第一篇:第四讲四点共圆问题
第四讲四点共圆问题
“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.“四点共圆”作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与
AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆.(第19届美国数学奥林匹克)
分析:设PQ,MN交于K点,连接AP,AM.欲证M,N,P,Q四点共圆,须证 AMK·KN=PK·KQ,Q即证(MC′-KC′)(MC′+KC′)C′=(PB′-KB′)·(PB′+KB′)
2222或MC′-KC′=PB′-KB′.不难证明 AP=AM,从而有 B2222AB′+PB′=AC′+MC′.2222故 MC′-PB′=AB′-AC′
2222=(AK-KB′)-(AK-KC′)
22=KC′-KB′.②
由②即得①,命题得证.O例2.A、B、C三点共线,O点在直线外,O1O1,O2,O3分别为△OAB,△OBC,△OCA的外心.求证:O,O1,O2,O2O3四点共圆.3(第27届莫斯科数学奥林匹克)
A分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC及其外接圆,立得∠BC
OO2O1=11∠OO2B=∠OCB.观察△OCA及其外接圆,立得∠OO3O1=∠OO3A=∠OCA.22
由∠OO2O1=∠OO3O1O,O1,O2,O3共圆.利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证.以“四点共圆”作为解题手段
这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面.(1)证角相等
例3.在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK.求证:∠DMA=∠CKB.CD(第二届袓冲之杯初中竞赛)
分析:易知A,B,M,K四点共圆.连接KM,有∠DAB=∠CMK.∵∠DAB+∠ADC KM
=180°,∴∠CMK+∠KDC=180°.AB故C,D,K,M四点共圆∠CMD=∠DKC.但已证∠AMB=∠BKA,∴∠DMA=∠CKB.(2)证线垂直 例4.⊙O过△ABC顶点A,C,且与AB,BC交于K,N(K与N不同).△ABC外接圆和△BKN外接圆相交于B和
BM.求证:∠BMO=90°.(第26届IMO第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.共圆”,问题是不难解决的.连接OC,OK,MC,MK,延长BM到G.易得∠GMC=
∠BAC=∠BNK=∠BMK.而∠COK=2·∠BAC=∠GMC+
∠BMK=180°-∠CMK,∴∠COK+∠CMK=180°C,O,K,M四点共圆.在这个圆中,由
OC=OK OC∠OMC=∠OMK.但∠GMC=∠BMK,故∠BMO=90°.(3)判断图形形状
例5.四边形ABCD内接于圆,△BCD,△ACD,△ABD,△ABC的内心依次记为IA,IB,IC,ID.试证:IAIBICID是矩形.(第一届数学奥林匹克国家集训选拔试题)
分析:连接AIC,AID,BIC,BID和DIB.易得
11∠ADB=90°+ 22
∠ACB=∠AIDBA,B,ID,IC四点 ∠AICB=90°+
共圆.同理,A,D,IB,IC四点共圆.此时 IBAC1∠AICID=180°-∠ABID =180°-∠ABC,2
1∠AICIB=180°-∠ADIB=180°-∠ADC,2
∴∠AICID+∠AICIB A1(∠ABC+∠ADC)2
1=360°-×180°=270°.2=360°-故∠IBICID=90°.同样可证IAIBICID其它三个内角皆为90°.该四边形必为矩形.(4)计算
2例6.正方形ABCD的中心为O,面积为1989㎝.P为正方形内
一点,且∠OPB=45°,PA:PB=5:14.则PB=__________
(1989,全国初中联赛)CD分析:答案是PB=42㎝.怎样得到的呢?
