第一篇:2007-2012新课标数学几何证明选讲解答题汇总
1、如图,已知AP是O的切线,P为切点,AC是
O的割线,与O交于B,C两点,圆心O在PAC的内部,点M是BC的中点.,P,O,M四点共圆;(Ⅰ)证明A
(Ⅱ)求OAMAPM的大小.(2007新课标)A【解析】(Ⅰ)证明:连结OP,OM.
因为AP与O相切于点P,所以OPAP. 因为M是O的弦BC的中点,所以OMBC. 于是OPAOMA180°.,P,O,M四点共圆.由圆心O在PAC的内部,可知四边形APOM的对角互补,所以A,P,O,M四点共圆,所以OAMOPM.(Ⅱ)解:由(Ⅰ)得A
由(Ⅰ)得OPAP.
由圆心O在PAC的内部,可知OPMAPM90°.
所以OAMAPM90°.
A2、如图,过圆O外
切点为A,过A点作直线AP垂直直线OM,垂足为P. 一点M作它的一条切线,OPOA;(Ⅰ)证明:OM
(Ⅱ)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM90.(2008课标卷)
23、如图,已知△ABC的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(2009课标卷)
(1)证明B,D,H,E四点共圆;
(2)证明CE平分∠
DEF.分析:此题考查平面几何知识,如四点共圆的充要条件,角平分线的性质等.证明:(1)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°.故∠AHC=120°.于是∠EHD=∠AHC=120°,因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆.(2)连结BH,则BH为∠ABC的平分线,得∠HBD=30°.由(1)知B,D,H,E四点共圆,所以∠CED=∠HBD=30°.又∠AHE=∠EBD=60°,由已知可得EF⊥AD,可得∠CEF=30°.所以CE平分∠DEF.4、如图,已经圆上的弧,过C点的圆切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD;
2(Ⅱ)BC=BF×CD。(2010课标卷)
解:
,(I)因为ACBC所以BCDABC.又因为EC与圆相切于点C,故ACEABC,所以ACEBCD.(II)因为ECBCDB,EBCBCD, 所以BDC∽ECB,故即BCBECD.2BCCD,BEBC5、如图,D,E分别为ABC的边AB,AC上的点,且
不与ABC的顶点重合。已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x214xmn0的两个根。
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若A90,且m4,n6,求C,B,D,E所在圆的半径。()(201
1新课标)
解析:(I)连接DE,根据题意在△ADE和△ACB中,ADABmnAEAC即ADAE.又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACBACAB
所以C,B,D,E四点共圆。
(Ⅱ)m=4, n=6时,方程x-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂
线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90,故GH∥AB, HF∥AC.HF=AG=5,DF=
故C,B,D,E四点所在圆的半径为
526、如图,D,E分别为ABC边AB,AC的中点,直线DE交 021(12-2)=5.2ABC的外接圆于F,G两点,若CF//AB,证明:
(1)CDBC;
(2)BCDGBD(2012课标卷)
【解析】(1)CF//AB,DF//BCCF//BD//ADCDBF
CF//ABAFBCBCCD
(2)BC//GFBGFCBD
BC//GFGDEBGDDBCBDCBCDGBD7、
第二篇:数学选修4-1几何证明选讲解答题
选修4-1:几何证明选讲
一、填空题
1.(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=________.2.(2011·湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为________.
二、解答题
3.如图所示,四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D.求证:AC·BE=CE·AD.4.(2011·江苏)如图,圆O1与圆O2内切于点A,其半径分别为
r1与r2(r1>r2).圆O1的弦AB交圆O2于点C(O1不在AB上).求证:AB∶AC
为定值.
5.如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD,点E,F分别为线段AB,AD的中点,求EF的长. a
26.如图所示,点P是圆O直径AB延长线上的一点,PC切圆O于点C,直线PQ平分∠APC,分别交AC、BC于点M、N.求证:(1)CM=CN;(2)MN2=2AM·BN
.7.如图,四边形ABCD内接于⊙O,AB=AD.过A点的切线交CB的延长线于E点.求证:AB2=BE·CD.8.如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60°到OD,求PD的长.
9.如图,已知△ABC的两条角平分线AD和
CE
相交于点
H,∠ABC=60°,F在AC上,且AE=AF.求证:(1)B、D、H、E四点共圆;
(2)CE平分∠DEF.10.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;
(2)求证:FB2=FA·FD;
(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6 cm,求AD的长.
