第一篇:环氧树脂性能特点
性能特点
(1)力学性能高。环氧树脂具有很强的内聚力,分子结构致密,所以它的力学性能高于酚醛树脂和不饱和聚酯等通用型热固性树脂。
(2)附着力强。环氧树脂固化体系中含有活性极大的环氧基、羟基以及醚键、胺键、酯键等极性基团,赋予环氧固化物对金属、陶瓷、玻璃、混凝土、木材等极性基材以优良的附着力。
(3)固化收缩率小。一般为1%~2%。是热固性树脂中固化收缩率最小的品种之一(酚醛树脂为8%~10%;不饱和聚酯树脂为4%~6%;有机硅树脂为4%~8%)。线胀系数也很小,一般为6×10-5/℃。所以固化后体积变化不大。
(4)工艺性好。环氧树脂固化时基本上不产生低分子挥发物,所以可低压成型或接触压成型。能与各种固化剂配合制造无溶剂、高固体、粉末涂料及水性涂料等环保型涂料。
(5)优良的电绝缘性。环氧树脂是热固性树脂中介电性能最好的品种之一。
(6)稳定性好,抗化学药品性优良。不含碱、盐等杂质的环氧树脂不易变质。只要贮存得当(密封、不受潮、不遇高温),其贮存期为1年。超期后若检验合格仍可使用。环氧固化物具有优良的化学稳定性。其耐碱、酸、盐等多种介质腐蚀的性能优于不饱和聚酯树脂、酚醛树脂等热固性树脂。因此环氧树脂大量用作防腐蚀底漆,又因环氧树脂固化物呈三维网状结构,又能耐油类等的浸渍,大量应用于油槽、油轮、飞机的整体油箱内壁衬里等。
(7)环氧固化物的耐热性一般为80~100℃。环氧树脂的耐热品种可达200℃或更高。
第二篇:环氧树脂的性能和特性
环氧树脂的性能和特性
环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。★ 环氧树脂的性能和特性
1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。
2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。
3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。
4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。
5、力学性能。固化后的环氧树脂体系具有优良的力学性能。
6、电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。
7、化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。
8、尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。
9、耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。
第三篇:环氧树脂模具的种类及材料与性能
环氧树脂模具的种类及材料与性能
www.xiexiebang.com 中国粘合剂网
环氧树脂模具的种类及材料与性能:
一、概况
环氧树脂模具又称树脂模具,它具有制造周期短、成本低、特别适合形状复杂的制品和产品更新换代快速的工业领域;因此,在国外先进国家已得到广泛的应用,特别在汽车制造业、玩具制造业、家电制造业、五金行业和塑料制品等工业系统使用得更为普及。环氧树脂模具按不同的结构和用途,采用各种性能的环氧树脂、固化剂、增韧剂和填料(铁粉、铝粉、硅微粉、重晶石粉等)等配制成模具树脂,同时以玻璃纤维布和碳纤维布作增强材料而制成的。
