环氧树脂改性研究进展(推荐)

时间:2019-05-14 06:39:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《环氧树脂改性研究进展(推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《环氧树脂改性研究进展(推荐)》。

第一篇:环氧树脂改性研究进展(推荐)

综合实践

环氧树脂改性研究进展

专业:高分子材料与工程

班级:高分子092

学号:2009016015

姓名:欧丽丽

日期:2012,6,1环氧树脂改性研究进展

摘要 :环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。环氧树脂是一种综合性能优良的热固性树脂,但其韧性不足,耐热性能也较低,耐冲击损伤差。文章介绍了改性环氧树脂的几种方法,并且对核壳乳胶粒子改性环氧树脂做了详细介绍。

关键词:改性;环氧树脂

1:概述:

环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能以及收缩率低、易加工成型和成本低廉等优点。在胶粘剂、电子仪表、航天航空、涂料、电子电气绝缘材料以及先进复合材料等领域得到广泛应用。但由于纯环氧树脂固化物具有较高的交联结构,存在易发脆和抗冲击韧性差等缺点,难以满足工程技术的使用要求, 限制了环氧树脂工业的发展。目前,环氧树脂可以通过无机刚性填料、橡胶弹性体、热塑性塑料、核壳聚合物、热致液晶聚合物、纳米材料等进行增韧。也有最新资料表明,用超支化聚合物对环氧树脂进行增韧已取得良好的效果。

2:环氧树脂的改性方法:

2.1:有机硅树脂改性环氧树脂

醚酰亚胺改性四官能团EP胶粘剂的粘接剪切强度是改性前的2倍左右, 200℃高温剪切强度仅下降10% ,不均匀剥离强度提高2.5倍左右,;酰亚胺的引入可以提高

改性EP的高温剪切强度保留率, 150℃时为76% ~84% , 175℃时也可达到75%;双羟基聚酰亚胺固化EP粘接不锈钢时。层间剪切强度有机硅树脂有良好的介电性、低温柔韧性、耐热性、耐候性及憎水性,而且表面能低,用其改性EP既能提高介电性能,又能提高韧性和耐高温性能、降低内应力,但它与EP相容性差。因此,一般使用带有活性基团的有机硅树脂改性EP。比如,聚二甲基硅氧烷具有卓越的柔性与独特的低表面能特性,是改EP的理想材料,但两者不能互容,通过在聚二甲基硅氧烷分子链上引入能与EP的环氧基反应的官能团,如羟基、羧基、氨基等基团可改进二者的相容性[1]。

张冰等[2]将带有N 2(β2氨乙基)2γ2氨丙基侧基的聚二甲基硅氧烷与EP共混,使相界面上的氨基与EP上的环氧基反应生成聚硅氧烷接枝EP共聚物,从而增加了两相间的相容性。夏小仙以氨丙基封端的二甲基二苯基硅氧烷低聚物改性双酚A型EP,随着共聚物中苯基含量的增加,软段的有机硅聚合物的溶解度参数提高,两相相容性达到较好的增韧效果。陈慧宗合成了一种含有乙氧基、羟基、甲基与苯基的新型聚硅醚,对EP进行改性,改性产品可耐高温。

李善君[3]用试验证明由分散聚合制备的有机硅改性邻甲酚EP对降低EP的内应力有显著效果, EP的力学性能、热性能和内应力不但与两者比例有关,而且与使用的固化促进剂的品种和用量亦有很大关系温、抗氧化、粘接力强且稳定性好。

2.2:聚氨酯(PUR)改性环氧树脂

互穿聚合物网络(IPN)是制备特殊性能高分子合金的有效方法。PUR的高弹性、耐磨性与EP的高粘接性可通过IPN体系互补与强化

施利毅等[4]利用聚合物合金的思想,采用熔体共混法制备出了EP /PUR共混体系。他们以异氰酸基封端PUR预聚体与EP在熔融条件下加入固化剂固化后得到共混改性体系,由于异氰酸基本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性。

管云林等[5]用不同的PUR 和EP 制备一系列EP /PUR IPN,通过DSC对其进行分析,发现网络互穿程度的提高增加了组分之间的相容性。杨亚辉等以聚酯和二异氰酸酯为聚合单体,合成了端异氰酸基聚酯,采用原位多相聚合技术,用芳香二胺将其扩链生成聚氨酯脲,从而与E80环氧树脂,并选用改性二乙烯三胺为固化剂,对共混后的树脂进行固化。采用差示扫描量热法研究材料热力学性能,利用电子显微镜研究其微观形态,采用拉伸、剪切、冲击和弯曲等测试方法研究其力学性能,综合各项性能数据,最终得出复合材料最优的配比。

展望

近年来环氧树脂增韧研究取得了很大的进步,但仍存在很多问题。还需要我们在以下几个方面进一步努力。(1)寻找新的材料和制备方法,提高添加材料和环氧树脂的相容和良好的加工性能。(2)提高现有的材料与环氧树脂的融合效果。

随着科技的发展,电器电子材料,复合材料对环氧树脂的要求越来越高。环氧树脂改性研究使环氧树脂有了质的飞跃。环氧树脂的增韧改性一直是高分子材料专家十分关注的研究课题。目前,环氧树脂的增韧技术日益成熟,已进入实用阶段。核壳聚合物的应用为环氧树脂的增韧开辟了一种比较理想的方法,其应用前景非常广阔。就目前对其的研究、应用状况来看,对核壳聚合物的微观结构形态,合成方法,形成机理,增韧改性等诸多方面取得了许多成果,但商业化产品和应用还有待开发和研究。环氧树脂正从通用型向高性能,高附加值系列转变。这种发展使环氧树脂的改性技术日趋完善,相信随着研究人员的努力和实践,环氧树脂的增韧改性研究会有更大的突破,改性的环氧树脂应用也将更加广泛。

