两条直线互相垂直的教学反思

时间:2019-05-15 13:37:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《两条直线互相垂直的教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《两条直线互相垂直的教学反思》。

第一篇:两条直线互相垂直的教学反思

两条直线互相垂直的教学反思

本节课主要通过观察,讨论,操作交流等活动让学生去感知,理解发现和认识垂直是同一平面内两条直线的特殊的位置关系,在生活中有着广泛的应用。但学生的抽象思维能力和空间像能力都比较弱,教学时应以唤起学生的生活经验辨别能力,力求由直观到抽象又能新旧知识相融。让学生在生活和认识的图形中找出垂直的例子对垂直的认识得到提升。我在教学这部分概念时,通过用三角尺画已知直线的垂线巩固了学生对垂直的认识,培养他们独立思考的习惯和自学的能力。让学生在一组判断题中总结了判断两条直线是否互相垂直的关键是什么,使知识得到了升华。学生学的主动积极,课堂参与程度高。思维灵活。并在同桌合作,自主学习的活动中升华了对知识的理解,通过“画”的活动,使学生对垂线加深认识,通过说判断理由来加深对互相垂直概念的理解。但课堂上我给予学生思考的时间比较少,在学生做好垂线后没有及时发现课堂中所有的方法,使有的学生的方法没有得到展示,也没有及时纠正学生不科学的表达。应注意让学生明确这里所讲的垂直是指同一平面内两条直线的位置关系。在指名回答问题时应多给学生一些时间,让他独立回答,不应急着给予他们提示和帮助。

第二篇:证明两直线垂直的方法

证明两直线垂直的方法

1.矩形四个内角

2.三角形中的两角之和为90°,则另一角必为直角

3.证明两直线中的一条是等腰三角形的底边,另一边是顶角平分线或底边上的中线

4.勾股定理逆定理

5.圆直径所对的圆周角

6.垂径定理的判定

7.利用菱形的对角线互相垂直

8.利用正方形的对角线互相垂直

9.圆的切线垂直于过切点的半径

10.证这两直线中的一直线与第三直线平行,另一直线与第三直线垂直;或证明这两直线各与已知的两垂线平行

11.相交两圆的连心线垂直平分公共弦

12.轴对称那类的图形,对应点垂直于轴

13.到线段两边距离相等的点在这个线段的中垂线上

14.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

15.与直角三角形相似的三角形 对应角是直角

16.与直角三角形全等的三角形 对应角是直角

17.利用邻角相等:两直线相交所成的两个邻角相等,可确定两直线垂直

18.点到直线最短的线段

19.45圆周角所对的圆心角

20.等边三角形中,任一顶点与内心所在直线垂直于底边

21.利用已知的直角或其余角:证两直线的夹角等于已知的直角,或证明两直线的夹角是两锐角互余的三角形的第三角

22.矩形中位线垂直他所在的两边

23.利用反证法、同一法

24.平面直角坐标系x、y轴垂直

第三篇:直线和平面垂直反思

洛阳二中 苏宏磊

《直线与平面垂直的判定》教学反思

一.复习引入部分

在复习回顾过程中,我首先提出了一个问题:问直线和平面有几种位置关系,然后多媒体给出几幅实例图片,引出直线和平面相交的一种特殊情况——垂直,激发了学习兴趣。

新课标提倡数学教学应当注意创设生活情境,使数学学习更贴近学生,在数学课堂学习中,精心创设问题情境,诱发学生思维的积极性,用卓有成效的启发引导,促使学生的思维活动持续发展。学生对学习有无兴趣和求知欲,是能否积极思维的重要的动机因素。要引起学生对数学学习的兴趣和求知欲望,行之有效的方法是创设合适的问题情境,引起学生对数学知识本身的兴趣。在数学问题情境中,新的需要和学生原有的数学水平之间产生了认知冲突,这种认知冲突能诱发学生数学思维的积极性。因此,合适的问题情境,成为诱发和促进学生思维发展的动力因素。在本节课的设计中,我引入了生活中的场景,如旗杆和地面,房屋屋柱和地面,大桥桥柱和水面等等,来激发学生学习数学的兴趣。

二.定义和判定定理讲解部分

我通过分析旗杆和它在地面的影子的位置关系引导学生概括出直线和平面垂直的定义。针对定义我提出问题:直线和平面内一条或无数条直线都垂直,直线和平面垂直吗?引发学生思考,然后通过多媒体演示翻转直角三角板的例子,给出问题答案。接着让大家一起动手尝试翻折三角形纸片的小实验,仔细观察发现规律,自主探究得出直线和平面垂直的判定定理。在此过程中,让学生通过实践体验知识形成的过程,自主完成知识的构建,让学生体会知识获得的成就感和喜悦,自己总结出来的才是印象最深的。

