初三数学证明三习题

时间:2019-05-13 08:38:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初三数学证明三习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初三数学证明三习题》。

第一篇:初三数学证明三习题

九年级上第三章证明

(三)达标测试题

一、选择题:(每小题4分,共20分)

(1)如图,在平行四边形ABCD中,对角线AC、BD相交于点

O,若BD、AC的和为18cm,CD:DA=2:3,⊿AOB的周长 D13cm为

(A),那么BC的长是BC

A6cmB9cmC3cmD12cm

(2)一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为(B)

A30B45C60D75

(3)在直角三角形ABC中,∠ACB =90,∠A =30,AC =cm,则AB边上的中线长为()

A1cmB2cmC1.5cmD

cm

(4)等边三角形的一边上的高线长为2cm,那么这个等边三角形的中位线长为()

A3cmB2.5cmC2cmD4cm

(5)下列判定正确的是()

A对角线互相垂直的四边形是菱形B两角相等的四边形是等腰梯形

C四边相等且有一个角是直角的四边形是正方形

D两条对角线相等且互相垂直的四边形是正方形填空题:(每小题4分,共20分)

E

D

BC

(1)已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积是;

(2)如图,EF过平行四边形ABCD的对角线的交点O,交AD

于点E,交BC于点F,已知AB = 4,BC = 5,OE = 1.5,那么四边形

EFCD的周长是;

D

ABC(3)已知:如图,平行四边形ABCD中,AB = 12,AB边上的高

DF为3,BC边上的高DE为6,则平行四边形ABCD的周长为;

(4)在Rt⊿ABC中,∠C =90,周长为(523)cm;

C

G

ADB

斜边上的中线CD =2cm,则Rt⊿ABC的面积为;

*(5)如图,在Rt⊿ABC中,∠C =90,AC = AB,AB = 30,矩形

DEFG的一边DE在AB上,顶点G、F分别在AC、BC上,若

DG:GF = 1:4,则矩形DEFG的面积是

三、解答题:(共60分)

(1)(10分)如图,在平行四边形ABCD中,BC = 2AB,E为BC的中

点,求∠AED的度数;

ADBEC

(2)(12分)如图,四边形ABCD中,AD = BC,DE⊥AC,BF⊥AC,垂足为E、F,AF = CE,求证:四边形ABCD是平行四边形;

(3)(12分)已知菱形ABCD的周长为20cm;,对角线AC + BD =14cm,求AC、BD的长;

(4)(13分)如图,在⊿ABC中,∠BAC =90,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;

A

E

G

C

B

(5)(13分)如图,正方形ABCD中,过D作DE∥AC,∠ACE =30,CE交AD于点F,求证:AE = AF;

AFD

BC

九年级上第三章证明

(三)达标测试题参考答案选择题:(每小题4分,共20分)

1.A;

2.B;

3.A;

4.C;

5.C;

二.填空题:(每小题4分,共20分)

1.96cm;

2.12;

3.36;

23(3)cm2

44.;

5.100;

三、解答题:(共60分)

1.90

2.证⊿ADE≌⊿CBF,D得∠DAE =∠BCF,∴AD∥BC,∴AD = BC∴四边形ABCD是平行四边形;

3.AC、BD的长为6cm,8cm,或8cm,6cm;

4.∵CE平分∠ACB,∴EA = EF,再证∠AEG = AGE,得AE = AG,∴AG∥EF且AE = EF,得四边形AEFG是平行四边形,又AE = EF,∴四边形AEFG是菱形;

5.连结BD交AC于O,作EG⊥AC于G,∴CE = 2EG,又DE∥AC,∴EG = OD,又AC = 2OD = 2 EG,∴AC = EC,∴∠AEF = 75,又∠AEF =∠DAC +∠ACE = 75,∴∠AEF =AFE,∴AE = AF

第二篇:初三 四边形证明复习及习题

初三()班

姓名:

学号:

一、【考点链接】

1、n边形的内角和为

2、平面图形的镶嵌:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个_________时,就拼成一个平面图形.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种B.3种C.2种D.1种

3、平行四边形、矩形、菱形、正方形的性质:

4、平行四边形、矩形、菱形、正方形、梯形的判定定理,具体“2010版公式定理汇编”

_ 四边形

5、中点四边形

如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,得到: ⑴.四边形一定是形

⑵.当AC与BD满足_______时,四边形EFGH为矩形;

F ⑶.当AC与BD满足_______时,四边形EFGH为菱形;

D

⑷.当AC与BD满足___ ____时,四边形EFGH为正方形。

二、【中考演练】

6、在下列命题中,是真命题的个数有()

①两条对角线互相垂直的四边形是矩形②两条对角线相等的四边形是菱形

③两条对角线相等的四边形是平行四边形④两条对角线互相平分的梯形是等腰梯形 ⑤两条对角线互相垂直且相等的四边形是正方形

D A 0个B.1个C.2个D.3个

7、下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC

B.AB=AD,CB=CD

B

C.∠B=∠C,∠A=∠DD.AB=CD,AD=BC8、如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()

A D A、当AB=BC时,它是菱形B、当AC⊥BD时,它是菱形 C、当∠ABC=900时,它是矩形D、当AC=BD时,它是正方形

9、若正方形的一条对角线长为2cm,则这个正方形的面积是

10、如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相 交于点O,以下四个结论:①ABCDCB,②OA=OD,③BCDBDC,④SAOB=SDOC,其中正确的是()A.①②B.①④C.②③④D.①②④

11、如图,菱形ABCD的周长为52cm,其中对角线AC长24cm 求:(1)对角线BD的长度;(2)菱形ABCD的面积.