参考文献

[1]蒋华麟陈萍华环氧树脂改性与应用的研究进展2009年

[2] 张冰,等.功能高分子材料, 2000

[3] 李善君.热固性树脂, 1997

[4]施利毅,等.中国胶粘剂, 1998

[5] 管云林,等.高分子材料科学与工程, 1996

[6]易兆龙易建政 杜仕国环氧树脂改性研究进展

[7] 郑亚萍,余利渡,张爱波,等.超支化聚(胺-酯)增韧环氧树脂 华东理工大

学学报(自然科学版)。2006

[8] 张楷亮,王立新.改性蒙脱石增强增韧环氧树脂纳米复合材料性能研究.2001

[9] 汪新民,汪国建.单组分常温交联型环氧2苯丙乳液研究 涂料工业, 1998

[10]张凯,郝晓东,黄渝鸿,等.。用核壳型聚合物粒子增韧改性环氧树脂。化工

新型材料,2003年

[11]范宏, 王建黎。PBA/ PMMA 型核壳弹性粒子增韧环氧树脂研究。高分子材料

科学与工程,2001

[12]申景强,张亚峰,邝键政,石红菊,邱劲东,徐宇亮P(APU.BA)/PMMA型核

壳粒子的制备及其在环氧树月旨增韧中的应用2004年

[13]王雅珍 贾宇冲 马立群 汪建新PBA /PMMA核壳聚合物改性AG-80树脂

2010年

第二篇:环氧树脂的改性研究发展

环氧树脂的改性研究发展

付东升朱光明韩娟妮

(1西北工业大学化工系,2西北核技术研究所)

1、前言

近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。

2、丙烯酸增韧改性环氧树脂

利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。

李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。

3、聚氨酯增韧环氧树脂

利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。

目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。

Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为1 1 2

70/30时有很好的协同性能。体系的剪切、剥离强度与冲击强度均有较大程度的提高,体系的断裂延伸率由环氧基体的2.09%提升至211.9%,断裂强度提高了18.56MPa,同时该体系还具有良好的阻尼特性。管云林等[11]探讨了PU/EP的相行为与粘接剪切性能的关系,通过红外光谱分析发现,该体系中不仅存在着EP与PU的各自的交联反应,还存在二者的共聚反应。用DSC对其进行分析发现该体系在高温下有单一宽的玻璃化温度,同时还发现体系的玻璃化温度随环氧树脂用量增加而提高,甚至高于EP基体Tg,其原因是EP用量增大后,PU与EP的接技反应增多,分子间作用力增大,从动态力学谱图上也可看出,损耗峰向高温方向移动。通过TEM观察发现,体系两相间界面模糊,这进一步证明了两相间的相容性。体系中存在的聚氨酯与环氧树脂的接技共聚物大大增加了二者的互穿效应,从而体系的综合性能得以提高。

4、双马来酰亚胺(PI)改性环氧树脂

双马来酰亚胺耐热性能好,利用其改性环氧树脂可以大大提高环氧树脂高温下的粘合强度。关长参等[12]以双马来酰亚胺、环氧树指、芳香二胺为原料制备出了新型的环氧树脂增韧体系。该体系耐热性好、粘合性能优异,室温下及200℃测其剪切强度(45#钢/45#钢)几乎没有变化。徐子仁[13]用加入烯丙基双酚A的方法来增加环氧树脂与BMI相容性。通过红外光谱分析发现烯丙基双酚A可与双马来酰亚胺发生接枝共聚反应,形成带有环氧基团的双马来酰亚胺树脂,在加入固化剂时可与环氧树脂发生固化交联,使体系中的两相具有良好相容性。得到一种耐高温的韧性环氧改性树脂。

梁国正[14]以环氧树脂为基础合成了环氧双马来酰亚胺(EB)。该体系由功能性双马来酰亚胺与环氧树脂反应而成,固化则利用双马来酰亚胺的固化机理。该体系不仅具有环氧树脂的粘接性好、固化收缩率低的特点,而且还具有类似双马来酰亚胺树脂的高耐热性。同时,该体系的冲击性能也比双马来酰亚胺有了较大的提高。

5、聚酰胺酸(PAA)改性环氧树脂

聚酰胺酸(PAA)是聚酰亚胺(PI)的反应中间体。与PI相比,PAA在低沸点溶剂中即可制得。PAA改性环氧树脂体系与PI改性体系相比较具有更加优异的剥离性能。利用PAA改性环氧树脂时,其自身相当于环氧树脂的固化剂,可以与环氧基团形成类酯结构,同时,PAA本身又具有一定的活性,可以酰胺化形成PI长链,使固化体系表现出高的粘结剪切强度和耐热性能。赵石林[15]等在THF/CH3OH混合溶剂中利用PMDA与ODA合成出PAA并成功地用作环氧树脂的固化剂和改性剂。改性体系由于PAA与EP之间的协同作用而具有良好的综合性能。同时该体系固化时低沸点溶剂易于挥发,不会造成大的内应力。Kevin等[16]探讨了固化温度对PAA改性EP体系性能的影响。由于材料中的内应力通常是造成材料综合性能下降的原因。他们采用两阶段固化工艺来充分排除固化体系中残存的溶剂和气泡以进一步提高体系的综合性能。