三.例题讲解和随堂练习部分

在例题讲解中,我选取了贴近生活实际的问题作为第一道例题,让学生认识到判定定理在现实中的重要应用及学习的必要性。第二道例题是课本例题,引导学生分别从定义和判定定理两个方面去获取证明思路,得出证明直线和平面垂直的另一种方法。在随堂练习中,分别先让学生下面动手思考,然后提问演板。

在我的教学设计和课堂教学中还是存在这样或那样的不足,有待以后的教学中改进。以上是我对本节课的反思总结,作为年轻教师,我应该在一些细节上下功夫,同时还必须注意对学生综合能力的培养,包括独立发现问题——解决问题——回过头来再寻求更好的解决途径的过程。

苏宏磊2011-1-6

第四篇:直线与平面垂直的教学反思

直线与平面垂直的判定教学反思

直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的基础,是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的基础,因而它是空间点、直线、平面间位置关系中的核心概念之一。

直线与平面垂直的定义:如果一条直线与一个平面内的任意一条直线都垂直,就称这条直线与这个平面互相垂直。定义中的“任意一条直线”就是“所有直线”。定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线。直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。该定理把原来定义中要求与任意一条(无限)直线垂直转化为只要与两条(有限)相交直线垂直就行了,使直线与平面垂直的判定简捷而又具有可操作性。

对直线与平面垂直的定义的研究遵循“直观感知、抽象概括”的认知过程展开,而对直线与平面垂直的判定的研究则遵循“直观感知、操作确认、归纳总结、初步运用”的认知过程展开,通过该内容的学习,进一步培养学生空间想象能力和几何直观能力,发展学生的合情推理能力、一定的推理论证能力和运用图形语言进行交流的能力。同时体验和感悟转化的数学思想,即“空间问题转化为平面问题”,“无限问题转化为有限问题”,“ 直线与直线垂直和直线与平面垂直的相互转化”。

在这次新课程数学教学内容中,立体几何不论从教材编排还是教学要求上都发生了很大变化,因而,我在本节课的处理上也作了相应调整,借助多媒体辅助教学,采用“引导—探究式”教学方法。整个教学过程遵循“直观感知—操作确认—归纳总结”的认知规律,注重发展学生的合情推理能力,降低几何证明的难度,同时,加强空间观念的培养,注重知识产生的过程性,具体体现在以下几个方面:

1.线面垂直的定义没有直接给出,而是让学生在对图形、实例的观察感知基础上,借助动画演示帮助学生概括得出,并通过辨析问题深化对定义的理解。这样就避免了学生死记硬背概念,有利于理解数学概念的本质。

2.线面垂直的判定定理不易发现,在教学中,通过创设问题情境引起学生思考,安排折纸试验,讨论交流,给学生充分活动的时间与空间,帮助学生从自己的实践中获取知识。教师尽量少讲,学生能做的事就让他们自己去做,使学生更好的参与教学活动,展开思维,体验探索的乐趣,增强学习数学的兴趣。

3.本节中教师不作例题示范,而是让学生先尝试完成,后讲评明晰。为更好地巩固判定定理,设置了有梯度的练习,其中练习(1)是补充题,是判定定理的最简单的运用。作业中增加了基础题(第1题)和开放性题目(第3题),这样,有助于培养学生的发散思维,使学生在不同的几何体中体会线面垂直关系,发展学生的几何直观能力与一定的推理论证能力。同时,在教学中,始终注重训练学生准确地进行三种语言(文字语言、图形语言和符号语言)的转换,培养运用图形语言进行交流的能力。

4.以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生对问题多质疑、多概括。

第五篇:两直线垂直与平行的判定教学设计

§3.1.2两直线平行与垂直的判定

授课类型:新授课

授课对象:高二(1)班 教学目标:

1、充分掌握判定两直线平行的条件,能判断两直线是否为重合或平行

2、能利用两直线平行的判定条件解决一些简单的平面解析几何问题

3、掌握判定两直线垂直的判定条件,能利用判定条件解决一些平面解析几何问题

4、在探究斜率与两直线位置关系的过程中,体会分类讨论的重要思想,感受数学的严谨性

教学重点、难点:

1、当两直线的斜率都不存在时,两直线平行,且前提为两直线不重合2、两直线垂直的判定条件的推导

3、渗透分类讨论的重要数学思想

教具:多媒体课件三角板

教学方法:讲授法探究法

教学进程:

一、知识回顾导入新课

1、倾斜角(定义、范围)

2、斜率kktan(90)

3、斜率公式P1(x1,y1),P2(x2,y2)k0y2y1(x1x2)x2x

1问:平面上两条直线有几种位置关系呢?

