第一篇:质数和合数评课稿
质数和合数评课稿
白峪店子小学李伟乐
质数和合数是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。同时,质数和合数是求最大公约数和最小公倍数以及约分、通分的基础。因此这部份内容的教学不仅要使学生掌握质数、合数的概念,而且要能较快地看出常见数是质数还是合数。
安新颖老师执教的《质数和合数》一课,体现了新的课程理念,教学目标明确,重、难点突出,教学内容安排合理,方法恰当,教学语言简洁、清楚、流畅。教学主线清晰。具有以下特点:
一、教学准备到位
这节课中,我们看出,安老师课前做了大量的准备。他根据教材内容制定了明确的目标。为达到这一目标,设计了可行的教学方法。课前的引进激发学生的兴趣,以最少的时间得到最佳的效果。
二、教学思路的设计符合教学内容和学生实际
安老师在教学中从找出一个数约数的个数推出根据约数个数判断质数和合数,最后利用学号这个资源,采用游戏的方式,来让学生正确判断一个数是质数还是合数来巩固本节课的重点内容。
三、注意知识的内在联系,利用已有的知识推动新知识的学习
安老师先复习约数的定义,然后让学生找出18和19的所有约数,再根据约数的个数进行分类,其目的是要从约数的个数推出质数和合数的概念。
四、确立学生的主体地位,注重让学生利用合作探究的学习方式,从中获得对质数和合数的理解以及质数和合数的判断方法
安老师教学质数和合数的概念时,组织学生先进行讨论,让学生先从已找出约数个数的数出发,小组合作,讨论出根据约数的个数,以上数可以分为几种情况,是哪几种?接下来再讨论,只有1和它本身两个约数的数该叫什么数?含有两个以上约数个数的又叫什么数?最后剩“1”只有它本身唯一一个约数,它该是什么数?通过讨论、汇报、论证,总结出质数和合数的概念。既使学生理解了质数和合数,也了解了质数和合数的判断方法,达到了本节课的教学目的。并且在整个过程中老师起到了组织者、引导者和合作者的角色。
五、课堂活动性强
在课堂教学中,注意把理解与运用相结合,促进学生对质数与合数的理解和判断。在本节课教学中,老师在学生对质数和合数的判断方法了解后,让学生进行练习判断。并引出可以用100以内的质数表进行验证。最后巩固练习部分,让学生说理判断,这样循序渐进,层层深入,取得了较好的效果。在这节课中,学生的思维比较活跃,但是思维的活跃与课堂表面的热闹是有区别的。本课过份追求课堂表面的热闹而影响到部分同学的思维,长此以往不利于大面积提高教学质量。
第二篇:质数和合数评课稿
质数和合数评课稿
白峪店子小学 李伟乐
质数和合数是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。同时,质数和合数是求最大公约数和最小公倍数以及约分、通分的基础。因此这部份内容的教学不仅要使学生掌握质数、合数的概念,而且要能较快地看出常见数是质数还是合数。
安新颖老师执教的《质数和合数》一课,体现了新的课程理念,教学目标明确,重、难点突出,教学内容安排合理,方法恰当,教学语言简洁、清楚、流畅。教学主线清晰。具有以下特点:
一、教学准备到位
这节课中,我们看出,安老师课前做了大量的准备。他根据教材内容制定了明确的目标。为达到这一目标,设计了可行的教学方法。课前的引进激发学生的兴趣,以最少的时间得到最佳的效果。
二、教学思路的设计符合教学内容和学生实际
安老师在教学中从找出一个数约数的个数推出根据约数个数判断质数和合数,最后利用学号这个资源,采用游戏的方式,来让学生正确判断一个数是质数还是合数来巩固本节课的重点内容。
三、注意知识的内在联系,利用已有的知识推动新知识的学习
安老师先复习约数的定义,然后让学生找出18和19的所有约数,再根据约数的个数进行分类,其目的是要从约数的个数推出质数和合数的概念。
四、确立学生的主体地位,注重让学生利用合作探究的学习方式,从中获得对质数和合数的理解以及质数和合数的判断方法
安老师教学质数和合数的概念时,组织学生先进行讨论,让学生先从已找出约数个数的数出发,小组合作,讨论出根据约数的个数,以上数可以分为几种情况,是哪几种?接下来再讨论,只有1和它本身两个约数的数该叫什么数?含有两个以上约数个数的又叫什么数?最后剩“1”只有它本身唯一一个约数,它该是什么数?通过讨论、汇报、论证,总结出质数和合数的概念。既使学生理解了质数和合数,也了解了质数和合数的判断方法,达到了本节课的教学目的。并且在整个过程中老师起到了组织者、引导者和合作者的角色。
五、课堂活动性强
在课堂教学中,注意把理解与运用相结合,促进学生对质数与合数的理解和判断。在本节课教学中,老师在学生对质数和合数的判断方法了解后,让学生进行练习判断。并引出可以用100以内的质数表进行验证。最后巩固练习部分,让学生说理判断,这样循序渐进,层层深入,取得了较好的效果。在这节课中,学生的思维比较活跃,但是思维的活跃与课堂表面的热闹是有区别的。本课过份追求课堂表面的热闹而影响到部分同学的思维,长此以往不利于大面积提高教学质量。篇二:质数和合数评课
《质数和合数》评课
老师们:下午好!