6、纳米粒子增韧环氧树脂

纳米粒子尺寸界定在1—100nm之间,它具有极高的比表面积,表面原子具有极高的不饱和性,因此纳米粒子的表面活性非常大。在利用纳米粒子增韧环氧树脂时,环氧基团在界面上与纳米粒子形成远大于范德华力的作用力,形成非常理想的界面,能起到很好的引发微裂纹、吸收能量的作用。郑亚萍[17]利用SiO2纳米粒子对环氧树脂体系进行了大量的改性研究。通过利用分散剂实现了纳米粒子与环氧树脂的均匀混合。解决了纳米粒子由于粒径过小易团聚的问题。研究结果表明,SiO2/EP复合体系中由于SiO2粒子表面存在着羟基,两者在界面处存在着较强的分子间力,因此有较好的相容性。通过SEM观察分析,在改性体系中纳米粒子呈分散相,环氧树脂为连续相。纳米粒子以第二聚集体的形式较均匀地分散在树脂基体中。由于二者粘接性能好,因而在受冲击时能起到吸收冲击能量的作用,从而达到增韧的目的。付万里[18]利用SEM观察纯EP冲击断口与EP/粘土纳米复材冲击断口时发现,前者断口为光滑脆性断裂形貌特征,而后者断口则凸凹不平,表现出韧性断裂形貌特征。其原因为纳米刚性粒子在复材体系中作为应力集中物在受力时既能引发银纹,又能终止银纹。同时由于纳米粒子具有强的刚性,裂纹在扩展遇到纳米粒子时发生转向或偏转吸收能量达到增韧之目的。纳米SiO2粒子可使环氧树脂的冲击性能和拉伸性能大幅度提高。

7、热致液晶聚合物(TCLP)增韧环氧树脂的研究

液晶高分子聚合物是一类分子中含有液晶单元的高分子化合物。通常按其形成液晶态的物理条件可分为溶致型液晶和热致型液晶。利用热致型液晶TCIP增韧环氧树脂既能提高其韧性,又能确保不降低环氧树脂的其它力学性能和耐热性。TCLP增韧机理主要是裂纹钉锚作用机制。(TCLP)作为第二相(刚性与基体相近),本身有一定的韧性和较高的断裂延伸率。因此只需少量就增韧环氧树脂,同时提高其模量和耐热性。

Baolong Zhang等[19]合成出一种侧链高分子液晶LCGMB来增韧环氧基体,该化合物在增韧环氧树脂时,柔性的液晶分子主链能弥补环氧基体的脆性,侧链的刚性单元又保证了改性体系的模量不会下降,从而提高体系的综合力学性能。在研究时还发现体系的冲击性能随LCGMB的用量增大而增大,当用量为20%~30%摩尔分数时有最大冲击性能。经SEM观察分析,其冲击断口环氧树脂呈连续相,液晶则以微粒形式分散在树脂基体中。当受到冲击时液晶微粒是应力集中源并诱发周围环氧基体产生塑性形变吸收能量。

常鹏善[20]用含有芳酯的液晶环氧4,4’-二缩水甘油醚基二苯基酰氧(PHBHQ)增韧E-51环氧树脂,选择熔点与液晶相玻璃化温度相一致,反应活性较低的混合芳香胺为固化剂,当PHBHQ的质量分数达50%时固化树脂冲击强度为40.2J/m2,与不加PHBHQ的冲击性能相比较,提高31.72J/m2,此外玻璃化温度也有一定的提高。

8、结语

今后环氧树脂将朝着“规模化、高纯化、精细化、专用化、系列化、功能化”的方向发展。随着科研工作者的不断努力,对环氧树脂的改性研究也将日新月异。环氧树脂在人们生活中的应用也将越来越广泛。

第三篇:生物基环氧树脂研究进展

国内生物基环氧树脂研究获新进展,各项性能达到或优于石油基产品。研究人员将阻燃性好、又能与碳碳双键反应的9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)引入到了衣康酸环氧结构中,得到了含磷衣康酸基环氧树脂(EADI)。其固化物性能与双酚A环氧相当,并表现出优异的自阻燃性。用EADI改性的双酚A环氧也具有非常好的阻燃效果。研究人员将衣康酸基环氧树脂的双键变成环氧基团的环氧单体,合成了高环氧值(1.16)、低黏度、高固化活性的环氧树脂,并在某些领域表现出比双酚A环氧更加优异的加工性能。衣康酸又名亚甲基丁二酸,是一种重要的生物基原料,可由生物发酵技术制备得到.由于具有广阔的应用前景和较低的价格,衣康酸已被美国能源部评选为最具发展潜力的12种生物基平台化合物之一。占全球环氧树脂市场90%左右的双酚A环氧,其原料双酚A被证明具有很强的生理毒性,目前已被多个国家禁用于人体接触的领域。衣康酸在替代双酚A合成环氧树脂方面具有巨大的潜力和发展空间。

第四篇:环氧树脂-聚酰亚胺树脂研究进展

环氧树脂-聚酰亚胺树脂研究进展

环氧树脂(EP)有优异的粘结性、热性能和机械性能,以其为基体的复合材料已广泛应用于航空航天、电子电气等领域;但纯环氧树脂的脆性大,其热性能以及电性能等不能满足这些领域的要求,必需对环氧树脂进行改性以增强其韧性、热稳定性及电性能。改善脆性的途径有:共聚或共混,使固化产物交联网络疏散;引入适当组分形成互穿网络或两相体系;通过分子设计在分子链中引入柔性链段№]。但在环氧树脂分子链中引入柔性链段会降低环氧树脂的耐热性。为得到韧性环氧树脂材料。人们已尝试用橡胶和聚丙烯酸酯改性,环氧树脂中引入这些聚合物材料提高了其韧性,但在提高玻璃化温度(Tg)、使用温度和耐弯曲性方面未取得成功。近来,热塑性工程塑料已被用于增韧环氧树脂。由于这些塑料具有高模量和高玻璃化温度,改性后的环氧树脂的模量和玻璃化温度可以达到甚至超过纯环氧树脂。