①平行②相交③重合()

平行与垂直是两直线的特殊的位置关系,那这节课我们就来学习“两条直线平行与垂直的判定”

二、新课讲授

1、两直线平行的判定

已知一条直线倾斜角,不能确定这条直线的位置,可以任意平移直线l1,任意作直线l2,得到

l1//l2问:不重合的两直线,倾斜角相等,两直线有什么位置关系呢?(平行)

两条不重合的直线因此,我们得到:当l1和l2是,12l1//l

2问:如果两条直线互相平行,它们的倾斜角满足什么关系呢?(用PPT展示动态图画)

我们得到:若两直线平行,它们的倾斜角相等。也即12l1//l2

两条不重合的直线※结论:当l1和l2是

时,12l1//l2(互为充要条件),由12我们可以得到什么?

两条不重合的直线问:若没有前提条件l1和l2是

(学生回答平行或重合,这里要强调两直线重合的位置关系,并且和学生说明如果没有特殊说明,说两条直线l1和l2时,一般指两条不重合的直线)问:若两直线平行时,它们的斜率满足什么关系呢?

(这时要反复演示直线转动过程

ppt,让学生注意到当)

l1和l2同时垂直于x轴时的特殊情形

学生会注意到当1290时,l1//l2,而此时直线的斜率k不存在在时呢?l1//l2,斜问:那当两直线斜率k1,k2存率k1,k2满足什么关系呢

此时,l1//l212tan1tan2k1k2?

问:反过来,由k1k2能否得到l1//l2的位置关系?我们首先要考虑什么?

(先排除两直线l1和l2重合的可能),当两条不重合的直线的斜率k1k2时,k1k2tan1tan212l1//l2

※结论:两条直线不重合且斜率都存在时,l1//l2k1k2(充要条件)

练习

1、判断题⑴l1//l2是

12的充要条件(×)

⑵若两条直线的斜率相等,则这两条直线平行(×)⑶l1//l2是k1

k2的充要条件(×)

1、已知直线l1的倾斜角是450,且过定点(1,1),l2是经过两点A(x,1),B(4,3)的直线,满足l1//l2,求x的值

分析:由题设可知,两直线的斜率k1和k2都存在,且l1和l2是两条不重合的直线,要满足l1//l2,只要使k1k2成立即可。

解:

设直线l1的斜率为k1,直线l2的斜率为k2,有k1tan451,k2则

x8

2两直线垂直的判定

刚刚讨论了两直线平行时的情况,那两直线垂直又怎么样

问:类比平行的情况,我们是从倾斜角1和2出发的,进而讨论平行的情况。那这里我们是否也可以从倾斜角

1、2出发呢?那我们首先要找到这两条直线的倾斜角

(讨论垂直判定的时候,要让学生类比平行的情况,思考从何入手,启发学生思考如何找到垂直判定的条件)

· 由图我们可看到直线l1,l2与x

关系式

314

4因为l1//l2,则有k1k2,即1 4xx4x4

2

1900

问:那它们的斜率呢?首先要考虑它们的斜率是否存在?

(学生可能会忽视斜率的存在性这一重要条件,虑斜率是否存在,强调分类讨论的思想)

◎ 当一条直线的斜率不存

在,一条直线的斜率为0时,即

k1不存在,k20或k10,k2不

存在时,满足l1l

2问:那当两条直线的斜率都存在时呢?(首先来看看特殊情况)

学生分小组分别计算直线l1和l2的斜率k1、k

2k11,k2

1k1,k2

3k13,k2

问:你们发现了什么?

(学生们会发现k1k21)

问:猜想一下,当两条直线的斜率都存在时,如果l1l2,那么它们的斜率会满足什么关系呢?

(学生会猜想k1k21)

·为了验证这一猜想,我们来看看一般情况: 不妨设01900,则90021800,直线l1的斜率为k1tan1,直线l2的斜率为k2tan2

l1l2

时有

21900,所以

sin(1900)cos11

k2tan2tan(190)0

cos(190)sin1tan1

则有k1k2tan1()1 tan1

所以我们有当两条直线的斜率都存在时,l1l2k1k21

问:那么反过来,当两条直线的斜率满足k1k21时,此时l1与l2又有怎么样的位置关系呢?