首先,向今天
质数和合数是人教版六年制小学数学第十册的内容, 要求学生理解质数和合数的意义,并能根据它们的意义判断哪些是质数,哪些是合数.作为一节典型的概念教学课,它是小学数学教材中比较抽象,与学生的生活有一定距离,学生在学习中感觉比较“枯燥”的内容。因此,如何激发学生的学习兴趣,让他们在主动探索中学好这部分知识,并在学习中培养和发展创新能力就成为本节教学中的一个难点。按照传统的教法思路,让学生先写出1~12各数的约数,然后再根据约数的个数进行分类,最后在分类的基础上概括出质数和合数的意义.这样教,从表面上看,有的学生学得主动,质数和合数的意义是学生自己归纳、概括的.但实际上,教学的主动权还是掌握在教师手里,学生的主体作用并没有得到真正的发挥,他们只不过把教师设计好的东西说了出来,这一过程不利于学生的发展,也不利于培养学生的创新能力.如何在这样的课的教学中体现新课程理念?吴新林老师在解决这一难点时处理得较好,他对教材挖掘的较深,知识间的联系把握得准,整节课一严谨的教学风格,师生间的和谐默契的配合、轻松活跃的课堂气氛,对学生的启发、点拨恰到好处,与学生的交流幽默、亲切、自然,驾驭课堂的能力让人佩服。本节课的教学内容虽然比较抽象,但吴老师进行了有益地探索和尝试,给人一种新颖独特、耳目一新的感觉。
首先,即使是比较抽象的数学概念,吴老师仍然立足于学生的自主探究进行教学,从研究方法的选择到概念的得出、完善与应用,无不在学生自主探究中完成。在教学中,吴老师注重让学生经历较为完整的探究过程,这为学生今后的数学学习积累了一定的经验。在本课的教学过程中,学生自始至终都保持着较高的学习热情和强烈的探索欲望,原因就在于教师在准确把握教材的基础上,对学习材料进行了有效地加工和重组,使得学生在整个学习过程中能够不断遇到挑战,并不断在这些挑战中体验成功所带来的学习乐趣。这个过程还应验了一个观点:学生对数学学习的持久兴趣来自于数学本身。
二、充分体现学生的主体性从引入到揭示概念再到应用概念解决问题各个环节都放手让学生自主探究发现特征、总结规律、解决问题。引入部分先让学生找出一列质数的共同特征,再举出类似的数例;揭示概念时教师不是直接了断的说明,而是从奇数偶数的分类标准,让学生自主探究“根据一个数约数的个数,你能将自然数分成几类?”学生的思维是活跃的,探究热情很高,由于是通过自己思考得到的结论,比教师的说教试讲解掌握得更牢固,灵活性大得多;解决问题环节所设计的问题层层深入,教师总是启发学生思考,从不以俎代庖。
三、教学思想开放,课改意识强。新课标要求教师要把学习时间充分还给学生,让学生在合作中学习、探究未知领域的知识,让学生充分借助已有知识来获取新的知识,形成知识网络。本堂课吴老师的教学思想是开放的,正由于教师的开放,学生的思维才活跃起来,在他的引导下学生借助已有的约数、倍数、奇数、偶数的知识探究新知,获得了质数与合数的概念,并能运用其较熟练的解决问题。由于教学思想开放而促使学生思维活跃,由于学生思维活跃而促进学生对知识的理解和掌握,由于知识的掌握而促进解决问题的能力提高。
四、练习设计层层深入、环环相扣从简单的判断质数、合数的基础知识到综合性较强的概念判断,再到猜数和电话号码,整个练习,题目设计简洁而干练,不拖泥带水、重复罗嗦。既照顾了层次低的学生,有照顾了学习拔尖学生的知识面。
本节课并不尽善尽美,也有不足之处:
其一,教师没有传授学生以好的解决问题的方法,如果在学生判断质数和合数前或后教师提一个问题:“你是怎样快速判断一个数是质数还是合数的?”那就能让学生找到解决问题的捷径,只有找到除1和他本身以外的另1个约数就可以肯定这个数是合数。
其二,练习设计虽然有深度,但与后续知识没有多大联系,如果将分棋子的题改为将一个数写成几个质数相乘的形式,这样既巩固了新知,又与下一堂分解质因数埋下了伏笔。其成功之处在于:第一,全课以游戏活动的形式为学生创设了一个能够积极主动探索知识的学习情境;第二,把数学思想方法渗透在学生的探索活动之中,让“数学”贴近学生的生活实际;第三,引导学生运用猜想和尝试,拓宽了学生的视野和思维方式,有效地促进了学生创新能力的发展。出示:大于4的偶数总能写成两个奇素数之和。
师: 谁来读一下.著名的哥德巴赫猜想.生读.师:就这样一句话呀。你读懂了吗?你读懂什麽啦?
生:大于4的偶数 能举个例子吗? 6、8、10?? 奇数:什麽是奇数? 素数(质数): 什么样的数是质数?
师:哦你们是这样理解的.看来质数与约数有直接关系。你从那知道的?
教学反思: 这样的教学,使学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入新课。这样从新闻入手,激发了全体学生的兴趣,使课堂气氛顿时活跃起来.为本节课的顺利实施提供了有效的条件。
活动二: 理解质数合数的意义
活动目的: 让学生自己去经历观察、实验、猜想、证明等数学活动的过程,发展合情推理能力,初步的演绎思维能力及解决问题的能力。
活动过程:
1、认识质数.师:看来你们对这个猜想已经初步理解了,我们能试着写一个符合这个猜想的式子吗。生:8=3+5 3、5是奇数吗?是质数吗? 10=11+3 3、11是奇数吗?是质数吗? 14=7+7 同意吗?为什么?
师:都有兴趣举,拿出本来,看谁举的多。
生:举例。你举了几个.师把最多的式子板书黑板.师:还有补充吗? 师:我们按照自己对“哥德巴赫猜想”的理解写出了这些式子,是否都符合这个猜想呢?
师:符号右边都是奇数吗?都是质数吗?质数有什么共同特点? 生:除了1和它本身不再有其他约数的数叫质数。
师:能举出一个质数吗?5 是质数,为什麽?17是质数,为什么?
师:都想举拿出本举看谁举得多?四人交流一下。
师:生汇报。这些数都是质数,到底什么是质数。板书:质数
2、认识合数。.师:9这个数为什么不是质数?我们把这样的数叫什麽数。
生:合数,为什么?
师:谁能再举一个合数。什么是合数?板书:合数.3、今天我们学习了质数和合数.板书课题:质数 合数有问题吗?
4、判断数字卡片是质数还是合数?
出示:
5、9 为什么?
抢答:3、19、49、63、47、39、121、2、1、31、5730?? 师:2为什么是质数?1为什么不是质数也不是合数?