聚酰亚胺(包括交联型和缩聚型)是一类性能优异的工程塑料,具有耐高低温性能、突出的机械性能等,广泛应用于对热稳定性、机械性能要求高的领域¨’一引。在环氧树脂中引入聚酰亚胺或向环氧树脂单体骨架引入亚胺环结构,提高环氧树脂的热稳定性和韧性,取得较为满意的结果。

1聚酰亚胺/环氧树脂共聚或共混

1.1热塑性聚酰亚胺/环氧树脂共聚或共混

最近,人们对用高性能芳香热塑性聚合物共混增韧热固性树脂做了大量研究,热塑性聚酰亚胺就是其中很重要的一类。有些聚酰亚胺如聚醚酰亚胺(PEI)等与未固化环氧树脂有很好的相容性和溶解性而已被用于环氧树脂的增韧,由于其玻璃化温度(Tg)与交联环氧树脂网络的取相近,因此在提高环氧树脂抗破坏性的同时。没有降低(甚至提高)其他关键的层压性能和热/湿性能。

Biolley等用具有相当高玻璃化温度的二苯酮四酸二酐(BTDA)和4.4'-(9-氢-9-亚芴基)二苯胺(FBPA)合成的可溶性热塑性聚酰亚胺改性四缩水甘油基二苯甲烷一二氨基二苯砜环氧树脂体系(TGDDM/DDS/PEI),增韧效果明显。固化后的树脂用扫描电子显微镜观察未发现相分离,动态力学分析表明只有一个Tg,这些都说明共混组分间能完全相容。但组分问的高相容性使形成的共混物粘度高,这可能首先影响聚合反应的动力学和选择性,其次阻碍了相分离结构(这种结构

增韧效果显著)的形成。引入热塑性聚酰亚胺(聚酰亚胺含量10%)使取略有提高(△Tg=5℃),断裂应力只提高50%,临界应变松弛速率(G1c)值与没有改性的环氧树脂相当。

陈鸣才研究了PEI对多官能团环氧树脂的增韧作用。加入PEI时,共混物的应力强度因子(K1c)和GIC都有显著提高,即增加了环氧树脂的韧性。虽然共混物只有一个取,但电镜观察说明共混物为两相结构。当PEI含量为10%时,PEI开始从分散相转变为连续相。李善君用双酚A二酐和4,4’-(1,4-苯基-二(1-甲基-亚己基))二苯胺按不同摩尔比合成聚醚酰亚胺用于改性环氧树脂。加入20%~30%PEI的改性体系相结构发生变化,使体系剪切强度有较大提高。含量为20%时,形成连续相结构,含量为30%时发生相反转。聚醚酰亚胺作为连续相有利于力学性能的大幅度提高,断裂韧性提高5倍。改性体系的rg比纯TGDDM体系提高10℃以上。改性体系作为胶粘剂时剪切强度提高一倍左右,200℃高温剪切强度仅下降10%。

另外,Agag等用非反应型线性聚酰亚胺增韧环氧一二苯砜二胺树脂体系,在模量不损失情况下增加了其断裂韧性,但耐热性随聚酰亚胺的添加变化不大。

1.2交联型聚酰亚胺/环氧树脂共聚或共混

双马来酰亚胺(BMI)树脂是一类性能优异的交联型聚酰亚胺,兼有聚酰亚胺优良的耐高温和耐潮湿性能,可采用与环氧树脂类似的成型工艺,且与其他缩聚型聚酰亚胺相比,在形成过程中没有小分子物质放出。向环氧树脂中引入双马来酰亚胺后,由于两者聚合机理不同和相容性等方面的原因在聚合过程中可能形成互穿网络或两相体系,从而达到增韧和提高耐热性的目的。

Han等用同时本体聚合技术制备了双马来酰亚胺(BMI)和聚氧化丙烯型聚氨酯[PU(PPG)]-交联环氧树脂聚合物互穿网络。将BMI和PU(PPG)交联的环氧树脂(EP)混合,然后同时聚合形成互穿聚合物网络(IPNs)。结果表明,含有较长PU(PPG)链段[即PU(PPG2000)]的BMI/PU(PPG)一EP互穿网络的拉伸强度随BMI含量的增加而降低。他们还用本体聚合技术制备了聚丁二烯基二酸类聚氨酯交联的环氧树脂和双马来酰亚胺(BMI/PU—EP)互穿聚合物网络(IPN)心引。在该研究中,双马来酰亚胺主要溶解在环氧树脂基的聚氨酯区而形成相容系统,从而提高了互穿网络的互穿程度并且最终提高了网络机械强度。因此当双马来酰

亚胺的含量增加到一定程度(5%)时,拉伸强度增大,但BMI含量增加到大于5%时,显示出PU区域的刚性和脆性,BMI/PU—EP互穿网络的拉伸强度会随BMI含量增加而降低;BMI含量大于10%时,BMI和PU—EP形成了高度互穿的互穿网络结构,分子间的物理缠结(即IPN效应)增加,BMI/PU—EP互穿网络的交联密度随BMI含量的增加而增大,互穿网络的拉伸强度增加。在他们的两项研究中均发现BMI/PU—EP互穿网络的艾佐德冲击强度随BMI含量的增加而降低,G1c值随BMI含量的增加没有很明显的变化。这是因为高交联密度的BMI与PU—EP的高相容性和固化的BMI树脂的刚性和脆性同时作用的结果。由于BMI树脂的玻璃化温度超过了环氧树脂的开始分解温度,因此两种互穿网络只检测到一个rg。由于BMI在两种体系中的溶解性不同,随BMI含量的变化趋势也不一样,前者的取不随BMI含量的变化而变化,后者则随BMI含量的增加而变高。