A

B

12.如图,梯形ABCD中,AD∥BC, ∠1=∠2.求证: 四边形ABCD是等腰梯形.13.如图,E,F是四边形ABCD的对角线AC上两点,AFCE,DFBE,DF∥BE. 求证:(1)△AFD≌△CEB.

C(2)四边形ABCD是平行四边形.

F

14已知:在△ABC中,ABAC,ADBC,垂足为点D,AN是△ABC外角CAM的平分线,CEAN,垂足为点E.(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

15(08科研)如图,梯形ABCD中,AB//CD,且AB=2CD,E、F分别是AB、BC中点,EF与BD相交于点M。(1)求证:△EDM∽△FBM

(2)若梯形ABCD的面积等于18,求△EDM的面积

A

C

FB

第三篇:初三数学几何证明

一、精心选一选

1、△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为()

A35°B40°C70°D110°

2、三角形的三个内角中,锐角的个数不少于()

A1 个B2 个C3个D不确定

3、适合条件∠A =∠B =1∠C的三角形一定是()

3A锐角三角形B钝角三角形C直角三角形D任意三角形

4、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是()

A①②④B②④C①④D②③

5、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()

AAD=AEB∠AEB=∠ADC CBE=CDDAB=AC

E

A(第5题图)(第6题图)

6、如图,⊿ABC⊿FED,那么下列结论正确的是()

AEC = BDBEF∥AB

CDE = BDDAC∥ED7、等腰三角形的一边为4,另一边为9,则这个三角形的周长为()

A17B22C13D17或228、有两个角和其中一个角的对边对应相等的两个三角形()

A必定全等B必定不全等C不一定全等D以上答案都不对

9、以下命题中,真命题的是()

A两条直线相交只有一个交点B同位角相等

C两边和一角对应相等的两个三角形全等D等腰三角形底边中点到两腰相等

10、面积相等的两个三角形()

A必定全等B必定不全等C不一定全等D以上答案都不对

二、耐心填一填:

11、如果等腰三角形的一个底角是80°,那么顶角是.12、⊿ABC中,∠A是∠B的2倍,∠C比∠A + ∠

B还大12,那么∠B =度

13、在方格纸上有一三角形ABC,它的顶点位置如图所示,则这个三角形是三角形

.(第12题图)(第13题图)

第 19页

14、如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。

15、等腰直角三角形一条直角边的长为1cm,那么它斜边长上的高是cm.16、在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:

17、在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是.18、已知⊿ABC中,∠A = 90,角平分线BE、CF交于点O,则∠BOC =

三、细心做一做:(本大题共5小题,每小题6分,共30分)

19、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,求∠ABC的度数是

20、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD

DC=

2∶1,BC=7.8cm,求D到AB的距离

21、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC

第 20页 022、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.23、已知:如图,等腰梯形ABCD中,AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.

四、勇敢闯一闯:(本大题共 2小题,每小题

8分,共

16分)

24、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.第 21页

25、已知:如图,D是等腰ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF。当D点在什么位置时,DE=DF?并加以证明.26、如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点F。

(1)求证:AN=BM;

(2)求证: △CEF

为等边三角形;

(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)

第 22页

第四篇:初三数学《证明二》测试题

初三数学《证明二》测试题

一、选择题(每小题3分,共30分)

1、两个直角三角形全等的条件是()

A、一锐角对应相等 B、两锐角对应相等 C、一条边对应相等D、两条边对应相等

2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()

A、SASB、ASAC、AASD、SSS3、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()

7、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=12cm,则△DEB的周长()

A、6cmB、8cmC、12cm D、24cm8、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()

A.2mB.3mC.6mD.9m9、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加

一个条件,即可推出AB=AB′,那么该条件可以是()

A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACBD、∠ABC=

∠AB′C10、如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE

A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点 C.△ABC 三条角平分线的交点D.△ABC

与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论要:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数()

4.如图所示,AB = AC,要说明△ADC≌△AEB

不能是(..BE)A.∠

B =∠CB.AD = AEC.∠ADC=∠AEBD.DC =

A.1个B.2个C.3个D.4个

二、填空题(每小题3分,共30分)

1、如果等腰三角形的一个角是80°,那么顶角是().2、等腰三角形的两个底角相等的逆命题是().

3、等腰三角形一腰上的中线把等腰三角形周长分为15cm和12cm的两部分,则底边长为().

5、如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为()A、2B、3C、4D、56、如图所示的正方形网格中,网格线的交点称为格点.已知A、B两格点,如果C也是图中的格点,且使得ABC为等腰三角形,则.....