答案
231.2 2.3
CE3.证明 因为四边形ABCD是平行四边形,所以AF∥BC,所以BE
=.又因为AE∥CD,所以△AFE∽△DFC,EFEA
EAEFCFEFCE所以==.CDCFCDEABE
又因为∠ECA=∠D,∠CAF=∠DAC,ACCF所以△AFC∽△ACD,所以,ADDC
ACCE所以,ADBE
所以AC·BE=CE·AD.4.证明 如图,连结AO1并延长,分别交两圆于点E
和点D.连结BD,CE.因为圆O1与圆O2内切于点A,所以点O2在AD上,故
AD,AE分别为圆O1,圆O2的直径.
π从而∠ABD=∠ACE.2
所以BD∥CE,ABAD2r1r1于是==.ACAE2r2r2
所以AB∶AC为定值.
5.解 连结DE,由于E是AB的中点,故BE=.又CD=,AB∥DC,22CB⊥AB,∴四边形EBCD是矩形.
在Rt△AED中,AD=a,F是AD的中点,故EF2
6.证明(1)∵PC切圆O于点C,∴∠PCB=∠PAC,又∵∠CPM=∠APM,∴∠CNM=∠CPM+∠PCB=∠APM+∠PAM=∠CMN,∴CM=CN.(2)∵∠CPN=∠APM,∠PCN=∠PAM,aaaPCCN∴△PCN∽△PAM=,①
PAAM
同理△PNB∽△PMCPBBN.② PCCM
又∵PC2=PA·PB,③
由①②③可知CM·CN=AM·BN,∵CM=CN,∴CM2=AM·BN.∵AB是圆O的直径,∴∠ACB=90°.∴MN2=2CM2,即MN2=2AM·BN.7.证明 连结AC.∵EA切⊙O于A,∴∠EAB=∠ACB,∵AB=AD,∴∠ACD=∠ACB,AB=AD.∴∠EAB=∠ACD.又四边形ABCD内接于⊙O,所以∠ABE=∠D.∴△ABE∽△CDA.ABBE,即AB·DA=BE·CD.CDDA
∴AB2=BE·CD.8.解 方法一 连结AB,∵PA切⊙O于点A,B为PO中点,∴AB=OB=OA,∴∠AOB=60°,∴∠POD=120°.在△POD中,由余弦定理得PD2=PO2+DO2-2PO·DO·cos∠POD=4+1-14×(-=7.∴PD7.2
方法二 过D作DE⊥PC,垂足为E,∴∠POD=120°,13∴∠DOE=60°,可得OE,DE=,22
在Rt△PED中,25322PDPE+DE=7.44
9.证明(1)在△ABC中,∵∠ABC=60°,∴∠BAC+∠BCA=120°.∵AD,CE分别是△ABC的角平分线,∴∠HAC+∠HCA=60°,∴∠AHC=120°.∴∠EHD=∠AHC=120°.∴∠EBD+∠EHD=180°.∴B,D,H,E四点共圆.
(2)连结BH,则BH为∠ABC的平分线,∴∠EBH=∠HBD=30°.由(1)知B,D,H,E四点共圆,∴∠CED=∠HBD=30°,∠HDE=∠EBH=30°.∴∠HED=∠HDE=30°.∵AE=AF,AD平分∠BAC,∴EF⊥AD.∴∠CEF=30°.∴CE平分∠DEF.10.(1)证明 因为AD平分∠EAC,所以∠EAD=∠DAC.因为四边形AFBC内接于圆,所以∠DAC=∠FBC.因为∠EAD=∠FAB=∠FCB,所以∠FBC=∠FCB,所以FB=FC.(2)证明 因为∠FAB=∠FCB=∠FBC,∠AFB=∠BFD,FBFA所以△FBA∽△FDB.所以= FDFB
所以FB2=FA·FD.(3)解 因为AB是圆的直径,所以∠ACB=90°.又∠EAC=120°,所以∠ABC=30°,1∠DAC=EAC=60°.因为BC=6,2
所以AC=BCtan∠ABC=23,AC所以AD==43(cm). cos∠DAC
第三篇:几何证明选讲高考题(新课标)
i
几何证明选讲高考题汇编
潢川一中高二数学组
1.(2009新课标全国卷)如图,已知ABC中的两条角平分线AD和CE相交于H,B=60,F在AC上,且AEAF。(I)证明:B,D,H,E四点共圆;(II)证明:CE平分DEF。
2.(2010新课标全国卷)如图,已知圆上的 弧AC和 弧BD长度相等,过C点的圆的切线与BA的延长线交于E点,证明:(I)∠ACE=∠BCD;(II)BC
2=BE×CD.- 1 -
3.(2011新课标全国卷)如图,D,E分别为ABC的边AB,AC上的点,且不与ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2
14xmn0的两个根.
