四点共圆证明方法

时间:2019-05-14 20:31:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《四点共圆证明方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四点共圆证明方法》。

第一篇:四点共圆证明方法

:四点共圆的证明方法有以下五种,本例用的是第二种 方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.

第二篇:证明四点共圆

方法1

从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 方法3

方法4 同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)方法5

证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,可肯定这四点共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明

第三篇:如何证明四点共圆(定稿)

如何证明四点共圆

证明四点共圆的基本方法

证明四点共圆有下述一些基本方法:

方法

1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。

方法

2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)

方法

3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。方法

4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(根据相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。(根据托勒密定理的逆定理)

方法

5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 判定与性质:

圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等)。

角CBE=角ADE(外角等于内对角)

△ABP∽△DCP(三个内角对应相等)

AP*CP=BP*DP(相交弦定理)

EB*EA=EC*ED(割线定理)

EF*EF= EB*EA=EC*ED(切割线定理)

(切割线定理,割线定理,相交弦定理统称圆幂定理)

AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)

弦切角定理

方法6

同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径。

如何判定四点共圆

1、圆的内接四边形的两对角和是180度,反之,如果四边形的两对角和是180,那么四点共圆。

2、在圆里,同弦角相等。设A、B、C、D四点在圆上,明显,AB弦所对的角∠ACB=∠ADB。反之,如果∠ACB=∠ADB,那四点共圆。常用的就是这两个

第四篇:四点共圆的证明

证明四点共圆有下述一些基本方法:

方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)

方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)

方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.

判定与性质:

圆内接四边形的对角和为π,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π。

角CBE=角ADC(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)EB*EA=EC*ED(割线定理)

EF*EF= EB*EA=EC*ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)

证明四点共圆基本方法:

方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

四点共圆的判定是以四点共圆的性质的基础上进行证明的。四点共圆的性质:(1)同弧所对的圆周角相等(2)圆内接四边形的对角互补

(3)圆内接四边形的外角等于内对角

以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。

四点共圆的判定定理:

方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(可以说成:若线段同侧二点到线段两端点连线夹角相等,那末这二点和线段二端点四点共圆)

方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。那末这四点共圆)

我们 可都可以用数学中的一种方法;反证法开进行证明。

现就“若平面上四点连成四边形的对角互补。那末这四点共圆”证明如下(其它画个证明图如后)已知:四边形ABCD中,∠A+∠C=π

求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)

证明:用反证法

过A,B,D作圆O,假设C不在圆O上,刚C在圆外或圆内,若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=π,∵∠A+∠C=π ∴∠DC’B=∠C

这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。

∴C在圆O上,也即A,B,C,D四点共圆。

第五篇:证明四点共圆有下述一些基本方法

证明四点共圆有下述一些基本方法

证明四点共圆有下述一些基本方法:

方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)

方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)

方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.

判定与性质:

圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=180度,B+D=180度,角ABC=角ADC(同弧所对的圆周角相等)。

角CBE=角D(外角等于内对角)

△ABP∽△DCP(三个内角对应相等)

AP*CP=BP*DP(相交弦定理)

EB*EA=EC*ED(割线定理)

EF*EF= EB*EA=EC*ED(切割线定理)

(切割线定理,割线定理,相交弦定理统称圆幂定理)

AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)

下载四点共圆证明方法word格式文档
下载四点共圆证明方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2011几何证明选讲-四点共圆-高考题汇总

    1.(2011·全国新课标文)(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为ABC的边AB,AC上的点,且不与ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x14xmn0的两个根......

    第四讲四点共圆问题

    第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道......

    向量证明四点共面

    向量证明四点共面 由n+m+t=1 , 得 t=1-n-m ,代入op=nox+ moy +toz, 得 OP=n OX +mOY +(1-n-m)OZ, 整理,得OP-OZ =n(OX-OZ) +m(OY-OZ)即ZP =nZX +mZY即P、X、Y、Z 四点共面。......

    用向量证明四点共面

    用向量证明四点共面由n+m+t=1,得t=1-n-m,代入op=nox+moy+toz,得Op=nOX+mOY+(1-n-m)OZ,整理,得Op-OZ=n(OX-OZ)+m(OY-OZ)即Zp=nZX+mZY即p、X、Y、Z四点共面。以上是充要条件。2......

    圆的切点弦求法与四点共圆复习1

    双曲线的切点弦方程 圆的切点弦方程 4)抛物线的切点弦方程 5椭圆的切点弦方程圆的切点弦方程的解法探究在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再......

    证明方法

    2.2直接证明与间接证明BCA案主备人:史玉亮 审核人:吴秉政使用时间:2012年2-11学习目标:1.了解直接证明的两种基本方法,即综合法和分析法。了解间接证明的一种基本方法——反证法......

    证明不等式方法

    不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法比较法是证明不等式的最基本方法......

    韩信点兵方法证明

    关于韩信点兵问题公式的证明设:第一次每排A人,最后剩余a人,第二次每排B人,最后剩余b人, 第三次每排C人,最后剩余c人。 按照求解方法的步骤是:第一步1找到满足下列条件的k1 、k2: ○(B......