环氧树脂模具按不同用途和技术要求,能设计出不同的环氧模具树脂配方组份。从国内、外环氧树脂模具实际应用统计,环氧树脂适合于制作以下几种类型的模具,在冷压模具方面有:弯曲模、拉延模、落锤模、铸造模等;在热压模具方面有:塑料注射模、注腊模、吹塑模、吸塑模、泡沫成型模、皮塑制品成型模等。环氧树脂模具的制造特点,是制造简易,快速,成本低;例如一些外形复杂、难成形的金属模具,用环氧树脂制造,采用浇注法或低压成形法,就能一次成形,无需大型精密切削机床,也可不用高级钳工。有些金属模具制造的周期要几个月至半年,采用环氧树脂模具一般只要3~5天就可完成,其成本仅仅是钢模的15~20%左右,而且树脂模具使用寿命很长,磨损了还可以很快修补好,继续使用。因此,环氧树脂模具的制造是一项打破传统机械加工工艺的新技术、新材料和新工艺。环氧树脂模具,在国外都是大型工厂设立的专门研制中心制造的,而在国内仅在于国防工业单位研制了一些,一般工厂企业都缺乏这方面的制造工艺技术和配方,所以在我国环树脂模具的应用、普及和发展的速度很缓慢。今后随着新材料、新技术的发展,环氧树脂应用技术的推广,环氧树脂模具的综合性能和制造技术被广泛了介和认识,环氧树脂复合材料性能的提高,树脂模具的制作工艺和应用工艺的简化,环氧树脂模具必然会得到飞跃的发展,成为新的高效率的低成本的先进模具。
二、环氧树脂模具的种类
1、环氧树脂冷压类型的模具
(1)弯曲模、成形模、拉延模、切口模等。
环氧树脂的复合材科主要用来制造凹凸模,可以浇注成形,也可以低压模压法成形,它可以冲压或拉延0.8毫米钢板2毫米以下的铝板,寿命在万次以上不磨损。对于大型拉延模具,如汽车驾驶室顶盖件,用环氧树脂制造模具显示出更大的优越性,无需大型切削机床。切口模用来制造结构复杂的大型零件,在凹凸模刃口部嵌以钢带。用环氧树脂制造的弯曲成形模具,冲压的另件有吊扇的风叶等,风叶型面尺寸要求很高,因关系到风量和使用效果等,环氧树脂模具固定在100吨冲床上冲压成形,冲压次数巳达三十余万次,树脂模具还在使用。
(2)落锤模
环氧树脂模具的种类及材料与性能
www.xiexiebang.com 中国粘合剂网
采用环氧树脂落锤模,可以冲压2.5毫米厚的铝板,1.5毫米厚的不锈钢板。树脂做的模具,协调性能好,工艺简单,制造周期短,比铝锌模缩短3/4时间,还可节省大量的有色金属,降低成本。
(3)铸模
关于铸模如模型、芯盒、型板等,采用环氧树脂制作铸模的优点:
①树脂模具制造周期短,如铝模制造周期约一个月,而树脂模具制作只需3~5天;
②树脂模具使用寿命长,如铝模用到二千次就要大修,而树脂模可用到二万次;
③树脂模具修理简单、方便;
④树脂模具重量轻,劳动生产率高。
因此,国、内外巳普遍、广泛的应用环氧树脂制作铸模。结构形式:有树脂包复式模具和全树脂整体式模具。
此外,环氧树脂还能制作锤击模、爆炸成形模、液压成形模、拉伸模胎、移形模、检验模等,以上的树脂模具,大部分是用来制造飞机,汽车或火箭上的另部件。环氧树脂模具制造速度快,成本低、协调性能好,能解决一般金属模具制造中的技术难关。
2、环氧树脂热压类型的模具(1)注腊模
用于压注腊型的模具,一般用金属制作模具,批量小的、要求不高的也采用石膏模。先用注腊模注出腊型,根据腊型再做成壳模,溶腊后浇注金属。树脂的注腊模,强度高,成型方便,光洁度高,耐磨性好,导热性稍差一些,在加工成形雕塑的型面时,经济效益就更高了。
(2)塑料注射模
随着工程塑料的飞跃发展与广泛的应用,塑料模具的制造,就更显出重要性了。环氧树脂注射模具是国内外正在努力突破的一项新技术。据资料介绍,环氧树脂注射模国外作为一种简易、快速模具,因为它成型快,外形精确,但缺点是耐热性差,因此,在树脂模具设计时应考虑冷却水管道,来提高注塑次数。我国也有几个单位在研制这类树脂模具,并取得了良好的应用,注塑次数巳达万次以上,环氧树脂模具型面无变化。在树脂模具配方设计上的优化和模具结构上的改进,使树脂模具的热态强度、导热系数都有较高的水平。因此,如果产品型面为雕塑的型面,机加工简直无法加工的,则更显出环氧树脂模具的优越性。
环氧树脂模具的种类及材料与性能