Ashok等对BMI的引入对Tg造成影响的原因进行了研究。他们认为,BMI改性环氧树脂和BMI改性的硅氧烷化环氧树脂玻璃化温度的升高是由BMI自加成引起,而不是由于发生了迈克尔加成反应。因为迈克尔加成反应导致形成热不稳定键连结构,且由于链延长最终会降低交联密度。但BMI自加成反应会产生热稳定的C—C键,rg的提高证实了BMI自加成反应的影响大于迈克尔加成反应。同时BMI改性环氧树脂和BMI改性硅氧烷化环氧树脂的热降解温度均随BMI含量的增加而增加,这可能是由于BMI中含有热稳定的芳杂环结构及与环氧树脂形成了交联结构。

四缩水甘油基-4,4’一二氨基二苯甲烷(TGDDM)用芳香胺如二氨基二苯砜(DDS)固化后可在航空航天广泛用作碳纤维增强复合材料的基体材料,但TGDDM/DDS系统的应用受到以下两个方面的限制:脆性和高吸水性。脆性问题可用热塑性塑料或传统的液体橡胶改性基体树脂解决;为解决高吸水性,形成热固性树脂/热固性树脂共混物是有效途径。该体系通常归属于相互交联或互穿聚合物网络,因其分子结构很特别,这些复杂的网络常常表现出协同效应,能使树脂(与纯树脂相比)在一些性能上有很大的提高。

BMI比环氧树脂具有更大的链刚性,完全固化后固化物具有更高的r卧优异的热稳定性和热氧化稳定性以及相当小的吸水性。合适的共混物比TGDDM的吸水性小,且比BMI树脂的加工性能好。TGDDM和BMI在DDS存在下固化,Pele-grino等用傅利叶变换红外光谱(FT~IR)对固化物进行研究,发现分子结构发生变化,表明固化过程中形成了交联网络,而且是两种不同的网络结构:第一种是BMI自聚,第二种是TGDDM和DDS交联,但BMI网络结构形成速度更快且不完善。由于分子活性影响,BMI存在使TGDDM/DDS网络形成更多的小环状结构,降低了交联密度。干燥试样的动态机械测试表明,尽管两种网络的形成速度不同,但它们之间具有相当高的互穿程度;体系中随BMI含量的增加断裂强度略有下降,弹性模量略有升高。当BMI含量占总量的43.5%时,70℃测定平衡时试样的吸水量,吸水量有所降低,在吸水试样的动态机械测试中发现即使在吸水量相当的情况下吸收水分的塑化效应随BMI含量的增加而减小。2亚胺环引入到环氧树脂骨架

由于环氧一亚胺树脂具有高耐热性而备受关注,但将亚胺环引人环氧树脂骨架的研究并不多见。

Galia等合成了几种含亚胺环的二缩水甘油化合物,结构式如下:

此研究中引人亚胺环结构双环[2.2.2]-辛烯-7—2,3,5,6一四羧酸二酐的衍生物,亚胺环结构有助于提高树脂的耐热性,脂肪链结构有助于提高树脂的加工性。固化反应可以在亚胺氮攻击环氧环开环情况下发生,或作催化剂起羟基或羧基的作用。双环[2.2.2]辛烯-7结构在氮气中于360 oC时会发生反狄尔斯一阿德耳(Diels—Alder)反应。因为当二缩水甘油单体含有长脂肪链单元时可以测出剩余热焓,这说明交联网络有足够的柔性使得在较高温度时能够进一步发生反应,与前面提到的反狄尔斯-阿德耳反应一致。用DTG测定了最大失重速率时的温度和这一温度下的失重速率。可以看出。失重主要发生在450 oC以上。当R为-(CH2)5-和-(CH2)3-时,树脂在室温下为液态,失重温度稍低。树脂700 oC时的残炭率与组成有关,形成的树脂中含有芳环结构,导致残炭率升高。

Castell等用4一甲基氨基吡啶(DMAP),DDM,DICY作为偏苯三酸酰亚胺二缩水甘油酯的固化催化剂。TG数据表明,偏苯三酸酰亚胺二缩水甘油酯固化物的开始降解温度和失重10%的温度对固化剂没有太大的依赖性,从热失重曲线可以看出有几个降解过程共存。但用4-甲基氨基吡啶催化固化的树脂开始降解的温度稍高。

3亚胺环引入固化剂

用含有亚胺环的固化剂固化环氧树脂从而提高树脂的耐热性和韧性等性能也不失为一个行之有效的途径。通常,这类固化剂分子链两端为氨基、羟基、羧基等带有活泼氢的基团,或者在分子链上有带有活泼氢的取代基。固化剂中这些基团上的活泼氢打开环氧环使环氧树脂交联固化。

Liu等用3,3’,4,4’-二苯酮四酸二酐与相对分子质量400~4 000的氨基封端聚醚砜反应制得相对分子质量约为100的聚醚砜亚胺(PEI)。PEI具有相同的相对分子质量,但具有不同的亚胺含量和醚砜含量。把PEI与双酚A型环氧和二苯砜二胺按计量混合,实验数据表明,醚砜含量较高的PEI与溶剂和环氧树脂有较好的相容性,但固化物的取较低。而亚胺含量较高的PEI导致DGEBA/DDS/PEI的固化反应速度较快。DSC数据显示,固化物有两个瑰,说明固化物中PEI和环氧树脂间存在着相分离。

Agag等㈣0用2,2-双(3,4一二羧基苯基)六氟丙烷二酐和3,3’-二氨基-4,4’-二羟基联苯反应制备含羟基官能团的反应活性聚酰亚胺。再用不同比例的这种聚酰亚胺通过羟基打开环氧环固化商品环氧树脂(无需另加固化剂),得到一系列网状结构的聚酰亚胺改性环氧树脂。制成的透明薄膜有优异的耐溶剂性能,这证明了聚酰亚胺与环氧树脂形成了网络结构。随聚酰亚胺含量的增加,树脂的弯曲模量增加,但断裂伸长率几乎没有改变;玻璃化温度向高温移动,反映了聚酰亚胺与环氧树脂的相容性较好;同时,也使树脂的热稳定性增强,5%失重温度在343~366 qC范围内,超过了二苯砜二胺固化环氧树脂。