(I)证明:C,B,D,E四点共圆(II)若A900,且m4,n6求C,B,D,E所在圆的半径.
4.(2012新课标全国卷)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB.证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD
G
F
- 2 -
5.(2013新课标全国Ⅰ卷)已知如图,直线AB为圆的切线,切点为B,点C在圆上,ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D。(Ⅰ)证明:DBDC;
(Ⅱ)设圆的半径为
1,BC,延长CE交AB于点F,求BCF外接圆的半径。
6.(2013新课标全国Ⅱ卷)如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;
(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.
- 3 -
7.(2013辽宁高考)如图,AB为圆O的直径,直线CD与圆O相切于E, AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:()FEBCEB;()EF2
ADBC.8.(2013江苏高考)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.- 4 -
几何证明选讲高考题汇编参考答案
1.解:(Ⅰ)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°,故∠AHC=120
于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆。
(Ⅱ)连结BH,则BH为ABC的平分线,得HBD30° 由(Ⅰ)知B,D,H,E四点共圆,所以CEDHBD30° 又AHEEBD60°,由已知可得EFAD,可得
CEF30°所以CE平分DEF
2.解:(Ⅰ)因为弧AB,CD长度相等,所以BCDABC.又因为EC与圆相切于点C,故ACEABC
所以ACEBCD.……5分(Ⅱ)因为ECBCDB,EBCBCD, 所以BDC∽ECB,故
BCBECDBC
.即BC2
BEC.D3解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即
ADACAE
AB
.又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB所以C,B,D,E四点共圆。(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=900,故GH∥AB,HF∥AC.HF=AG=5,DF=
2(12-2)=5.故C,B,D,E四点所在圆的半径为52
- 5 -
4.解
5.解:(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=
.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于32
.6.解:(1)因为CD为△ABC外接圆的切线,所以∠DCB=∠A.由题设知
BCFADC
EA,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圆的直径.(2)连结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2=DB·BA=2DB2,所以CA2=4DB2+BC2=6DB2.而DC2=DB·DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为12
.- 6 -
7解()由直线CD与圆O相切于E,得EABCEB 由AB为圆O的直径,得AEEB,从而EABEBF
又EF垂直AB于F,得FEBEBF
,从而FEBCEB
()由BC垂直CD于C,得BCCE
又EF垂直AB于FEFAB,FEBCEB,BE为公共边,所以RtBCE≌RtBFE,所以BCBF
同理可证,RtADE≌RtAFE,所以ADAF
又在Rt△AEB中, EFAB,所以EF2
AFBF.综上,EF2
ADBC.8证明:连结OD.因为AB和BC分别与圆O相切于点D,C, 所以∠ADO=∠ACB=90°.又因为∠A=∠A,所以Rt△ADO∽Rt△ACB.所以
BCODAC
AD,又BC=2OC=2OD, 故AC=2AD.几何证明选讲----知识点总结
1、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。
推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。平分线分线段成比例定理
2、平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3、相似三角形的判定:
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似系数)。
- 7 -
由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比
例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形:
4、相似的简单方法:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似。
5、预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。
6、判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三
角形相似。简述为:两角对应相等,两三角形相似。
7、判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。
8、判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个
三角形相似。简述为:三边对应成比例,两三角形相似。
9、引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
10、定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。
11、定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似。
12、相似三角形的性质:
- 8 -
(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方。
相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。
22、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
23、割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
24、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
25、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
13、直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。
14、圆周定理
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。圆心角定理:圆心角的度数等于它所对弧的度数。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。圆内接四边形的性质与判定定理
16、定理1:圆的内接四边形的对角互补。
17、定理2:圆内接四边形的外角等于它的内角的对角。
18、圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。
推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。圆的切线的性质及判定定理。
19、切线的性质定理:圆的切线垂直于经过切点的半径。推论1:经过圆心且垂直于切线的直线必经过切点。推论2:经过切点且垂直于切线的直线必经过圆心。
20、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。弦切角的性质
21、弦切角定理:弦切角等于它所夹的弧所对的圆周角。与圆有关的比例线段
- 9 -
- -
第四篇:高三数学~几何证明选讲
德智答疑 http://dayi.dezhi.com/shuxue 高三数学~~几何证明选讲
1、外接圆的切线证明
[ 高三数学] 题型:探究题
问题症结:找不到突破口,请老师帮我理一下思路
考查知识点:
圆的切线的判定定理及性质定理
难度:难
解析过程:
规律方法:
熟练掌握圆的切线的判定方法是解题的关键。
2,急!关于一道几何题!