连接OA,OB.易知O,P,A,B
四点共圆,有∠APB=∠AOB=90°.222故PA+PB=AB=1989.由于PA:PB=5:14,可求PB.BA(5)其他
例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并
求出这两个面积(须证明你的论断).(1978,全国高中联赛)
分析:设△EFG为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三EA条边上,所以不妨令F,GD·作正△EFG的高EK,易知E,K,G,D四点共圆∠KDE=∠KGE=60°.同
理,∠KAE=60°.故△KAD也是一个正 FGK三角形,K必为一个定点.CB
又正三角形面积取决于它的边长,当KF丄AB时,边长为1,这时边长最小,而面积S=
也最4
小.当KF通过B点时,边长为2·23,这时边长最大,面积S=23-3也最大.例8.NS是⊙O的直径,弦AB丄NS于M,P为ANB上异于N的任一点,PS交AB于R,PM的延长线
交⊙O于Q.求证:RS>MQ.(1991,江苏省初中竞赛)
分析:连接NP,NQ,NR,NR的延长线交⊙O于Q′.连接
MQ′,SQ′.易证N,M,R,P四点共圆,从而,∠SNQ′=∠MNR=
∠MPR=∠SPQ=∠SNQ.根据圆的轴对称性质可知Q与Q′关于NS成轴对称MQ′=MQ.又易证M,S,Q′,R四点共圆,且RS是这个圆的直径(∠RMS=90°),MQ′是一条弦(∠MSQ′<90°),故RS>MQ′.但MQ=MQ′,所以,RS>MQ.练习题
1.⊙O1交⊙O2 于A,B两点,射线O1A交⊙O2 于C点,射线O2A
交⊙O1 于D点.求证:点A是△BCD的内心.(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2
四点共圆,从而知C,D,O1,B,O2五点共圆.)
2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.(提示:设法证∠ABA1与∠ACA1互补造成A,B,A1,C四点共圆;再证A,A2,B,C四点共圆,从而知A1,A2都是△ABC的外接圆上,并注意∠A1AA2=90°.)
3.设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3也是正三角形.4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆)
5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)
第二篇:证明四点共圆
方法1
从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 方法3
方法4 同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)方法5
证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,可肯定这四点共圆.
上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明
第三篇:如何证明四点共圆(定稿)
如何证明四点共圆
证明四点共圆的基本方法
证明四点共圆有下述一些基本方法:
方法
1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。
方法
2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)
方法
3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。方法
4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(根据相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。(根据托勒密定理的逆定理)
方法
5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 判定与性质:
圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等)。
角CBE=角ADE(外角等于内对角)
△ABP∽△DCP(三个内角对应相等)
AP*CP=BP*DP(相交弦定理)
EB*EA=EC*ED(割线定理)
EF*EF= EB*EA=EC*ED(切割线定理)
(切割线定理,割线定理,相交弦定理统称圆幂定理)
AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)
弦切角定理
方法6
同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径。
如何判定四点共圆
1、圆的内接四边形的两对角和是180度,反之,如果四边形的两对角和是180,那么四点共圆。
2、在圆里,同弦角相等。设A、B、C、D四点在圆上,明显,AB弦所对的角∠ACB=∠ADB。反之,如果∠ACB=∠ADB,那四点共圆。常用的就是这两个
第四篇:四点共圆证明方法
:四点共圆的证明方法有以下五种,本例用的是第二种 方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.
第五篇:四点共圆的证明
证明四点共圆有下述一些基本方法:
方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)
方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)
方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.
上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.
判定与性质:
圆内接四边形的对角和为π,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π。
角CBE=角ADC(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)EB*EA=EC*ED(割线定理)
EF*EF= EB*EA=EC*ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)
证明四点共圆基本方法:
方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
四点共圆的判定是以四点共圆的性质的基础上进行证明的。四点共圆的性质:(1)同弧所对的圆周角相等(2)圆内接四边形的对角互补
(3)圆内接四边形的外角等于内对角
以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。
四点共圆的判定定理:
方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(可以说成:若线段同侧二点到线段两端点连线夹角相等,那末这二点和线段二端点四点共圆)
方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。那末这四点共圆)
我们 可都可以用数学中的一种方法;反证法开进行证明。
现就“若平面上四点连成四边形的对角互补。那末这四点共圆”证明如下(其它画个证明图如后)已知:四边形ABCD中,∠A+∠C=π
求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)
证明:用反证法
过A,B,D作圆O,假设C不在圆O上,刚C在圆外或圆内,若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=π,∵∠A+∠C=π ∴∠DC’B=∠C
这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。
∴C在圆O上,也即A,B,C,D四点共圆。