教学反思: 教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。当时的课堂气氛和谐、民主。收到了良好的效果。
活动三:学生自己选择要研究的问题进行活动。
活动目的:教师要主动把课堂教学活动的主角位置让给学生,把课堂教学活动的时间多分给学生使用,把课堂教学活动的内容多留给学生处理解决,教师做好组织、设计、指导或点拨,主导者要让贤于主体者,采用这一教法,可让学生认识“自我”,感受到“自我”的价值。爱因斯坦说过:“提出一个问题比解决一个问题更重要。”
活动过程:
1.你还想研究质数合数的那些知识?(学生提出很多)如:(1)找最大质数.(2)如何判断一个数是质数还是合数.(3)自然数中是不是除了质数就是合数?? 2.请各小组选一个你们喜欢研究的问题,开始研究吧.3.汇报研究成果.教学反思: 教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分让位还权,放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能在课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络??学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。体现出学生学习的主体参与意识,此环节的处理,虽然耽误了一些时间, 但我想还是值得的.教师应以学生为本,而不应以备好的教案为本.活动四:回到开头。
活动目的: 教师本着以人的发展为本的教学理念,着眼于学生的可持续发展.活动过程: 1.我们学习了质数和合数,对于哥德巴赫猜想中的奇素数你是怎么理解的?点击课件出示:大于4的偶数总能写成两个奇素数之和。
师:是不是所有一个尽可能大的偶数总能写成两个奇素数之和呢?能证明吗?
师:虽然我们现在还不能证明?但是通过这节课我们对哥德巴赫猜想的理解和我们之间的交流。你们是不是已经感受到了数学王国的神秘。2.著名科学家牛顿曾说过这样一句话:我之所以取得今天的成绩,是因为我站在巨人肩膀上的缘故。同学们其实你们已经站在巨人肩膀上研究问题啦。这使我坚信,在不久的将来,在座的各位通过不懈的努力,将来肯定会有人摘下这颗数学王冠上的明珠,解开“哥德巴赫猜想。
教学反思:当时学生举手非常踊跃,表现出一种探索的欲望, 敢于探索科学之谜的精神,充分展示出了数学自身的魅力。
六、板书:略。
教学反思: 一 新课程标准中指出;“让学生经历数学知识的形成与应用过程。”数学学习过程的实质是现实世界各种数量关系内化上升为形式化的过程。数学知识本身的特点决定了“数学教育的主要活动是思想实验。” 为此,数学教师应充当教练的角色,面向全体学生,因材施教,以千差万别的方式练就千差万别的学生,从而实现“人人学有价值的数学”;“人人都能获得必须的数学”;“不同的人在数学上得到不同的发展”; 1.创设情境是落实新课程标准的重要措施。
新课程标准就数学学习方式提出如下建议:数学教学应“从学生的生活经验和已有知识背景出发,想他们提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能,数学思想和方法,同时获得广泛的数学活动经验。”
有人说:“你拉来一批马给它喝水,不如让他感到口渴。”在讲“质数、合数”这节课时。我沿着新课程标准的理念设计安排了这样的导入:“教师叙述,2002年3月20日北京日报第九版有这样的报道:英美两家出版社悬赏100万美元,限期两年求证歌德巴赫猜想之解,截稿日期就是今天。”??随着上述情境的不断展开,学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入新课。这样从新闻入手,让学生感到口渴,学的知识有用,同时也感受到了数学自身的魅力。对数学随之充满了无限的兴趣,为本节课的顺利实施提供了有效的条件。2.教师的鼓励为学生体验成功搭设了舞台。成功与快乐是学习的一种巨大的情绪力量,教师不失时机的积极鼓励,能使学生产生学好数学的强烈欲望.因此,教师要对学生任何成功的言行都要给予及时、明确和积极的强化。如微笑、点头、重复和阐述学生的正确答案。至于学生的一些错误反应,应该鼓励学生继续努力。可以对学生说:“有进步,谁能再补充一下?” 在讲“质数、合数”这节课,教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。如:“你们的例子都举对了吗?同桌互相检查一下,你们听明白他的意思了吗?谁愿意再给大家说一遍?就用他的方法试一试?等,看似简简单单的几句话,教学民主却随处可见。”又如“在学生看过歌德巴赫猜想内容后,教师问你懂吗?学生说“我知道素数”教师及时评价:你还知道素数那,真了不起。你从哪知道的?学生说书上看的。教师评价:从你的言谈举止就看出了你是个爱读书的学者。等等。由于采用了新课程标准的理念,让学生充分体验了成功的喜悦。
3.学生的体验为探索与创造提供了可持续性发展的条件。爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在教学“质数、合数”这节课时,教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能再课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络??学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。在这一过程中,当学生碰到困难时,教师是启发者,当学生迷路时,教师是指导者,当学生获得成功时,教师则是鼓励者。由于学生在数学活动中获得了成功的体验,有机会接触、了解、钻研自己感兴趣的数学问题,最大限度的满足了每一个学生数学学习的需要,让不同的人在数学上得到了不同的发展。