[ 高三数学]题型:解答题
在三角行ABC中,角C=30度,O为外心,I为内心,边AC上的点D与边BC上的点E,使AD=BE=AB,求证:OI=DE且OI垂直
问题症结:找不到突破口,请老师帮我理一下思路
德智知识点 http://www.xiexiebang.com/knowledge德智QQ学习分享群:26192056
2德智答疑 http://dayi.dezhi.com/shuxue
考查知识点:
难度:难 直角三角形射影定理
解析过程:
解:
已知三角形ABC中,O、I为其外心和内心,角C=30度,D、E分别为AC和BC上两点,且AD=AB=BE,求证:OI=DE,且OI垂直于DE。
证明:辅助线如图所示:
∵O为外心
∴∠AOB=2∠C=60°
∴△AOB为等边三角形
∵I为内心
∴∠IAB=∠IAE
又∵AB=AE
利用SAS
可知:△IAB≌△IAE
同理可证:△IAB≌△IDB
∴∠EIA=∠DIB=∠AIB
=180°-(∠IAB+∠IBA)=180°-(∠CAB+∠CBA)/
2=180°-(180°-30°)/2=105°
∴∠EID=360°-3∠EIA=360°-3×105°=45°
∠EFD
=(∠AEO-∠ECF)+(∠BDI-∠DCF)=∠AEO+∠BDI-(∠ECF+∠DCF)=(90°-∠EAO/2)+∠BAI-30°=60°+(∠BAE-∠EAO)/2
=60°+∠BAO/2=60°+30°
德智答疑 http://dayi.dezhi.com/shuxue =90°
∴EO⊥DI
同理可知:DO⊥EI
∴O为△EID的垂心
∴IO⊥ED
∴∠OID+∠EDI=∠DEO+∠EDI=90°
∴∠OID=∠DEO
又∵∠EID=45°
∴△EFI为等腰直角三角形
∴EF=IF
根据ASA知:△OIF≌△DEF
∴OI=ED
综上所述:OI⊥ED且OI=ED
规律方法:
此题太难,高考的要求不会这样难啊。知识点:几何证明选讲
概述
所属知识点:
[几何证明选讲]
包含次级知识点:
平行切割定理、直角三角形射影定理、圆周角定理、圆的切线的判定定理及性质定理、相交弦定理、圆内接四边形的性质定理与判定定理
知识点总结
本节主要包括平行切割定理、直角三角形射影定理、圆周角定理、圆的切线的判定定理及性质定理、相交弦定理、圆内接四边形的性质定理与判定定理等知识点。
1、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
德智答疑 http://dayi.dezhi.com/shuxue 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。
推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。
2、平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3、相似三角形的判定:
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似系数)。
由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形:
相似的简单方法:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似。
预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。
判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。简述为:两角对应相等,两三角形相似。
判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。
判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。
引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;
(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。
定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似。
相似三角形的性质:
(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;
(2)相似三角形周长的比等于相似比;
(3)相似三角形面积的比等于相似比的平方。
相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。
4、直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。
5、圆周角定理
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。
圆心角定理:圆心角的度数等于它所对弧的度数。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。
德智答疑 http://dayi.dezhi.com/shuxue推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
6、圆内接四边形的性质与判定定理
定理1:圆的内接四边形的对角互补。
定理2:圆内接四边形的外角等于它的内角的对角。
圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。圆的切线的性质及判定定理。
7、切线的性质定理:圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。弦切角的性质
8、弦切角定理:弦切角等于它所夹的弧所对的圆周角。与圆有关的比例线段
9、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
10、割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
11、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