www.xiexiebang.com 中国粘合剂网
(3)吹塑模和吸塑模具
这类模具都要求环氧树脂配方固化物要有良好的热态强度和导热系数,它最大的优点是成形方便,这些树脂模具都属于开发应用中的模具。
三、制造环氧树脂模具的材料与性能
制造树脂模具的基体树脂有酚醛树脂、不饱和聚酯树脂、环氧树脂等。在这些基体树脂中,环氧树脂的机械、物理性能最好,工艺性也好。所以现在都用环氧树脂制造模具,如现在最高强度的复合材料,就是环氧树脂与硼纤维、碳纤维等制成的。
基体树脂:常用的环氧树脂有双酚A环氧树脂,如;YD-128、E-
51、E-44等;线型酚醛环氧树脂F-44和F-45;氨基多官能团环氧树脂AFG-80、AFG-90;脂环族环氧树脂R-122等。根据不同树脂模具的机械强度要求、耐热性要求和精度要求选择基体树脂类型,再设计配方。
固化剂:胺类固化剂:脂肪胺、缩聚胺、芳香胺、改性芳香胺等;
咪唑类固化剂:2-甲基咪唑、改性咪唑、2-乙基-4-甲基咪唑等;
酸酐类固化剂:甲基四氢苯酐、改性甲基四氢苯酐、氯桥酸酐、均苯四甲酸二酐等。
增韧剂:LDY-050活性增韧剂、LDY-052反应型增韧剂、LDY-055海岛结构增韧剂、高聚合度聚硫橡胶、端羧基丁睛橡胶等。
纤维增强材料:玻璃纤维(布)、碳纤维(布)、硼纤维(布)等。
填料:硅微粉、铁粉、铝粉、铜粉、氧化铝粉、重晶石粉等。
环氧树脂模具复合材料,是由基体树脂、固化剂,增韧剂,填料和纤维增强材料等组成,起固化反应而达到高性能的模具树脂。根据不同模具不同的结构和技术要求,设计不同的配方,配方不同,其成形工艺,固化工艺也不同。
四、制造环氧树脂模具的工艺方法
1、浇注工艺制造
按环氧树脂配方比例称量和混合,然后浇注入模型模具,按配方工艺要求,采用室温或高温固化成型。也可采用振动浇注工艺。
2、层压工艺制造
环氧树脂模具的种类及材料与性能
www.xiexiebang.com 中国粘合剂网
玻璃纤维或碳纤维增强的环氧树脂模具,在固化时不用压力的,在模型里层迭纤维增强材料并层层涂以环氧树脂混合料,称为接触层迭工艺。固化时如在加压下进行,可增加玻璃纤维含量,称加压层压工艺。
3、短玻璃纤维增强与树脂的混合物,能够在简易的金属模内成形。
总之,不同的模具,根据模具的结构、模具的类型、模具的技术要求来设计不同的环氧树脂配方和制造工艺,才能制造出良好的环氧树脂模具。
第四篇:河豚毒素性能特点及检测方法
河豚毒素检测方法
随着渔业的发展,河豚鱼中毒事件的屡次出现,以及当前可能被恐怖分子利用的潜在威胁,使TTX的检测越来越为人们所重视,并具有重要的现实意义,检测方法可分为生物测定法、理化分析法和免疫化学法、生物测定法、高效液相色谱紫外检测法(HPLC-UV)、高效液相色谱荧光检测法(HPLCFLD)、高效毛细管电泳法(HPCE)、液质联用、气质联用等方法。生物法有酶联免疫(ELISA)法和小鼠法等。
生物测定法
小鼠生物实验法、竞争置换法、组织培养生物实验法、动电位法。
理化分析法
荧光法、紫外分光光度法、薄层色谱法及其联用技术、电泳法及其联用技术、气相色谱法及其联用技术、高效液相色谱法及其联用技术。
免疫化学检测法
TTX的检测方法很多,每种方法都有其优缺点,可根据实验条件及要求选择恰当的检测方法。TTX作为钠离子通道阻断剂,虽然毒性强,但在临床中也可作为高效镇痛剂,并且对某些肿瘤有抑制作用,在神经生物学、药理学、肌肉生理学等方面被广泛用于工具药。随着TTX检测手段的不断完善,TTX的研究将会有更大的发展,在食品检验、中毒诊断、治疗及国家安全等方面发挥更大的作用。
ELISA法 ELISA法具有特异性好、灵敏度高,可定量检测,而且有采样量极小等特点,多用于河豚毒素的痕量检测;小鼠法是利用河豚毒素的毒性特点进行的小鼠毒性检测的方法,方法简便,但定量不准确且重复性差、目标性差,已少用。