Wu等用活性溶剂(双烯丙基双酚A)将低分子量的亚胺热塑性塑料引入环氧树脂中,制得一种有韧性、易于注塑加工的树脂(因为所用的亚胺热塑性塑料虽然相对分子质量很低仍不能直接溶解在环氧单体中)。用这样的低分子量热塑性塑料得到易于加工的预聚物溶液,所研究体系的预聚物在90℃的粘度均小于1.0 Pa·S。但双烯丙基双酚A的存在降低了取和高温储能模量(E’),加入亚胺热塑性塑料确实可以使这两个参数恢复一点。但不能完全恢复。用二苯酮四酸二酐(BTDA)和1,3-双(3-氨基苯氧基)苯(APB)合成的亚胺热塑性塑料改性环氧树脂所得结果最好:韧性提高220%,Tg为120℃,100 qC时E’为1.8×10’Pa。虽然双烯丙基双酚A使交联密度降低且可能使网络塑化,但韧性的提高并不是因其

存在,而是由于热塑性塑料与环氧树脂之间存在两相分离(虽然透射电镜不能观察到,但所形成的固化树脂不透明)。

梳型芳香酰亚胺齐聚物改性环氧树脂与线型芳香酰亚胺齐聚物改性环氧树脂相比有以下优点:与相同分子量的线型酰亚胺齐聚物相比,梳型分子随分子量的增加不会显著增加预聚物的粘度,因为支链分子量低和主链周围的空间位阻使分子链相互缠结的可能性减小;支链热塑性塑料具有更多的官能团使其能更有效地被固定于基体树脂中。这样与具有相同结构的线型热塑性塑料相比,更能有效地增加热固性树脂的韧性。Gopala等用梳型芳香酰亚胺齐聚物改性环氧树脂,这种改性环氧树脂断裂强度增加很多(133%),并且具有很好的加工性能。除了加30%反应性齐聚物的环氧树脂以外(粘度为2.0 Pa·S,仍在注塑处理工艺粘度范围内)所有预聚物的粘度都小于1.0 Pa·S。当梳型热塑性齐聚物的添加量为13%时不会导致环氧热固性树脂的玻璃化温度(Tg)和储能模量(E’)降低。4 结语

环氧一亚胺树脂是提高环氧树脂性能的有效途径之一。但如何使环氧一亚胺树脂的耐热性和韧性等性能同时得到提高以及如何在保持工艺性的同时保持价格低廉都是值得研究的课题。另外,如何控制改性树脂的相结构使其性能进一步得到提高也值得研究。随着研究的深入,综合性能优异的环氧一亚胺树脂将不断产生,他们在航空航天、电子电气等领域的应用也将更加广泛。

第五篇:太阳能电池封装EVA胶膜的改性研究进展

太阳能电池封装EVA胶膜的改性研究进展

EVA封装胶膜作为太阳能电池的重要组成部分,成为当前的一个研究热点。目前的研究重点是通过多种手段对EVA胶膜进行改性,从而提高EVA胶膜的透光性、抗老化性、粘结性、机械强度等综合性能。本文介绍了通过掺杂纳米粒子及各种添加剂来提高EVA封装胶膜性能的研究进展。

1、前沿

随着环境问题和能源问题的加剧,以太阳能为代表的新型清洁能源受到人们的大力关注。在当今石油、煤炭等传统化石能源短缺的现状下,各国都加紧了发展光伏的步伐。所谓光伏发电是指利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。太阳能电池板,也称为“光伏组件”,简称PV组件,是太阳能光伏发电系统中的核心部分。光伏组件若直接暴露于大气中,容易损坏, 从而降低光电转换效率。因而对光伏组件进行封装就显得十分重要,目前普遍采用两片EVA胶膜将光伏组件上下包封, 并和上层玻璃、底层TPT热压粘合为一体, 构成太阳能电池板。

太阳能电池组件一般工作在室外,温差、气候变化大,环境条件恶劣, 因此对光伏组件封装材料的要求比较严格。EVA具有透明、柔软、熔融温度低等特点,其耐水、耐腐蚀及良好的抗震性能正好满足了太阳能电池封装材料的要求。但是,EVA材料抗紫外性、蠕变性差,易老化变黄,内聚强度低, 这些缺点会影响光伏组件的光电转换效率以及使用寿命, 因此要对EVA进行改性研究,使其分子链的稳定性和耐候性得到提高。

目前比较常用的EVA封装胶膜是以EVA(乙烯-醋酸乙烯共聚物)为基料,通过添加各种助剂后,采用加热挤出成型法制备而成的。国内生产的EVA胶膜易老化变黄,且与TPT(Tedlar/PET/Tedlar 复合膜)的粘接强度一般低于40N/cm,有的仅为30 N/cm,较国外还有待提高。因此,加快国内EVA胶膜的自主研发,制备出超快固化高性能太阳能电池用EVA 胶膜的是十分必要的。

尽管目前改性EVA的原理基本上相同, 均为加入交联剂和功能助剂, 但由于影响其老化黄变性能的因素很多, 因此采用不同的工艺或是配方对膜片性能有非常大的影响。本文拟对目前常用的EVA掺杂改性材料和改性工艺作简单的评述。