循循善诱,层层深入。首先,教师引导学生通过对例1中12个数的约数的个数的分类,初步使学生认识到根据一个数的约数的个数,可以把自然数分为三类:质数、合数和1。其次,教师进一步让学生认识这三个概念。再次,教师让学生从例2中渐渐熟悉判断一个数是质数还是合数的方法。最后,通过练习使学生完全掌握判断一个数是质数还是合数的方法。同时,让学生知道1既不是质数也不是合数。] 反思: 一 新课程标准中指出;“让学生经历数学知识的形成与应用过程。”数学学习过程的实质是现实世界各种数量关系内化上升为形式化的过程。数学知识本身的特点决定了“数学教育的主要活动是思想实验。” 为此,数学应充当教练的角色,面向全体学生,因材施教,以千差万别的方式练就千差万别的学生,从而实现“人人学有价值的数学”;“人人都能获得必须的数学”;“不同的人在数学上得到不同的发展”; 1.创设情境是落实新课程标准的重要措施。新课程标准就数学学习方式提出如下建议:数学应“从学生的生活经验和已有知识背景出发,想他们提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能,数学思想和方法,同时获得广泛的数学活动经验。” 有人说:“你拉来一批马给它喝水,不如让他感到口渴。”在讲“质数、合数”这节课时。我沿着新课程标准的理念设计安排了这样的导入 :“叙述,2002年3月20日北京日报第九版有这样的报道:英美两家出版社悬赏100万美元,限期两年求证歌德巴赫猜想之解,截稿日(转载于:质数和合数评课稿)期就是今天。”??随着上述情境的不断展开,学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时巧妙地把握住时机,导入 新课。这样从新闻入手,让学生感到口渴,学的知识有用,同时也感受到了数学自身的魅力。对数学随之充满了无限的兴趣,为本节课的顺利实施提供了有效的条件。2.的鼓励为学生体验成功搭设了舞台。成功与快乐是学习的一种巨大的情绪力量,不失时机的积极鼓励,能使学生产生学好数学的强烈欲望.因此,要对学生任何成功的言行都要给予及时、明确和积极的强化。如微笑、点头、重复和阐述学生的正确答案。至于学生的一些错误反应,应该鼓励学生继续努力。可以对学生说:“有进步,谁能再补充一下?” 在讲“质数、合数”这节课,在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时也把自己当作学习者,与学生一道共同完成学习任务。如:“你们的例子都举对了吗?同桌互相检查一下,你们听明白他的意思了吗?谁愿意再给大家说一遍?就用他的方法试一试?等,看似简简单单的几句话,民主却随处可见。”又如“在学生看过歌德巴赫猜想内容后,问你懂吗?学生说“我知道素数”及时评价:你还知道素数那,真了不起。你从哪知道的?学生说书上看的。评价:从你的言谈举止就看出了你是个爱读书的学者。等等。由于采用了新课程标准的理念,让学生充分体验了成功的喜悦。3.学生的体验为探索与创造提供了可持续性发展的条件。爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在“质数、合数”这节课时,在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,充分放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能再课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络??学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。在这一过程中,当学生碰到困难时,是启发者,当学生迷路时,是指导者,当学生获得成功时,则是鼓励者。由于学生在数学活动中获得了成功的体验,有机会接触、了解、钻研自己感兴趣的数学问题,最大限度的满足了每一个学生数学学习的需要,让不同的人在数学上得到了不同的发展。本节课中我本着以人的发展为本的理念,着眼于学生的可持续发展,注重目标 的多元化,在篇三:质数和合数说课稿
质数和合数》说课稿
大家好!今天,我说课的题目是《质数和合数》
《质数和合数》是九年制义务教育教材人教版小学数学五年级下册第2单元的第内容。下面我将从以下教学指导思想、教材分析、教法与学法、教学程序、板书设计个方面来展开我的说课:
一、教学指导思想 《数学课程标准》指出:数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。因此,在教学中我们将以学生发展为立足点,以自我探究为主线,以求异创新为宗旨,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。
二、教材分析
1、课时教学内容的地位、作用和意义
“质数和合数”是一节概念教学课,也是“因数和倍数”这个单元教学的难点和重点。它是在学习了因数和倍数以及2、3、5倍数的特征的基础上进行教学的,是下半学期学习求最大公因数和求最小公倍数以及约分、通分的重要基础。
2、教学目标
(1)知识与技能目标:使学生理解质数和合数的意义,知道它们之间的联系和区别,能根据它们的意义判断哪些数是质数,哪些数是合数。熟悉100以内的质数。
(2)过程与方法目标:通过求因数—找规律—探究归纳—验证等数学活动,学习观察、比较、分析、归纳、推理等数学策略。
(3)情感、态度、价值观目标:培养学生认真观察,仔细比较,合理分类和归纳概括的能力,培养学生优秀的数学意识和数学品质。
3、教学重、难点:
掌握质数、合数的概念,能准确判断一个数是质数还是合数。
二、说教法
数学来源于生活又应用于生活是新课程一个重要的理念。让学生学会用数学知识、方法去思考分析身边的事物是数学课堂教学的一个重要任务。根据本节知识特点和小学生的年龄特点及认知规律,结合新课程标准精神,我采用了探究发现、启发式教学、开心游戏活动等教学方法。
三、说学法
教师的任务不仅要使学生学会,更重要的是要使学生会学。结合本节课的知识特点我让学生通过观察比较、分类归纳、讨论交流等学习方法掌握本节课的学习内
容。
四、说教学过程
(一)复习引入
1、在算式“4×5=20”中,谁是谁的因数?谁是谁的倍数?
2、自然数分成几类?
【设计意图】:有研究表明小学生注意力能集中时间是8分钟。复习内容必须是和新知识有密切联系的已有知识和经验,习题要生动有趣,使学生的注意力从上课开始就被吸引住,既从知识上起到迁移、铺垫的作用,又为学习新知识创造了良好的认知环境。
(二)学习新课
1、学习质数、合数的概念
(1)要求学生观察1~20这二十个自然数的因数个数,同桌讨论交流根据因数的个数可以把这二十个自然数分成几类?
(2)结合学生的汇报,揭示质数和合数的概念(板书课题)。
【设计意图】:我运用了引导学生探究发现的教学方法,学生采用观察比较、分类归纳、讨论交流的学习方法。因为“质数和合数”是学生在学习了因数和倍数的基础上进行学习的。从学生身边熟悉的事物入手,唤起学生亲切的情感,激发他们学习的兴趣。学生是学习的主体,只有让学生参与知识的形成过程,数学知识才会内化学生自己的东西,同桌讨论交流就是让学生在探讨中提高学习的能力。
2、引导学生深入理解质数、合数的概念。
质数和合数这两个概念关键在于因数的个数,“只有„„两个„„”是质数概念的关键词。“除了„„还有„„”是合数概念的关键词。我针对这两个概念的关键处,设计以下问题引导学生观察、思考和讨论:
(1)1是质数还是合数?为什么?
(2)观察自然数2、3、5、7、11、13、17、19的因数,这些自然数的因数有什么特征?
(3)自然数4、6、8、9、10、12、14、15、16、18、20的因数也有1和它本身,为什么它们不是质数?