HPLCUV法
HPLCUV法是常用的检测手段,既可以检测含量,又可以作为有关物质的考察,河豚毒素没有紫外光谱特征吸收,采用末端吸收进行检测;国外多采用柱后衍生化荧光检测的方法进行含量测定,河豚毒素本身没有荧光,氢氧化钠破坏后产生降解产物C9碱具有荧光;荧光检测的灵敏度比紫外检测的灵敏度高,但在含量测定检测结果上两种方法不存在显著性差异。
第五篇:无机材料的性能特点分类
无机非金属材料性能
一、绪论(2学时)
1、无机非金属材料的特点
(1)化学组成上为无机化合物或非金属元素单质,包括传统的氧化物、硅酸盐、碳酸盐、硫酸盐等含氧酸盐、氮化物、碳化物、硅化物、硼化物、氟化物、硫系化合物、硅、锗及碳材料等。
(2)形态与形状上包括多晶、单晶、非晶、薄膜、纤维、复合材料等。(3)晶体结构复杂。单个晶格可能包含多种元素的原子,晶格缺陷种类多。(4)原子间结合力丰要为离子键、共价键或者离了—共价混合键,具有高的键能、大的极性。
(5)制备上通常要求高纯度、高细度原料,并在化学组成、添加物的数量和分布、晶体结构和材料微观结构上能精确控制。
(6)性能多样。具有高熔点高强度、耐磨损、高硬度、耐腐蚀及抗氧化,宽广的导电性能、导热性、透光件以及良好的铁电性、铁磁性和压电性等待殊性能;但大多数无机材料拉伸强度低,韧性差,脆性大。
(7)应用极其广泛。几乎在所有的领域都有无机材料的应用,尤其新型无机材料更是现代技术的发展基础、在电子信息技术、激光技术、光纤技术、光电子技术、传感技术、超导技术以及空间技术的发展中占有十分重要的地位。
2、传统无机非金属材料与新型无机非金属材料
传统无机材料一般是指以天然的硅酸盐矿物(粘土、石英、长石等)为主要原料,经高温窑烧制而成的一大类材料。故又称窑业材料,主要有陶瓷、玻璃、水泥和耐火材料四种,其化学组成均为硅酸盐,因此也称为硅酸盐材料。新型无机材料则是指应用于高科技领域的用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种无机非属化合物经持殊的先进工艺制成的具有优异性能的无机新材料,包括特种陶瓷、特种玻璃、特性水泥、新型耐火材料、人工晶体、增导体材料等。
3、无机非金属材料的分类
无机材料种类繁多、性能各异。从传统硅酸盐材料到新型无机材料,众多门类的无机材料已经渗透到人类生活、生产的各个领域,需从多个角度对无机材料进行分类。无机材料按成分特点、可分为单质和化合物两大类;按结构特征,可 分为单晶、多晶、玻璃、无定形材料、复合材料等;按形态,可分为体相材料、薄膜材料、纤维、粉体等;按性能特征和使用效能,又可分为结构材料和功能材料两大类;按合成制备工艺,还可分为烧结成材、湿法合成材料、涂镀材料、水硬材料等。
4、无机材料的应用和发展
无机材料的制造和使用合着悠久的历史。早在远古旧石器时代人们就使用经过简单加工的石器作为工具。到新石器时期已经出现粗陶器;我国商代开始出现原始瓷和上釉的彩陶;东汉时期的青瓷,经过唐、宋、元、明、清不断发展,已达到相当高的技术和艺术水平。青铜器时代的金属冶炼中已经开始使用粘土质和硅质材料作为耐火材料。从青铜器时代、铁器时代到近代钢铁工业的兴起,耐火材料都起着关键的作用。距今五六千年前的古埃及文物中就发现有绿色玻璃殊饰品,我国的白色玻璃珠亦有近3000年的历史;17世纪以来,由于用工业纯碱代替天然草木灰与硅石、石灰石等矿物原料生产钠钙硅酸盐玻璃,各种日用玻璃和技术玻璃迅速进人普通家庭、建筑物和工业业领域:在距今五六千年的古代建筑中已开始大量使用石灰和石膏等气硬性胶凝材料,到公元初期水便性的石灰和火山灰胶凝材料也开始被应用到建筑工业中,但是用人工方法合成硅酸盐水泥制品还只有100多年的历史;19世纪初,英国人阿斯普丁发明用硅酸盐矿物和石灰原料经高温煅烧制成波特兰水泥(又称硅酸盐水泥),从而开始了高强度水硬性胶凝材料的新纪元。