2、纳米粒子改性

聚合物改性的研究近年来十分活跃,纳米复合技术的问世为聚合物改性开辟了崭新的途径,并且对于推动高分子材料的功能化和高性能化具有重要意义。聚合物基纳米改性材料因具有任何传统材料无法媲美的奇异特性和非凡功能,在各行各业的应用十分广泛。因此,这也成为了EVA改性的首选方法。

无机填料作为添加剂填充基体,通常是为了降低制品成本,提高刚性、耐热性和尺寸稳定性,而这些性能的提高往往带来体系冲击强度,断裂伸长率的下降。一般说来这两方面是不可兼顾的,但纳米粒子的出现改变了这一状况。纳米无机粒子具有其独特的小尺寸效应、表面界面效应、量子尺寸效应及宏观量子隧道效应, 作为聚合物树脂的新型无机填料, 可有效地提高基体树脂的各种性能,主要表现在以下几个方面:提高热性能、改善力学性能、增强耐磨性。纳米粒子改性EVA的主要方法有直接分散法和插层复合法。直接分散法的优点是易于控制粒子的尺寸和形态,但不足之处是难以解决纳米粒子的团聚,难以保证纳米粒子在聚合物基体中的均匀分散,因此共混前对纳米粒子的表面处理是重点也是难点。熔融插层法可以制备多种类型的聚合物-纳米复合材料,所以也成为改性EVA封装胶膜普遍使用的方法。

SiO2、TiO2、CaCO3、Mg(OH)2等是常见的纳米无机材料,用它们对EVA封装胶膜进行改性也都有研究。Tang Y 等人发现,在EVA 基体中加入蒙脱土后,热释放速率(HRR)降40%;QIU L.Z.等制备的Mg(OH)2/EVA 纳米复合材料与填充微米级Mg(OH)2相比,极限氧指数(LOI)提高了59.6%;田艳等人研究的EVA /蒙脱土复合体系与纯EVA 相比,拉伸强度与撕裂强度分别提高了10.8%和11.6%。李红姬研究发现,一步法复合体系在纳米Al2O3含量为1.5%时综合性能最佳, 其拉伸强度与断裂伸长率分别提高了25.4%和12.1%。

目前,纳米粒子主要对EVA树脂进行改性,而专门改性太阳能电池用EVA封装胶膜还少见报道。研究的重点是对纳米粒子有机化,使其能和有机助剂良好相容,而不产生抑制作用,由此来提高EVA胶膜的综合性能。相信随着研究的不断深入和对机理的了解,纳米粒子改性聚合物材料领域的研究必将会有突破性的进展,高性能纳米改性EVA胶膜材料也将被研制出来。今后几年的发展方向是使纳米粒子在聚合物中分散均匀,相容性好;粒子尺寸及分布有良好的可控性、重现性;经过改性后的EVA聚合物材料在各方面性能上均有很大提高并赋予更多的新功能。相信随着研究的不断深入,以上的问题都会迎刃而解。

3、金属离子改性

太阳电池封装用EVA 胶膜在国内的发展已初具规模,其黏结强度、可见光透过率、抗高低温老化能力均可与国外产品相媲美,但是在抗紫外老化方面国内大部分产品略差于国外产品,而紫外老化恰恰是造成EVA 胶膜黄变的主要因素。

有机物中颜色主要是由生色团产生的,EVA中的生色团就是共轭烯烃,共轭烯烃的共轭碳链越长, EVA 的颜色就会越深。结合老化机理可以知道,EVA 材料的变色的直接原因就是光热老化下的化学反应产生了多烯烃生色团,随着生团的共轭体系的延长,EVA 的颜色还会加深,从浅黄(轻微)变到深褐色(严重)。

铕元素(Eu)具有未充满且受外界屏蔽的4f5d电子,有丰富的电子能级和长寿命激发态,可以产生多种多样的辐射吸收和发射,使它在光转换方面具有特殊的应用。铕离子的这个特点被用来改性EVA封装胶膜,他可以吸收紫外线并转化为蓝紫色、黄色和红色光,提高了光伏组件的光电转换效率和太阳能电池的使用寿命。

目前的技术是在EVA 里添加紫外吸收剂来减少紫外线对EVA 胶膜的破坏,而紫外吸收剂只是对200nm~400nm 的紫外线波段具有吸收反射性能,而对如何将此波段的紫外光转换利用的研究涉及甚少,为此该技术使用一种高效抗紫外太阳电池封装用EVA 胶膜,可将紫外光部分转化为可见光,既避免了紫外光对基材EVA 的破坏又增加了可见光的透过率,起到了一举两得的作用,进一步提高太阳电池效率。

但也有一定的技术难点,如果直接用Eu的氧化物或无机盐与EVA 共混,将不能相容,无法制成对可见光透明的材料,要先利用丙烯酸与氧化铕反应生成丙烯酸铕,再与醋酸乙烯酯共聚成类似于EAA 的聚合物。它含有与EVA 相似的结构单元,与EVA 共混有很好的相容性,可以制成透明的薄膜,这样就在EVA 中掺杂了铕元素。实验验证,在掺杂Eu3+后的EVA薄膜确实对太阳光有遮挡,透过,吸收和光转换作用,能过滤一些短波长的紫外光,同时又能将紫外光转换成蓝紫色、黄色和红色光。但距离实际应用还有很长一段路要走,如何使铕离子和各种有机填料共同作用提高EVA胶膜的综合性能是一个研究重点。

4、有机助剂改性

太阳能电池用EVA封装胶膜一般包括EVA树脂、交联剂、紫外光吸收剂、抗氧化剂(或抗热老化剂)、紫外光稳定剂、增塑剂、增粘剂等。这些添加剂基本上都是有机助剂。有研究表明,多余的交联剂在光作用下产生活泼的自由基,与其他紫外吸收剂、紫外稳定剂和抗氧剂发生反应,产生生色基团。因此使用合适的EVA配方,改变各添加剂的配比,或者使用更为稳定的替代品,均匀分布低配比助剂,使EVA 内各添加剂之间的相互作用减小或得到抑制,可以显著降低EVA 变色的速度,从而提高EVA胶膜的抗老化性能。