(4)非0自然数按因数个数多少可分成几类?(师板书)(5)要求学生学会判断质数和合数。(课件)
【设计意图】:我运用了质疑问难、启发式的教学方法,学生采用观察比较,自主探究的学习方法。因为学生在不断的新的问题面前,对概念已有的理解与新的问题产生了表面上的矛盾,于是通过积极思考,寻求解决问题的途径,主动找出概念的本质关键,从而较深刻地理解了质数和合数的概念。
3、学习例1(找出100以内的质数,做一张质数表)
(1)台下同学检查,纠正台上站错的同学并说出根据。
(2)了解最小的质数和最小的合数。
(3)让全班32个同学判断自己的座号是否质数,座号是质数的同学举起座号卡片到讲台前集合。
【设计意图】:我运用了快乐游戏活动的教学方法,学生采用观察思考、自主操作的学习方法。要让学生在短时间之内找齐100以内的质数。经过自主探索,小组合作,相互交流,使上述过程成了一个有效地巩固、应用,拓展巳经学知识的动太态过程。所以,我设计了这个全体学生参与的游戏。这样的游戏既检查了全体学生能否根据概念快速准确地判断出质数还是合数,又能调动起课堂气氛和学生的注意力。篇四:质数和合数说课稿
《质数和合数》说课稿
数学组
杨慧
《质数和合数》说课稿
一、教学内容:质数和合数。
二、教材分析
本节课质数和合数的概念比较抽象,学生理解和掌握这些基础知识有一定的困难,所以在执教本课时,我设计了利用小正方形拼摆长方形的活动,让学生在动手操作,独立思考,合作交流等教学活动中,通过观察、实验、推理等活动,探究并掌握质数、合数的概念。总之,要通过学生亲自参与实践活动体验概念从形象到抽象的过程,使知识得到内化。
数学课程标准指出:教师要向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。实验操作能使物质的外部操作(物化)过渡到智力的内部认识活动,从形象到表象再到抽象,促使认识内化,便于学生形成良好的认知结构。让学生对实际事物进行感知性操作,实验及独立思考的机会正是建立数学概念,逐步发展学生抽象概括能力的基本途径。
《质数与合数》是《因数和倍数》这一单元的最后一个教学内容。它是在学生学习因数和倍数以及2、3、5的倍数的特征的基础上进行的,是学生后续学习求最大公因数、最小公倍数,学习约分、通分以及中学进一步学习数论知识的前提和基础。在数学知识整体结构和学生学习进程中具有十分重要的作用。教材引导
学生按其所含因数的数量的不同进行分类,从而使学生建立起质数与合数的概念,发展学生的抽象思维。
三、学情分析:
通过因数倍数以及2、3、5的倍数特征的学习和研究,学生已经有了一定的认知基础,并且积累了一些探索数学规律的基本方法和策略,这些都为他们自主探索“质数、合数”的概念,实现知识的正迁移和数学模型的建立打下良好的基础。但学生对分类归纳的数学方法和数学思想尚未形成,抽象逻辑思维能力还未得到很好的发展,因此需要在教师的引导下逐步培养。
四、教学目标:
知识技能目标:掌握质数和合数的概念,能正确判断一个数是质数还是合数。过程和方法: 让学生能通过观察、实验,经历质数和合数的认识和辨别过程。培养学生观察、比较、归纳、概括的能力,能够清晰、有条理地表达自己的思考过程,并能用数学语言合乎逻辑地进行讨论与质疑。情感、态度价值观:培养学生搜集和处理信息的能力,养成敢于探索科学之谜的精神,充分展示数学自身的魅力。
五、教学方式:探究性学习
教学手段:小组合作学习
六、教学流程
(一)、故事导入,激发兴趣
1、哥德巴赫在1742年6月7日给当时的大数学家欧拉的一封信中提到所谓“哥德巴赫猜想”(哥德巴赫与当时的数学家常有书信往来),欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。从此,这道数学难题引起了几乎所有数学家的注意,至今这个猜想还未被证明。大家想知道这个猜想吗?
2、今天我们一起来学习质数和合数的问题你们就会知道这个伟大的猜想了,好吗?
(二)、动手操作,观察探究
1、出示学习目标。
2、摆正方形
①教师示范用正方形拼摆长方形
师:黑板上有4个小正方形,教师用这4个小正方形拼摆成长方形,有以下两种拼摆方式:
① 长方形
② 正方形(正方形是特殊的长方形)
【设计意图】:教师示范给孩子的活动提供方向。②宣布比赛规则
师:今天我们开展一次拼摆长方形的比赛,现在用你们小组所拥有的正方形拼摆长方形,哪个小组所拼摆出的长方形多,哪个小组就获胜。课前准备的学具: 1组:3个正方形 2组:5个正方形 3组:7个正方形4组:9个正方形 5组:11个正方形 6组:12个正方形 7组:18个正方形 8组:24个正方形
【设计意图】:因为学生不知道自己的学具袋中到底有多少个小正方形,所以在此故意设计了比赛拼摆长方形的不公平的比赛规则,让学生明白所拼摆的长方形的种类的多少是由正方形块数的因数个数决定的,为了学习质数和合数的概念做了铺垫。
③学生小组合作,动手拼摆长方形(教师巡视),并将信息记录在表格中。篇五:《质数和合数》说课稿
《质数和合数》说课稿
尊敬的各位评委、老师,大家好!我是xxxxxxx小学数学教师,我今天说课的内容是人教版小学数学《义务教育课程标准实验教科书》五年级下册《质数和合数》,我将从以下几个方面展开来说。
一、说教材
1、课时教学内容的地位、作用和意义
“质数和合数”是一节概念教学课,也是“因数和倍数”这个单元教学的难点和重点。它是在学习了因数和倍数以及2、3、5倍数的特征的基础上进行教学的,是下半学期学习求最大公因数和求最小公倍数以及约分、通分的重要基础。
2、教学目标
(1)知识与技能目标:使学生理解质数和合数的意义,知道它们之间的联系和区别,能根据它们的意义判断哪些数是质数,哪些数是合数。熟悉100以内的质数。
(2)过程与方法目标:通过求因数—找规律—探究归纳—验证等数学活动,学习观察、比较、分析、归纳、推理等数学策略。
(3)情感、态度、价值观目标:培养学生认真观察,仔细比较,合理分类和归纳概括的能力,培养学生优秀的数学意识和数学品质。
3、教学重、难点:
掌握质数、合数的概念,能准确判断一个数是质数还是合数。
二、说教法
数学来源于生活又应用于生活是新课程一个重要的理念。让学生学会用数学知识、方法去思考分析身边的事物是数学课堂教学的一个重要任务。根据本节知识特点和小学生的年龄特点及认知规律,结合新课程标准精神,我采用了探究发现、启发式教学、开心游戏活动等教学方法。
三、说学法
教师的任务不仅要使学生学会,更重要的是要使学生会学。结合本节课的知识特点我让学生通过观察比较、分类归纳、讨论交流等学习方法掌握本节课的学习内
容。
四、说教学过程
(一)复习引入
1、在算式“4×5=20”中,谁是谁的因数?谁是谁的倍数?