20世纪40年代以后(第二次世界大战后期)。无机材料的发展进人了一个新的阶段;在原料纯化、工艺进步、材料理论的发展、显微分析技术的提高、性能研究的深入、无损评估技术的成就以及相邻学科的推动等因素的作用下,传统无机材料的成分、结构、性能和应用得到了空前的延伸。人们发展了包括结构陶瓷、功能陶瓷、复合材料、半导体材料、新型玻璃、非晶态材料、人工晶体、炭素材料、无机涂层及高性能水泥和混凝土等一系列高性能先进无机材料,特别是具有电、磁、声、光、热、力等信息的存储、转换功能的新型无机功能材料,正在日益广泛地被应用在现代高技术领域,如微电子、航天、能源、计算机、激光、通信、光电了、传感、红外、生物医学和环境保护等领域,成为现代高新技术、新兴产业和传统工业的主要物质基础。如半导体材料的出现,对电子工业的发展具 2 有巨大的推动作用,计算机小型化和功能的提高,与硅、锗等半导体材料密切相关;涂覆SiC热解碳—碳结合等复合材料在空间技术的发展中产生了巨大作用;人工晶体、无机涂层、无机纤维等先进材料已逐渐成为近代尖端科学技术的重要组成部分;各种矿物材料也因其电、光、磁、热、摩擦、密封、填充、增强、表面效应以及胶体性:、化学活性与惰性、吸附性、载体与催化性等在工业、农业、国防及民用等领域起着不可替代的作用。
20世纪90年代以来,人类对无机材料的需求量越来越大,对其性能要求越来越高。无机材料的研究与应用近进入了一个更新的发展阶段。纳米材料与技术的发展,引起了无机材料从原料合成、制备工艺、材料科学、性能表征以及材料应用的革命性进步。复合技术、材料设计等相关理沦与技术的进步,大大扩充了新型无机材料发展与创造的空间。基于材料学、物理、化学、电子、冶金等基础学科的新型无机材料呈现空前活跃的发展前景,在近代高新技术领域发挥着日益重要的作用。
5、无机材料在国民经济中的地位和作用
不仅是人民生活、工业生产和基础建设所必需的基础材料,也是传统工业技术改造、新兴产业和高新技术发展中不可缺少的重要物质基础和先导。可以预测,先进无机材料将是未来人类社会科技进步与社会文明发展的重要物质基础与支柱。
6、无机材料的研究内容
无机材料工艺学的任务是不断利用材料科学及其他相邻学科的发展成就,研究如何选择合适的原料,通道各种工艺过程生产出附合各种性能要求的材料,并能达到低投入高产出,实现按使用性能要求来设计和制造无机材料的目标。由于基础科学和实验技术的进步,材料科学研究水平不断提高,已经从宏观进人微观,从定性进入半定量或定量,从静态进入动态,从而为更合理、更有效地使用现有材料和发展新材料提供了依据,为逐步实现按预想性能设计和制备材料创造了条件。
未来高新技术的发展,对各种无机材料提出了更多、更高和更新的要求。特种陶瓷要求从原料的多相结构到趋向于单相结构,又趋向于更复杂的多相复合结构;纳米陶瓷的研究正向纵深发展,有望得到性能更好的纳米陶瓷制品;陶瓷强 3 化与增韧的研究取得了明显的成就。新发展的纳米陶瓷和陶瓷的晶界应力设计可望成为解决陶瓷脆性问题的有效途径;先进功能陶瓷的精细复合原理及其工艺的研究为人们所瞩目。无机材料逐步向多功能和良好的环境协调性方向发展;兼 具感知和驱动功能于一身的敏感陶瓷研究正在启动。多功能和敏感无机涂层的研究具有极大的发展前景;生物陶瓷和仿生研究将为人类自身造福。
7、陶瓷
陶瓷是人类生活和生产中不可缺少的材料之一。陶资产品的应用范围涉及国民经济的各个领域,其生产和发展经历了由简单到复杂、由粗糙到精细、从无釉到施釉、从低温到高温的过程。随着生产力的发展和技术水平的提高,各个历史阶段赋予陶瓷的含义和范围也不断发生变化。
8、陶瓷在国民经济建设中的作用
数千年前,彩陶与黑陶的出现是人类两种史前文化—仰韶文化和龙山文化的标志。陶瓷器皿的出现使人类日常生活方式发生巨大变化,并逐步成为生活必需品。日用陶瓷在发展对外贸易,加强文化交流,促进祖国建设发挥厂巨大的作用。