(鼓励学生自己动手进行探究)

当k1k21时,即tan1tan21,则有tan2,而我们已推导公式tan1

sin(1900)cos11,所以有tan2tan(190)0

cos(190)sin1tan1

tan(1900),因为902180,0190,结合正切函数在0,上的函数图象,可得到

21900

即l1l2

所以当两条直线的斜率之积为1时,我们可以推出这两条直线垂直

※结论:当两条直线的斜率k1,k2都存在且不为0时,l1l2k1k21 练习:

1、判断题

⑴若两条直线的斜率之积为1,则这两条直线一定垂直(√)

⑵l

1l2是k1k2的充要条件(×)

2、已知A(5,1),B(1,1),C(2,3)三点,试判断

分析:首先在平面直角坐标系中画出图形,由图进行猜想ABBC,即为直角三角形

在学习本节课内容前,学生们可能会想到:①平面向量法

0即可证明ABBC

②余弦定理(勾股定理)(ABBCcosB

ABC的形状

x

AC

BCABAC

2BCAB

· 用今天这节课的内容又怎么做呢?

要证明两直线AB 和直线BC垂直,只要求出这两条直线的斜率,它们的斜率之积等于1 解:

设直线AB斜率为kAB,直线BC斜率为kBC,1113

1,kBC251221以kABkBC1,即有ABBC所

kAB

所以ABC为直角三角形

课堂小结:

1、两直线平行的判定条件

12l与l

l1//l

2合2重

l1//l2k1k2的前提条件是两条直线的斜率都存在,且两条直线不重合2、两直线垂直的判定条件

当一条直线的斜率不存在,一条直线的斜率为

时,即

k1不存在,k20或k10,k2不存在时,这两条直线垂直

当两条直线的斜率k1,k2都存在且不为0时,l1l2k1k2

1作业:教材P896

P907、8、1、2、6

板书设计:

§3.1.2 两直线平行与垂直的判定

一、两直线平行的判定

1、12l1//l2或l1和l2重合例

12、l1与l2是两条不重合直

线

当

k1、k2不存在时,12

l

l1//l21

21//l2

当 k1、k2都存在时,k1k2tan1tan2l1//l2k1k2

二、两直线垂直的判定

当k10,k2不存在时

l1l2

当k1和k2都存在且不为

0时k2tan2tan(1900)

l1

sin(0190)1l2k1k2cos(0cos1

 190)sin1



1tan1

k1k2

例2

下载两条直线互相垂直的教学反思word格式文档
下载两条直线互相垂直的教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    直线与平面垂直的判定教学反思

    《直线与平面垂直的判定》的教学反思 焉耆一中数学组李新华 本节是高一《必修2》第二章第三节第一课时的内容。本节课所要达到的知识目标是:(1)掌握线面垂直的定义;(2)掌握线面垂......

    直线与平面垂直的判定的教学反思

    2013年5月13日《直线与平面垂直的判定》的教学反思 一、复习引入部分 在复习回顾过程中,我首先提出了一个问题:问直线和平面有几种位置关系。我们研究了直线和平面平行,直线在......

    听互相垂直有感

    听《互相垂直》有感 星期三下午第二节课,我听了名师黄爱华老师的《互相垂直》一课,颇受感动。在教学《互相垂直》前,黄老师通过做游戏、对话、交流,让学理解“互相”的意义,即互......

    两直线平行与垂直的判定[推荐]

    3.1.2 两条直线平行与垂直的判定授课时间:第八周一、教学目标1.知识与技能理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.2.过程与方法通过探究两直......

    证明两条直线垂直

    证明两条直线垂直根据定义推线线垂直←→线面垂直←→面面垂直线线平行←→线面平行←→面面平行就这样还是得实际操作1利用直角三角形中两锐角互余证明由直角三角形的定义......

    《垂直》教学反思

    我精心准备了一节数学课《垂直》,并在学校做了现场观摩教学。让我激动不已的是:讲完课之后,我非常幸运地听取了科组各位老师、学校领导的共同点评。各位领导对我所讲授的《垂直......

    用几何方法证明坐标平面内互相垂直的两直线的斜率之积等于-1

    用几何方法证明“坐标平面内,两直线互相垂直时,它们的斜率的乘积等于-1”证明:如图,直线y1=k1x和直线y2=k2x互相垂直,过直线y1=k1x上任意一点A做AC⊥x轴于点C,在直线y2=k2x上取一......

    直线和平面垂直教案

    直线和平面垂直教案 教学目的 1.进一步理解直线与平面垂直定义的两种用法; 2.理解并掌握直线与平面垂直的判定定理2; 3.理解并掌握直线与平面垂直的性质定理. 教学重点和难点 这节......