抗氧剂:抗氧剂有很多种,作用原理也不同。比如酚类抗氧剂能阻止链的增长,并且利用空间位阻效应阻止氧化反应的进行;亚磷酸三苯酯类能与氧原子形成稳定的化合物,分解氢过氧化物;并能终止自由基链反应,从而阻止链式反应的发生。有时使用两种或两种以上的抗氧剂,可以产生明显的协同效应。

紫外光稳定剂:作用是为了猝灭紫外光照射过程中EVA产生的自由基,从而防止链的增长,降低光降解或光氧化的发生。一般为受阻胺类化合物(受阻胺光稳定剂HALS),受阻胺在有氧状态下吸收光能后,可以转变为相应的氮氧自由基,进而捕获高分子降解中产生的自由基,而且在光稳定化过程中具有再生功能,从而抑制连锁反应。受阻胺的一般作用机理:

紫外光吸收剂:通常为芳族化合物,他和羰基共轭,并在邻位或对位上有一个释放电子的胺或甲氧基。高能量短波紫外线辐射激发紫外线吸收剂,使其达到高能状态,然后被吸收的能量作为较长的波(波长>380nm)辐射而消耗,于是紫外光吸收剂又重新回到基态;或者发生异构化作用,分解成没有紫外光吸收功能的同分异构体碎片。

华南理工大学的《耐老化太阳能电池封装用EVA胶膜及其制备方法》发明专利,在EVA基料中添加了交联剂、紫外光吸收剂、抗氧化剂、光稳定剂等有机添加剂,制备出了能经受长时间的热氧老化和紫外光老化而不变色,并保持较高的可见光透过率的EVA胶膜,并且其成本低于同质量的国外产品。杭州福斯特热熔胶膜公司的《一种新型EVA胶膜》专利使用多种抗氧化剂,优化配方,制备出了不含抗紫外光吸收剂的高性能EVA胶膜。其特点是在不影响其使用寿命的情况下,电池片能接受波长大于321nm的光子,提高了转换效率。

美国普利司通公司的专利公开的是在EVA胶膜上印花,能提高粘结力,提高脱泡、防止熔融EVA流出。其采用的交联剂是有机过氧化物,分解温度大于等于70℃,半衰期10小时,占EVA的1-3%。硅烷偶联剂用来提高粘结力,占EVA的0.1-2%,交联助剂是三功能团交联剂,UV吸收剂是苯甲酮类和受阻胺类。抗氧化剂是胺类、酚类、二酚类、受阻胺类。

目前使用的国产EVA封装胶膜质量有待提升,我国西藏安装并工作了6年及10年的光伏电站中的组件出现EVA黄变现象,特别是低倍聚光会加速EVA黄变,甚至开裂脱胶,造成短路使组件报废。紫外光吸收剂具有截止紫外光的功能,但很多紫外光吸收剂和自由基反应,生成生色基团,这些自由基可以来自于多余交联剂的降解产物。所以,有机助剂降解产生自由基问题、EVA发生脱乙酰反应产生生色基团问题是当前研究的关键所在。

5、结语

综合多方面因素,EVA胶膜是当前太阳能电池封装材料的最佳选择。在光伏产业大力发展之际,EVA封装胶膜必然会是一个研究热点。

下载环氧树脂改性研究进展(推荐)word格式文档
下载环氧树脂改性研究进展(推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    改性淀粉用作混凝土减水剂的研究进展5篇

    改性淀粉用作混凝土减水剂的研究进展 摘要:综述了混凝土减水剂的发展状况和目前存在的问题,介绍了淀粉的结构、改性淀粉如羧甲基淀粉、磺化淀粉和淀粉丁二酸单酯等的合成方法,......

    材料改性

    浅谈表面改性 摘要:本文主要总结了各种材料的改性及改性剂对其的影响,其中还涉及到各种改性方法及对材料改性的展望。 关键字:表面改性 纳米 金属 1 引言 表面改性是指在保......

    毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展

    纳米Fe3O4粒子的制备及其表面改性研究进展 摘要:Fe3O4纳米粒子应用广泛,它的合成有球磨法、高温分解法、沉淀法、水热法、微乳液法、溶胶-凝胶法、生物模板合成法、微波水热法......

    环氧树脂检测

    环氧树脂检测同科研究所一:环氧树脂介绍(003) 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以......

    纳米改性材料

    纳米改性有机硅橡胶防水材料近日,河南科丽奥高新材料有限公司(以下简称为科丽奥公司)在郑州成功召开了“纳米改性有机硅橡胶防水材料”新产品成果鉴定会,本次鉴定会由郑州市科学......

    高分子材料改性

    聚 合 物 的 辐 射 改 性 研 究 聚合物的辐射改性是指将聚合物置于辐射场中,在高能射线( 主要是射线、射线和电子加速器等) 的作用下,可以在固态聚合物中形成多种活性粒子,引发......

    ABS改性材料

    ABS改性材料化学名称:丙烯腈-丁二烯-苯乙烯共聚物英文名称:Acrylonitrile Butadiene Styrene比重:1.05克/立方厘米 成型收缩率:0.4-0.7%成型温度:200-240℃干燥条件:80-90℃ 2......

    环氧树脂检测方法

    二、有关环氧树脂的国家标准目标 1、基础标准 GB/T1630—1989 环氧树脂命名 GB/T2035—1996 塑料术语及其定义 2、产品标准 GB/T13657—1992 双酚 A 型环氧树脂 3、方法标准......