电了技术、空间技术、激光技术、计算技术、红外技术等的出现是基于新型材料的研制与生产的基础上才得到有效保证的、而陶瓷也正是上述新型材料的一类。陶瓷作为结构材料和功能材料,已广泛应用于利学技术和工业生产领域中。新型结构陶瓷、功能陶瓷在高温下具有高强度、高硬度、抗氧化、耐磨损、耐烧蚀等特性,为先进热机的耐热、耐磨部件的应用开辟了良好的前景,使其在热学、力学、化学等性能耍求苛刻条件下取代金属、有机材料成为可能,并产生巨大经济效益和社会效益。为了提高电压的等级和增大输配的电容量,要求有高机械强度和高介电强度的电瓷,以供线路、电器和电站使用。耐腐蚀、耐磨损、热稳定性高的化工陶瓷是发展各种化学工业不可缺少的一种结构材料。电子技术从晶体管到厚、薄膜电路及大规模集成电路也和压电陶瓷、铁电陶瓷、磁性材料、半导体材料及器件的研制成功是分不开的。开发新能源是当前重大的科学技术课题之一,正在研究的新能源(如核能发电、磁流体发电、地热发电等)所需的结构材料和导电材料,往往都由陶瓷来承担。许多国家正在研究用氧化物固溶体及碱金属阴离子导体(如β-Al2O3)作高温燃料电池及高能量、高密度蓄电池的固体电解质隔膜。一些宇宙技术中的运载工具(如火箭、人造卫星、飞船等)所使用的高温结 4 构材料、烧蚀材料和涂层都属于陶瓷的范围。超导陶瓷的出现成为现代物理学和材料科学的重大突破。生物陶瓷由于其优良的生物相容和生物活性等特殊性能,已广泛应用于生物医学工程中。
9、玻璃在国民经济建设中的作用
玻璃具有许多其他材料所不具备的特性,从玻璃的本质结构和性质来看,最显著的四个特性为:(1)各向异性;(2)无固定熔点:(3)介稳性;(4)性质变化的连续性与可逆性。此外,玻璃材料还具有一些良好的理化性能,如良好的光学和电学性能,较好的化学稳定性,较高的抗压强度、硬度、耐蚀性及耐热性等:从工艺的角度来看,玻璃的特点在于:(1)可以通过化学组成的调整,并结合各种再加工工艺方法(表而处理、热处理)来大幅度、连续调整玻璃的物理和化学性能,以适应范围很广的实用要求;(2)可用多种多样的热成型(吹、拉、压、延、浇铸)方法,制成各种形状单件的(空心或实心)和延续的(板片、管棒、丝绵)制品。还可以通过冷加工(磨砂、抛光、钻、削)、粉末烧结和焊接等加工方法制成型状复杂、尺寸严格的器件。因此玻璃作为结构和功能材料已被广泛应用于建材、轻工、交通、医药、化工、电子、航空、航天和原子能工业等方面。
日用玻璃,包括瓶罐、器皿、保温瓶、工艺美术品等,已成为人们牛活用品的一部分:其中玻璃瓶罐也是食品工业、化学工业、医药工业、文教用品工业大量采用的包装容器、窗玻璃,平板玻璃,空心玻璃砖,饰面板和隔声、隙热的泡沫玻璃,在现代建筑中得到了普遍的采用。钢化玻璃、磨光玻璃、夹层玻璃、高质量的平板玻璃,用来装配各种运输工具的风挡和门窗。各种颜色信号玻璃在海、陆、空交通中起着“指挥员”的作用、电真空玻璃和照明玻璃,充分利用了玻璃的气密、透明、绝缘、易于密封和容易抽真空等特性,是制造电子管、电视机、电灯等不可取代的材料;光学玻璃是国防、高科技及工业生产不可缺少的精密光学仪器与设备的核心部件,广泛地应用于显微镜、望远镜、照相机、光谱仪和各种复杂的光学仪器,大大地改变了科学研究的条件和方法;电影放映机、高质量的眼镜片都是用光学玻璃制造的。玻璃化学仪器、温度计是化学、生物学、医学、物理学工作者必备的实验用具。大型玻璃设备及管道,是化学工业上耐腐蚀、耐高温的优良器材。玻璃纤维、玻璃棉及其纺织品,是电器绝缘,化工过滤和隔声、隔热、耐热的优良材料。它们与各种树脂制成的玻璃钢,质量轻、强度高、耐腐 5 蚀、耐热,用以制造绝缘器件和各种壳体。随着科学技术的发展,玻璃新品种不断出现,例如感光照相和印刷版玻璃,耐热性好、硬度大、强度高的微晶玻璃,高折射、低色散或低折射高色散的光学玻璃,透紫外线和透红外线玻璃等等。玻璃的应用日益扩大,愈来愈成为重要的材料。据20版纪末的统计,全世界的玻璃产量约为8000万T/年,其中美国为25%,前苏联为9%,日在为8%、德国为7%;各类玻璃制品分别为:瓶罐玻璃60%,平板玻璃25%,特种玻璃10%,玻璃纤维5%。随着时代的发展,各类玻璃制品的品种系统、应用范围和生产规模也逐步形成和扩大。
