而不超过规定温升的输出功率。额定电压
指在变压器的线圈上所允许施加的电压,工作时不得大于规定值。
电压比
指变压器初级电压和次级电压的比值,有空载电压比和负载电压比的区别。空载电流
变压器次级开路时,初级仍有一定的电流,这部分电流称为空载电流。空载电流由磁化电流(产生磁通)和铁损电流(由铁芯损耗引起)组成。对于50Hz电源变压器而言,空载电流基本上等于磁化电流。
空载损耗
指变压器次级开路时,在初级测得功率损耗。主要损耗是铁芯损耗,其次是空载电流在初级线圈铜阻上产生的损耗(铜损),这部分损耗很小。
效率
指次级功率P2与初级功率P1比值的百分比。通常变压器的额定功率愈大,效率就愈高。
绝缘电阻
表示变压器各线圈之间、各线圈与铁芯之间的绝缘性能。绝缘电阻的高低与所使用的绝缘材料的性能、温度高低和潮湿程度有关。
四、音频变压器和高频变压器特性参数
频率响应
指变压器次级输出电压随工作频率变化的特性。
通频带
如果变压器在中间频率的输出电压为U0,当输出电压(输入电压保持不变)下降到0.707U0时的频率范围,称为变压器的通频带B。
初、次级阻抗比
变压器初、次级接入适当的阻抗Ro和Ri,使变压器初、次级阻抗匹配,则Ro和Ri的比值称为初、次级阻抗比。在阻抗匹配的情况下,变压器工作在最佳状态,传输效率最高。
五、低频变压器的技术参数
对不同类型的变压器都有相应的技术要求,可用相应的技术参数表示。如电源变压器的主要技术参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、绝缘性能和防潮性能。对于一般低频变压器的主要技术参数是:变压比、频率特性、非线性失真、磁屏蔽和静电屏蔽、效率等。
电压比:
变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级。在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势。当N2>N1 时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2
式中n 称为电压比(圈数比)。当n<1 时,则N1>N2,V1>V2,该变压器为降压变压器。反之则为升压变压器。
变压器的效率:
在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即 式中η 为变压器的效率;P1 为输入功率,P2 为输出功率。
当变压器的输出功率P2 等于输入功率P1 时,效率η 等于100%,变压器将不产生任何损耗。但实际上这种变压器是没有的。变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损。铜损是指变压器线圈电阻所引起的损耗。当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。
变压器的铁损包括两个方面。一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时。铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗。
变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率比就越小,效率也就越高。反之,功率越小,效率也就越低。