2、自然数分成几类?
【设计意图】:有研究表明小学生注意力能集中时间是8分钟。复习内容必须是和新知识有密切联系的已有知识和经验,习题要生动有趣,使学生的注意力从上课开始就被吸引住,既从知识上起到迁移、铺垫的作用,又为学习新知识创造了良好的认知环境。
(二)学习新课
1、学习质数、合数的概念
(1)要求学生观察1~20这二十个自然数的因数个数,同桌讨论交流根据因数的个数可以把这二十个自然数分成几类?
(2)结合学生的汇报,揭示质数和合数的概念(板书课题)。
【设计意图】:我运用了引导学生探究发现的教学方法,学生采用观察比较、分类归纳、讨论交流的学习方法。因为“质数和合数”是学生在学习了因数和倍数的基础上进行学习的。从学生身边熟悉的事物入手,唤起学生亲切的情感,激发他们学习的兴趣。学生是学习的主体,只有让学生参与知识的形成过程,数学知识才会内化学生自己的东西,同桌讨论交流就是让学生在探讨中提高学习的能力。
2、引导学生深入理解质数、合数的概念。
质数和合数这两个概念关键在于因数的个数,“只有„„两个„„”是质数概念的关键词。“除了„„还有„„”是合数概念的关键词。我针对这两个概念的关键处,设计以下问题引导学生观察、思考和讨论:
(1)1是质数还是合数?为什么?
(2)观察自然数2、3、5、7、11、13、17、19的因数,这些自然数的因数有什么特征?
(3)自然数4、6、8、9、10、12、14、15、16、18、20的因数也有1和它本身,为什么它们不是质数?
(4)非0自然数按因数个数多少可分成几类?(师板书)(5)要求学生学会判断质数和合数。(课件)
【设计意图】:我运用了质疑问难、启发式的教学方法,学生采用观察比较,自主探究的学习方法。因为学生在不断的新的问题面前,对概念已有的理解与新的问题产生了表面上的矛盾,于是通过积极思考,寻求解决问题的途径,主动找出概念的本质关键,从而较深刻地理解了质数和合数的概念。
3、学习例1(找出100以内的质数,做一张质数表)(1)台下同学检查,纠正台上站错的同学并说出根据。
(2)了解最小的质数和最小的合数。
(3)让全班32个同学判断自己的座号是否质数,座号是质数的同学举起座号卡片到讲台前集合。
【设计意图】:运用了快乐游戏活动的教学方法,学生采用观察思考、自主操作的学习方法。要让学生在短时间之内找齐100以内的质数。经过自主探索,小组合作,相互交流,使上述过程成了一个有效地巩固、应用,拓展巳经学知识的动太态过程。所以,我设计了这个全体学生参与的游戏。这样的游戏既检查了全体学生能否根据概念快速准确地判断出质数还是合数,又能调动起课堂气氛和学生的注意力。
五、板书设计 出示课本第24页例题1。
第三篇:《质数和合数》评课材料
《质数和合数》评课材料
三二班
质数和合数是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。同时,质数和合数是求最大公约数和最小公倍数以及约分、通分的基础。因此这部份内容的教学不仅要使学生掌握质数、合数的概念,而且要能较快地看出常见数是质数还是合数。
田老师执教的《质数和合数》一课,体现了新的课程理念,教学目标明确,重、难点突出,教学内容安排合理,方法恰当,教学语言简洁、清楚、流畅。教学主线清晰。具有以下特点:
一、教学准备到位
这节课中,我们看出,田老师课前做了大量的准备。他根据教材内容制定了明确的目标。为达到这一目标,设计了可行的教学方法。课前的引进激发学生的兴趣,以最少的时间得到最佳的效果。
二、教学思路的设计符合教学内容和学生实际
田老师在教学中从找出一个数约数的个数推出根据约数个数判断质数和合数,让学生正确判断一个数是质数还是合数来巩固本节课的重点内容。
三、注意知识的内在联系,利用已有的知识推动新知识的学习
田老师先复习约数的定义,然后让学生找出1-20的所有约数,再根据约数的个数进行分类,其目的是要从约数的个数推出质数和合数的概念。
四、确立学生的主体地位,注重让学生利用合作探究的学习方式,从中获得对质数和合数的理解以及质数和合数的判断方法
田老师教学质数和合数的概念时,组织学生先进行讨论,让学生先从已找出约数个数的数出发,小组合作,讨论出根据约数的个数,以上数可以分为几种情况,是哪几种?接下来再讨论,只有1和它本身两个约数的数该叫什么数?含有两个以上约数个数的又叫什么数?最后剩“1”只有它本身唯一一个约数,它该是什么数?通过讨论、汇报、论证,总结出质数和合数的概念。既使学生理解了质数和合数,也了解了质数和合数的判断方法,达到了本节课的教学目的。并且在整个过程中老师起到了组织者、引导者和合作者的角色。
五、课堂活动性强 在课堂教学中,注意把理解与运用相结合,促进学生对质数与合数的理解和判断。在本节课教学中,老师在学生对质数和合数的判断方法了解后,让学生进行练习判断。并引出可以用100以内的质数表进行验证。最后巩固练习部分,让学生说理判断,这样循序渐进,层层深入,取得了较好的效果。
在这节课中,学生经历和感受了合作、交流、成功、愉悦的情感体验,因而整节课同学们情绪高涨,兴趣浓厚,学生在兴趣盎然中也掌握了数学基本知识,思维也得到了发展。
第四篇:质数与合数评课稿
质数与合数评课稿
质数与合数评课稿1本次教研活动的主题是“重点导学、疑点导练、精讲点拨成就有效课堂”,现结合活动主题谈自己几点收获:
1、导入有效、铺垫扎实
课前复习2、5、3的倍数特征为寻找100以内质数、判断质数和合数做足了铺垫,在引新课时,说“自然数还有新的分类标准?”一下子抓住了学生探究的心,很想一探究竟。
2、重点导得准、疑点练得巧
1既不是质数,也不是合数,教师没有让学生反复记,而是采用了质疑的方式,“在更大的自然数中,还有没有1个因数的”加深了1的特殊性,处理的细致、明了。对于易混的知识点采用了判断的方式,学生通过举反例巩固了刚学与已学的知识之间的联系,如所有的奇数都是质数、所有的偶数都是合数等等。对于本节课的重点知识质数、合数采用了对比教学,当引课时由与奇、偶数不同的分类方法引出,认识了质数、合数后,又让学生从20以内的奇、偶数中找质数、合数,在练习中又将二者密切练习,给了学生一个清晰的概念。
3、巩固练习注重层次性、拓展性
每一次的练习出现时都具有一定的层次,由浅入深,先是对刚学知识的运用,而后是具有争议或开拓思维的题目,学生迎接挑战的兴趣也会随着提升。
建议:
1、如果把填写精要交流和写1-12的因数放在课前完成,这样节省出的时间留给后面环节,就不会显得紧张了。
2、再找100以内质数时,小组合作效果是不是会更好?