12、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
常见考法
本节在段考和高考中,是以填空题的形式出现,属于选做题。一般属于容易题。
误区提醒
在利用相似三角形解答时,注意通过对应边找对应角,通过对应角找对应边,不要找错了。
【典型例题】
例1如图,△ABC的角平分线AD的延长线交它的外接圆于点
E.例2 如图,AB、CD是圆的两条平行弦,BE∥AC,并交CD于E,交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(1)求AC的长;
德智答疑 http://dayi.dezhi.com/shuxue(2)求证:EF=
BE.德智知识点 http://www.xiexiebang.com/knowledge
第五篇:2012高考数学几何证明选讲
几何证明选讲
模块点晴
一、知识精要
值叫做相似比(或相似系数)。
由于从定义出发判断两个三角形是否相似,需考虑
6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似。
形与三角形相似。
对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应
对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。
对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应
条直线平行于三角形的第三边。
1)如果两个直角三角形有一个锐角对应相等,那么它们相似;
(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。
(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;
(2)相似三角形周长的比等于相似比;
(3)相似三角形面积的比等于相似比的平方。
相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。
它们在斜边上射影与斜边的比例中项。
°的圆周角所对的弦是直径。
圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。的比例中项。
两条切线的夹角。
二、方法秘笈
⒈几何证明选讲内容的考点虽多,主要还是集中在对圆的相关内容的考查,而圆中又主要以与切线有关的性质、圆幂定理、四点共圆这几个内容的考查为主。
⒉虽然本书内容主要是由原初三内容改编过来,而在初中,相关内容也已经删去,似乎教师教与学生学都有一定难度,但是由于学生经过两年的高中学习,逻辑性、严密性都有了较大的提高,只要教学得法,学生对这部分的学习应该并不会感到困难。
⒊紧扣课本中的例习题进行学习,重视各个定理的来龙去脉,理解其中渗透的重要的数学思想方法,因为高考试题中所采取的一些方法多来自课本中定理的证明方法及例习题的证明方法;
试题解析
一、选择题
例1.(2012北京、理科)如图.∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于
点E.则()
A.CE·CB=AD·DBB.CE·CB=AD·AB C.AD·AB=CD ²D.CE·EB=CD ²
【解析】A。在ACB中,∠ACB=90º,CD⊥AB于点D,所以CD理的CD
二、填空题
例1.(2012全国、文科)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与圆交于点E,与AB相交于点
F,AF3,FB1,EF
ADDB,由切割线定
CECB,所以CE·CB=AD·DB。
32,则线段CD的长为
【解析】如图连结BC,BE,则∠1=∠2,∠2=∠A
A1,又∠B=∠B,CBF∽ABC,CBBFCBCF,,代入数值得BC=2,ABBCABAC
AC=4,又由平行线等分线段定理得解得CD=
ACCD
AFFB,.【答案】
例2.(2012湖南、理科)如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于
_______.PO交圆O于C,D,如图,设圆的半径为R,由割线定理知
PAPBPCPD,即1(12)(3-r)(3r),r
P
例3.(2012天津、理科)如图,已知AB和AC是圆的两条弦.过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=
32,则线段CD的长为
【解析】∵AF=3,FB=1,EF=
432
ABAF,由相交弦定理得AFFB=EFFC,所以FC=2,FC=83
又∵BD∥CE,∴
AFAB
=
FCBD,BD=
2=
83,设CD=x,则AD=4x,再由切
割线定理得BD=CDAD,即x4x=(练习题
1.(2012湖北、理科)),解得x=,故CD=
43.如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_____________。
答案:
22.(2012陕西、文理科)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EFDB,垂足为F,若AB6,AE1,则DFDB5。
三、解答题
例1(2012年全国新课标卷)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:
G
F
(Ⅰ)CD=BC;
(Ⅱ)△BCD∽△GBD
【解析】(1)CF//AB,DF//BCCF//BD//ADCDBFCF//ABAFBCBCCD
(2)BC//GFBGFCBD
BC//GFGDEBGDDBCBDCBCDGBD
O相交例2.(2012辽宁、文理科)如图,⊙O和⊙
/
于A,B两点,过A作两圆的切线分别交两圆于C,D
两点,连接DB并延长交⊙O于点E。
证明
(Ⅰ)ACBDADAB;(Ⅱ)ACAE。
例3.(2012江苏、理科)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结
BD并延长至点C,使BD = DC,连结AC,AE,DE.
求证:EC.
【解析】
21-A题)