第一篇:证明方法
2.2直接证明与间接证明BCA案
主备人:史玉亮 审核人:吴秉政使用时间:2012年2-1
1学习目标:
1.了解直接证明的两种基本方法,即综合法和分析法。了解间接证明的一种基本方法——反证法。
2.了解综合法和分析法的思考过程与特点,并会用两种方法证明。了解反证法的解题步骤,思维过程及特点。
重点:
1.对综合法和分析法的考查是本课的重点。应用反证法解决问题是本课考查的热点。
2.命题时多以考查综合法为主,选择题、填空题、解答题均有可能出现。反证法仅作为客观题的判断方法不会单独命题。
B案
一、直接证明
1.定义:直接证明是从___________或___________出发的,根据已知的_________、________________,直接推证结论的真实性。
2.直接证明的方法:______________与________________。
二、综合法
1.定义:综合法是从___________推导到______________的思维方法。具体地说,综合法 从__________除法,经过逐步的___________,最后达到_______________。
„
三、分析法
1.定义:分析法是从__________追溯到__________的思维方法,具体地说,分析法是从________出发,一步一步寻
求结论成立的____________,最后达到
_________或__________。
„
四、反证法的定义
由证明pq转向证明prt,t与_________矛盾,或与某个________矛盾,从而判定_________,推出___________的方法,叫做反证法。
预习检测:
1.已知|x|<1,|y|<1,下列各式成立的是()
A.|xy||xy|≥2B.xyC.xy1xyD.|x||y|
ln2ln3ln5,b,c,则()23
5A.abcB.cbaC.cabD.bac 2.若a
3.命题“三角形中最多只有一个内角是直角”的结论的否定是()
A.有两个内角是直角
B.有三个内角是直角
C.至少有两个内角是直角
D.没有一个内角是直角
4.abcd的必要不充分条件是()
A.acB.bdC.ac且bdD.ac或bd
5.“自然数a,b,c中恰有一个是偶数”的反证法设为()
A.自然数a,b,c都是奇数B.自然数a,b,c都是偶数
C.自然数a,b,c中至少有两个是偶数D.自然数a,b,c中都是奇数或至少有两个偶数
6.已知a是整数,a2为偶数,求证:a也是偶数。
C案
一、综合法
例1求证:12
3log19log1919
253log2
2.已知n是大于1的自然数,求证:log(n1)log(n2)
n(n1)
二、分析法
例2.求证
2变式突破: 已知a,b,c表示三角形的三边,m0,求证:
三、反证法:
例3.(1)证明:2不是有理数。
变式突破:若a、b、c均为实数,且ax2y
求证:a、b、c中至少有一个大于0.2abc ambmcm2,by22z3,cz22x6.当堂检测:
1.“x
0”是“0”成立的()
A.充分非必要条件 B.必要非充分条件 C.非充分非必要条件 D.充要条件
2.设alog54,b(log53)2,clog45,则()
A.acbB.bcaC.abcD.bac
3.设x,y,zR,ax111,by,cz,则a,b,c三数()yzx
A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于
22224.若下列方程:x4ax4a30,x(a1)xa0,x2ax2a0至少有2
一个方程有实根,试求实数a的取值范围。
A案
1.A、B为△ABC的内角,∠A>∠B是sinAsinB的()
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
2.若向量a(x,3)(xR),则“x4”是“|a|5”的()
A.充分不必要条件 B.必要而不充分条件 C.充要条件D.既不充分又不必要条件
3.已知数列{an}为等比数列,Sn是它的前n项的和,若a2a32a1且a4与2a7的等差中项为5,则S5=()A.35B.33C.31D.29
44.定义在R上的函数f(x)满足f(xy)f(x)f(y)2xy(x,yR),f(1)2,则f(2)等于()A.2B.3C.6D.9
5.分析法证明问题是从所证命题的结论出发,寻求使这个结论成立的()
A.充分条件B.必要条件C.重要条件D.既非充分条件又非必要条件
6.下面四个不等式:①abc≥abbcca;②a(1a)≤2221ba;③≥2; 4ab
④(a2b2)(c2d2)≥(acbd)2,其中恒成立有()A.1个 B.2个 C.3个 D.4个
7.若x,y0且xy2,则1y1x1y1x和的值满足()A.和的中至少xxyy
有一个小于2B.1y1x1y1x和都小于2C.和都大于2D.不确定 xxyy
8.已知、为实数,给出下列三个论断:
①0;②||
5;③|||个论断为结论,写出你认为正确的命题是______________。
9.设a0,b0,c0,若abc1,则
111≥______________。abc
第二篇:证明不等式方法
不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法
比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab
2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤
1分析:通过观察可直接套用: xy≤x2+y2
2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥
33综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥
4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn
3求证:2f(n)≤f(2n)
4分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明:即证 |a-c|<c2-ab
即证(a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)
25放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<
2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>
ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=
1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<
b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例
7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<
1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤
3(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431
4证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+
2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314
7反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤
2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q
3将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾∴p+q≤
2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0
8数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边>2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2>2k+1·2k+3
〈二〉(2k+2)2>(2k+1)(2k+3)
〈二〉4k2+8k+4>4k2+8k+3
〈二〉4>3③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132
49构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2(x≠0)
证明:设f(x)=x1-2x-x2(x≠0)
∵f(-x)
=-x1-2-x+x2x-2x2x-1+x
2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2
|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|
练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab
10添项法
某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。
1倍数添项
若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。
例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+
∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc
当且仅当a=b,b=c,c=a即a=b=c时,等号成立。
2平方添项
运用此法必须注意原不等号的方向
例14 :对于一切大于1的自然数n,求证:
(1+13)(1+15)…(1+12n-1> 2n+1 2)
证明:∵b > a> 0,m> 0时ba> b+ma+m
∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>
∴(1+13)(1+15)…(1+12n-1)>2n+1 2)
3平均值添项
例15:在△ABC中,求证sinA+sinB+sinC≤3
32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π
3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y
2∴上式成立
反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332
∴sinA+sinB≠sinC≤332
练习11 在△ABC中,sin A2sinB2sinC2≤18
4利用均值不等式等号成立的条件添项
例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18
分析:若取消a≠b的限制则a=b= 12时,等号成立
证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①
同理b4+3(12)4 ≥b②
∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③
∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立
1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。
正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。
6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz
错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz
错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:
x2y2+y2z2+z2x2x+y+z ≥ xyz
6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥
1x 1y
错证:∵yn-1xn+xn-1yn-1x-1y
=(xn-yn)(xn-1-yn-1)xnyn
n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-
1同号,∴yn-1xn+xn-1yn≥ 1x-1y
错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。
正解:应用比较法:
yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn
① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0
所以(xn-yn)(xn-1-yn-1)xnyn
≥0故:yn-1xn+xn-1yn≥ 1x-1y
② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|
又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y
综合①②知原不等式成立
第三篇:韩信点兵方法证明
关于韩信点兵问题
公式的证明
设:第一次每排A人,最后剩余a人,第二次每排B人,最后剩余b人,第三次每排C人,最后剩余c人。按照求解方法的步骤是:
第一步
1找到满足下列条件的k1、k2: ○
(B×C)·k1=A·k2+
12将上面的等式两边扩大a(第一次最后剩余人数)倍 ○
1式或:(B×C)·a ·k1=A·a·k2+a,……○
[(B×C)·a ·k1]÷A=a·k2……a第二步同法:
1找到满足下列条件的k3、k4: ○
(A×C)·k3=B·k4+1
2将上面的等式两边扩大b(第二次最后剩余人数)倍 ○
2式或(A×C)·b·k3=B·b·k4+b……○
[(A×C)·b·k3]÷B=b·k4……b第三步同法:
3式或(A×B)·c ·k5 =C·c·k6+c……○
[(A×B)·c ·k5]÷C=c·k6……c
1○2○3式相加,并验证 第四步把○
1式(B×C)·a·k1= A·a·k2+a……○
2式(A×C)·b·k3 = B·b·k4+b……○
3式(A×B)·c·k5= C·c·k6+c……○
1○2○3式左边相加 验证:○
1式说明左边除以A,余a ○
2式说明左边除以A,无余数; ○
3式说明左边除以A,也无余数; ○
1○2○3式相加,和除以A,余数必然是a;把○
同理:
1○2○3式相加,和除以B,余数必然是b;把○
1○2○3式相加,和除以C,余数必然是c;把○
最后总结一下:
该数=(B×C)·a·ka+(A×C)·b·kb+(A×B)·c·kc其中:
ka 满足:(B×C)·ka= An+1取最小 kb 满足:(A×C)·kb = Bn+1取最小 kc 满足:(A×B)·kc= Cn+1取最小
第四篇:立体几何证明方法
立体几何证明方法
一、线线平行的证明方法:
1、利用平行四边形。
2、利用三角形或梯形的中位线
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(线面平行的性质定理)
4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理)
5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理)
6、平行于同一条直线的两条直线平行。
二、线面平行的证明方法:
1、定义法:直线与平面没有公共点。
2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(线面平行的判定定理)
3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。
三、面面平行的证明方法:
1、定义法:两平面没有公共点。
2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理)
3、平行于同一平面的两个平面平行
4、经过平面外一点,有且只有一个平面和已知平面平行。
5、垂直于同一直线的两个平面平行。
四、线线垂直的证明方法
1、勾股定理。
2、等腰三角形。
3、菱形对角线。
4、圆所对的圆周角是直角。
5、点在线上的射影。6利用向量来证明。
7、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。
8、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
五、线面垂直的证明方法:
1、定义法:直线与平面内任意直线都垂直。
2、点在面内的射影。
3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理)
4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理)
5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面
6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。
7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。
8、过一点,有且只有一条直线与已知平面垂直。
9、过一点,有且只有一个平面与已知直线垂直。
六、面面垂直的证明方法:
1、定义法:两个平面的二面角是直二面角。
2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理)
3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。
4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。
第五篇:不等式证明若干方法
安康学院 数统系数学与应用数学 专业 11 级本科生
论文(设计)选题实习报告
11级数学与应用数学专业《科研训练2》评分表
注:综合评分60的为“及格”; <60分的为“不及格”。