质数与合数评课稿2这次听王老师执教的《质数和合数》,是我第一次听他的课,感受到的是他作为东北人的爽直和沉着,对课堂生成问题处理的从容不迫,学生在课堂上的轻松和自信。站在互相学习,共同提高的角度,我也有很多感慨。
有专家指出,一个优秀教师除了有良好的师德和对教学工作的热爱外,还必须得有比较完好的知识结构和能力结构。有效教学是一线教师普遍关注的战略性问题,特别是有效教学的不断尝试和实践,对教师的专业素养提出了更高要求,实践经验告诉我们,教师的专业素养的高低直接影响到有效教学的质量。
1、不能完全接受小学数学教育新观念。我认为五(3)班学生基础还是不错,思考也很积极,回答问题也很大胆。可是一堂课下来基本上仍是教师牵着学生走,没有体现学生的主体性。老师其实提供了探索的素材,但是由于老师对学生目前的知识水平和解决问题的能力把握不准,导致探究变成了老师独角戏。如1——13这13个数字的因数,但是后面引导不到位,导致学生得不出最终结论。老师可以让学生先去找一找哪一些数的因数有特色,这样就可以把1和质数分类出来。
2、对新课改的教材理解不够透彻。本人在听课的过程中,发现了有的教师对一些新的小学数学课程的内容缺乏必要的了解,教学时往往靠自己阅读小学数学教材,现买现卖,比较吃力。要清晰了解数学教材呈现的知识结构。作为一名小学数学教师,至少要对小学六年所有的数学知识以及每一年级学生要达到怎样的水平有清晰的了解。只有这样,教师才能用发展的眼光看待自己的教学,为学生的进一步学习打下扎实的基础。而且,只有对所教的学科知识体系有了深入的了解,才能设身处地地用学生的眼光看待教材,使自己的教学真正切合学生的实际需要,促进学生的有效发展。
在本节课中,王老师关注到了“1”的讨论和分类,还有一个细节上需要老师去突破,质数的因数应该是“只有”1和它本身两个,跟“有”1和它本身两个需要区分清楚。另外,学会准确判断一个数是质数还是合数应该是本节课的另一个教学重点,对57、87、91等学生判断不准的自然数,老师要予以指导、整理并强调。
3、要具备良好的专业能力。一是老师语言功夫。王老师语言很干脆、清晰,但是有点生硬,特别是对待小学生来说,感染力不够。另外,老师的语言一定要准确到位,不然就会误导学生。如,王老师在学生口答出1——13的因数后,问了一个这样的问题“因数的个数都是几个?”很显然,这是一个错误的问题。二是老师的写字功夫。老师要培养学生的工整书写习惯,首先就必须做到自己书写不会让学生挑刺,不然的`话何谈以身示范,老师说服力、魅力何以体现?三是老师的教学设计。知识的呈现不能牵强,流程的衔接不能突然,一节流畅的课才回引人入胜。四是对学生的尊重。老师要倾听、尊重学生的陈述,数学知识重在体验和理解,老师不能要求学生一步到位,也不能在一个知识点上纠缠不休。
以上仅是本人所感所想所思,仅供交流。
质数与合数评课稿3质数和合数,是五年级下的教学内容,它是在倍数和约数的基础上进行的教学,在整节课中,体现了新课程的理念,以生为主,教学目标明确,重难点突出,教学内容安排合理,方法得当,教学语言简洁,清楚,很好的引导了学生进行思考,板书优美完整。整节课首尾照应,上课时分发的学号,在下课时又进行了很好的利用,加深了学生对本节课内容的理解,尤其是猜QQ号码这个环节,以玩带学,极大地激发了学生的参与性与积极性。
不过,整节课个人觉得还是有一两点值得商榷的地方,抛砖引玉大家一起讨论学习下。
一、引入不合理。
数学是一次建模-迁移-再在这基础上建模的过程。董老师在引入教学时,先是学号分发说哪个是奇数哪个是偶数,再是以多个正方形拼长方形,再是质数和和数的定义,在这三个环节中个人觉得相对独立,没有一个有效的连接线,并且没有进行一个旧知与新知的穿插,以至于学生不能进行很好的理解与领会。特别是当中的以多个正方形拼长方形如何引出质数或和数的定义,让人有点朦胧的感觉。
二、以生为主但没有以生为本,没有给学生充分的思考空间。
在教学1这个既不是质数又不是和数时,学生没有回答上来,董老师在等了3秒后直接给出了答案。个人认为数学本就是一门思考思维的课程,应给予学生更多更长的时间。建议教学这些特殊数时正好可以复习巩固下质数和和数的定义知识。
总的来说,这是一堂成功的课,这是一堂生动的课,参与这样一堂课,目睹董老师的风采,也算不枉此行,身顶风寒了。
质数与合数评课稿4孙老师执教的《质数和合数》一课,体现了新的课程理念,教学目标明确,重、难点突
出,教学内容安排合理,方法恰当,教学语言简洁、清楚、流畅。教学主线清晰。具有以下特点:
一:孙老师注重知识间的内在联系,利用已有的知识推动新知识的学习。通过复习因数是的2、3、5的特点和自然数分为奇数和偶数的练习,为后面讲授质数和合数,还有自然数的另一种分类,做了良好的铺垫。
二、课堂环节紧凑,前后衔接自然流畅。孙老师先是回顾与本节课所讲内容相关联的知识点,随后讲到了质数和合数,符合学生的认知规律,过渡自然,最后总结出了百以内质数的儿歌,课堂推向了高潮,每个环节都有条不紊,环环相扣。
三、整堂课孙老师围绕活动主题进行,重点导学,疑点导练。在得出只有两个因数的是质数,有两个以上因数的是合数后。老师马上质疑,那在自然数中,只有质数和合数吗?学生认真观察思考,说出还有0和1,对于1,孙老师从概念入手做了解释,对已特殊的0不做考虑。这样自然数就都涵盖了进去,使得知识更完整。