10、水泥在国民经济建设中的作用
水泥的发展大大改善了人类居住和环境条件,已成人各种基础设施建设必需的基本材料,其性能的任何改进都将带来巨大的经济效益。近一二十年通过改变水泥组成和调整微结构的办法使水泥的性能,如耐压强度、抗冻性、抗腐蚀件等获得显著的提高,开发出一系列高技术水泥品种,对水泥与混凝土工业的技术改造产生重大的影响。
水泥是使用面最广的建筑材料。据我国近几年的统计,每完成1亿元的基本建设投资,就需要水泥6.3万T,美国在新建筑物中所用的建筑材料内,水泥混凝土约占76%。生产水泥需要较多能源,为耗能大户之一,但水泥与砂、石等集料所制成的混凝土则是一种低能耗型建筑材料,其单位重量的能耗只有钢材的1/5一1/6,铝合合的1/25,比红砖还低35%。在今后相当长的一段时间内,水泥与泥凝土仍将是主要的建筑材料。
水泥粉末与水拌和后,在其表面的熟料矿物立即与水发生水化反应,放出热员,形成一定的水化产物。出于各种水化产物的溶解度很小,就在水泥颗粒周围析出。随着水化作用的进行,析出的水化产物不断增多,以致相互接合。这个过程的进展,使水泥浆体稠化而凝结,随后变硬,并能将拌在一起的砂、石等散粒胶结成整体,逐渐产生强度。因此,水泥或水泥混凝上的强度是随硬化龄期而逐渐增长的。早期增长甚快,往后逐渐减缓。但是,只要维持适当的温度和湿度,其强度在几个月、几年后,还会进一步有所增长。另外,也可能在几十午后尚有未水化的部分残留,仍具有继续进行水化作用的潜在能力。作为胶凝材料,除水硬性外,水泥还有许多优点:水泥浆石很好的可塑性,与砂、石拌和后仍能使混 6 合物具有必要的和易性,可使浇筑成各种形状及尺小的构件、以满足设计上的不同要求;适应性强,还可用于海上、地下、深水或者严寒、干热的地区。以及耐侵蚀、核电站、防辐射等特殊要求的工程;硬化后可以获得较高强度,并且改变水泥的组成,可以适当调节其性能,满足某些工程的不同需要;可与纤维或者聚合物等多种无机、有机材料相匹配,制成各种水泥基复合材料,有效发挥材料潜力;与普遍钢铁相比,水泥制品不会生锈,也没有木材这类材料易于腐朽的缺点,更不会有塑料年久老化的问题,耐久性好;维修工作量小,等等。因此,水泥不但大量应用于工业与民用建筑,还广泛应用于交通、城市建设、农林、水利以及海港等工程,它被制成各种形式的混凝土、钢筋混凝土的构件和构筑物;而水泥管、水泥船等各种水泥制品在代钢、代木方面也越来越显示出技术经济上的优越性。同时,也正是由于钢筋混凝土、顶应力钢筋混凝土和钢结构材料的混合使用,才使高层、超高层、大跨度等以及各种特殊功能的建筑物、构筑物的出现成为可能。还值得注意的是,新产业革命已经为水泥行业提出扩大水泥品种和应用范围的崭新课题:开发占地球表面71%的海洋是人类社会前进的标志,而海洋工程的建造,如海洋平台、海洋工厂乃至海洋城市,其主要建筑材料就是水泥。此外,像宇航工业、核工业以及其他新型工业的建设,也需要各种无机非金属材料,其中最为基本的则是以水泥基为主的新型复合材料。因此,水泥工业的发展对保证国家建设计划的顺利进行、人民生活水平的不断提高,具有十分重要的意义。而且,其他领域所发展的新一代技术,也必然会渗透到水泥工业当中,传统的水泥工业势必会由于科学技术的迅猛发展而带来新的工艺变革和品种演变,应用领域必将有新的开拓,从而使其在国民经济中起到更为重要的作用。