C的个数是()

A.6

是点

4、如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件()

5、如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC。若∠B=20°,则∠C=()°.B.7 C.8 D.96、在△ABC中,AB=5cm,BC=6cm,BC边上的中线AD=4cm,则∠ADC的度数是()度.7、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于D点,则∠BCD的度数为().8、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD∶DC=2∶1,BC=7.8cm,则D到AB的距离为()cm.9、等腰三角形的周长为14,其一边长为4,那么,它的底边为().10、如图,∠E=∠F=90°,∠B=∠C.AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。其中正确的结论是()(注:将你认为正确的结论都填上.)

三、解答题

1、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC2、如图,△ABC中,AD⊥BC于D,AB+BD=DC,求证:∠B=2∠C3、如图,BE⊥AC,CF⊥AB,垂足分别是点E,F.BE,CF 交于点D,且BD=CD,求证:AD平分∠BAC.(选做)

4、已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.

(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.

C D

(选做)

5、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。

第五篇:初三数学第一章证明测试题

初三数学第一章证明测试题

学号____________姓名___________ 班级_______________得分_____________

一、选择题(本题包括 8 小题)

1.下列四个命题中,假命题的是().A.四条边都相等的四边形是菱形;

B.有三个角是直角的四边形是矩形;

C.对角线互相垂直平分且相等的四边形是正方形;

D.一组对边平行,另一组对边相等的四边形是等腰梯形.2.如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()

A.6B.8C.9D.

3.如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点

F,连接CF,则图中全等三角形共有()

A.1对B.2对C.3对D.4对

4.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方

形的中心,则n个这样的正方形重叠部分的面积和为()

A.1nnn1212cmB.cm2C.cmD.()cm2 444

45.在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()

A.(3,7)B.(5,3)C.(7,3)D.(8,2)

6.若等腰梯形两底之差等于一腰的长,那么这个梯形一内角是()

A.90B.60C.45D.30

7.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积为S,则()

A.S=2B.S=2.4C.S=4D.S与BE长度有关



8.如图2,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E

处,折痕为AF.若CD=6,则AF等于()

(A)4(B)33(C)42(D)8

二、填空题(本题包括 6 小题)

9.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为

10.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形

EFGH是菱形,四边形ABCD还应满足的一个条件是。

11.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当

两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是.

12.如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形

EFGH,若EH=3厘米,EF=4厘米,则边AD的长是___________厘米

.13.如图6,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一

动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值)

.0),B(10,0),C(10,6),D(0,6),直线ymx3m2将四14.已知平面上四点A(0,边形ABCD分成面积相等的两部分,则m的值为.

三、证明题

15.已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.

16.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:ABCF;

(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.

四、综合题

17.如图,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AEEF,BE2.(1)求EC∶CF的值;

(2)延长EF交正方形外角平分线CP于点P(如图13-2),试判断AE与EP的大小关系,并说明理由;

(3)在图13-2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.

18.已知:如图①,在Rt△ACB中,C90,AC4cm,BC3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0t2),解答下列问题:

(1)当t为何值时,PQ∥BC?

2(2)设△AQP的面积为y(cm),求y与t之间的函数关系式;

(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

下载初三数学证明三习题word格式文档
下载初三数学证明三习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2018考研数学三大类习题怎么练习

    凯程考研辅导班,中国最权威的考研辅导机构 2018考研数学三大类习题怎么练习虽然不鼓励考生们用题海战术复习考研数学,但是,考研数学做题是必不可少的。在复习过程中,最忌讳只......

    初三数学暑期辅导6 -证明

    初三数学暑期辅导(5)证明1、如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且 AE∥BC.求证:(1)△AEF≌△BCD;(2) EF∥CD.EADFBC2、如图,E,F是平行四边形ABCD的对角线AC上的点,CEAF. 请你猜......

    初三数学专题复习(几何证明、计算)

    几何证明、计算解题方法指导平面几何是研究平面图形性质的一门学科,研究平面图形的形状、大小及位置关系,除了常见的计算、证明外,从目前素质教育的要求来看,必须培养学生动手、......

    九年级数学证明三(精选五篇)

    九年级数学证明(三)单元测试题班级学号姓名成绩1、 填空题(4’×8=32’)1、判定一个四边形是正方形主要有两种方法,一是先证明它是矩形,然后证明_________,二是先证明它是一个菱形......

    证明垂直习题

    线面、面面垂直的判定及性质一、选择题1、已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线. ②一个平面内的已知直线必垂直于另一个平面的......

    平面几何证明习题专题

    平面几何证明习题1. 如图5所示,圆O的直径AB6,C为圆周上一点,BC3, 过C作圆的切线l,过A作l的垂线AD,垂足为D, 则DAC,线段AE的长为l线段CD的长为,线段AD的长为图5PA2.PB1,AC是圆O的直径,PC......

    初中数学 证明二习题[共五篇]

    【要点整理】1.判定三角形全等的定理有:⑴____________________________;⑵____________________________;⑶____________________________;⑷____________________________;2.已......

    高二数学推理与证明习题精选5篇

    高二数学推理与证明单元测试卷一、 选择题:1、 下列表述正确的是.①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理......