四、题型设计多样,有代表性。孙老师设计的题目类型多样,有填空题,判断题、叙述题……让学生在练习中不会产生厌倦感。而且题目设计从易到难,逐层深入,从20以内找质数和合数到从100以内的数中找质数和合数。
五、教师注重细节的讲授。如总结出了最小的偶数、奇数、质数和和合数,既是偶数又是质数的。让学生总结记忆,便于做题方便。再找1—12各数的因数时,老师指导学生成对找,以防遗漏。
建议:
一:应在导出质数和合数的教学内容后,再板书标题。这样会更自然,便于学生理解和接受。
二、在教学“1”这个既不是质数又不是和数时,学生没有及时回答上来,老师在等了3秒后直接给出了答案。个人认为数学本就是一门思考思维的课程,应给予学生更多更长的时间。建议教学这些特殊数时正好可以复习巩固下质数和和合数的定义知识。
三、最后一题判断题:自然数没有最大的,质数和合数也没有最大的。这个题的难度较大,可以考虑舍去。
质数与合数评课稿5感谢孙老师给我们提供了一节《质数与合数》的示范课,新课程的总目标中“数学思考”方面指出:“让学生参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理的能力,清晰地表达自己的想法。”本节课孙老师在这方面体现的非常好。课上,孙老师创造性的使用教材,利用学生熟悉的小正方形进行操作活动,在活动中学生经历和体验了知识的形成过程,引发了学生思维碰撞,判断:摆出方法的多少与数的大小还是因数个数有关呢?进一步启发学生思考,从而获得了对质数和合数概念的理解和方法的判断,同时获得了一定的数学经验。在这一过程中,孙老师充分运用自主、合作、探究的教学方法,给学生足够的探索空间,引导学生进行“操作——观察——讨论——猜疑——解惑”等数学建构活动,在合情推理中经历了知识的发生、发展、形成过程,不仅理解了质数和合数的意义,还发展了他们的分析、比较、判断等数学能力。
孙老师本节课还有一个突出特点就是让学生在小组合作中通过操作将抽象复杂的数学问题,在拼摆中形象化,在小组的竞赛中产生冲突,给学生以猜想的机会,而后在进一步的探究发现并验证猜想,让学生经历知识的发展进程,感受到知识产生的过程。在后续的练习中又有效的让学生利用自己的新知识来解决问题,体验自己学习成果的喜悦。正如王主任说的,老师在教学中要更多的进行数学思想和活动经验的引领和培养,而不是直接的方法传授和机械式的训练。新的课程标准对学生的数学学习目标也进行了很多的调整,值得我们深层的研究和在教学实践中实验探讨。
本节课孙老师如果在理解了质数和合数的意义后,教师能及时引导学生概括归纳:非零的自然数除了按2的倍数分成奇数和偶数外,还可以按照因数的个数分成质数、合数和1,然后再进行这方面的练习。这样就使前后知识连贯起来,系统性,学生脑中的知识结构就更清晰了。还有,本课结束有点过早,我觉得在有些知识的形成过程中,学生没有主动参与,比如说:1既不是质数也不是合数,是不是应该让学生更好的研究或交流一下,使知识的体验更丰富一些。再如:练习的设计是否可以再增加一些?在设计课的时候就应该考虑到时间有可能充裕或不够,练习题设计得稍多一些,可以灵活机动的进行调整,不至于提前7分钟下课,学生巩固理解的也会更好。
第五篇:《质数和合数》的评课
《质数和合数》的评课
庙前中心学校:周珠莉
今天,我有幸听了胡静老师上的一节课---《质数和合数》,让我感受很深。质数和合数是在学生学习约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。同时,质数和合数是求最大公约数和最小公倍数以及约分、通分的基础。胡老师执教的《质数和合数》一课,重、难点突出,教学内容安排合理,不仅体现了新课程理念,而且灵活应用信息技术辅助教学。我觉得胡老师这节课具有以下特点:
一、为学生创设有效的数学学习环境
学生的数学学习内容应当是现实的、有意义的、富有挑战性的。胡老师通过讲故事(哥德巴赫猜想)激起学生兴趣,继而回顾旧知奇数和偶数,同时了解了学生的知识储备,为下面的学习奠定了基础,最后通过数的特征提出“质数” 与“合数”的名称,引入新内容,调动起学生的探究欲望,迫使学生要去主动探究。
二、以学生为主体的探究活动
新课标强调教学应以学生为主体,学生学习数学是一个现实的体验、理解和反思的过程。教师首先出示例题:写出1-12的全部因数,学生独立完成,通过观察并按照数的个数进行分类,教师指导。由学生汇报结果,教师根据学生回答进行引导,从而逐步向质数与合数的概念靠近,将课堂还给学生,最后教师小结。在教学过程中,借助于多媒体的演示,将数与形的结合直观形象地展现在学生面前,使原本枯燥的知识更加直观,更加利于学生发现知识的本质,体验到数学知识本身的魅力,同时也在一定程度上提高了课堂实效性。
三、练习的设计具有趣味性、实用性。
胡老师精心设计了一个课间小互动,请学号为1-10的学生在讲台上一字排开,然后听老师口令回到座位。这个游戏的设计不仅将学生的注意力重新拉回到课堂,并且很好的巩固了所学知识,让学生在玩中学,增添了学习的趣味性。另外“破译密码箱”这个练习的设计既注重了知识的应用,又注意了能力的培养。
四、注重学生文化素养的培养
课的开始,胡老师向学生介绍了“歌德巴赫猜想”的知识,引导学生理解数学史,了解数学文化。在向学生渗透数学思想和文化的同时培养了学生的数学素养。
总之,这是一堂令人耳目一新的课,一堂用全新的教育理念突现教与学的课。