第一篇:8下18.3《勾股定理的应用2》教学反思(写写帮整理)
教学反思
本节课课题是“勾股定理的应用”,教学目标是掌握运用勾股定理来解决问题,难点是运用勾股定理来解决实际问题。“教师教,学生听,教师问,学生答,教师室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增,基于以上我设计了本课的教学。
经过上一节课的课堂教学后,我观察到了大部分学生对于勾股定理仍只停留在蒙胧的感知上,对于直角三角形的三边关系式:在解决具体问题中如何运用仍没有真正的理解。如果本课我就让学生运用它来解决有难度实际问题,那么将会加深学生对勾股定理理解的难度,最终也许会影响到学生学习数学的积极性与兴趣,所以在本课中设计的一些基础问题刚好适合学生。
本课中创设开放性的问题,让学生充分回忆上一节课学习的内容与方法,使学生加深对上节课学习知识的印象,从而为本节课的学习打下良好的基础。同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好,但是通过教学我发现在这个方面我还强调得不够,相应的变形太少,练习偏少,没有能让学生形成深刻认识。
数学问题生活化,用数学知识解决生活中的实际问题,是课程改革后数学课堂教学必须实施的内容。在解答实际生活中的问题时,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要教师帮助学生去理解、转化,而更多时候需要的是学生自己去探索、尝试,并在失败中寻找成功的途径。本课教学中,如果我能让学生自己反思答案与方法的合理性,那么效果会更好了,这是我觉得要作出改进的地方。
第二篇:勾股定理的应用的教学反思
勾股定理的应用的教学反思
勾股定理的应用的教学反思
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:
一、复习引入
对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。
二、例题讲解,巩固练习,总结数学思想方法
活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。
活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。
活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。
二、巩固练习,熟练新知
通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。
在教学设计的实施中,也存在着一些问题: 1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。
2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。
第三篇:勾股定理的应用教学反思
勾股定理的应用教学反思
勾股定理的应用教学反思
一、教师我的体会:
①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。
把教材读薄,②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。
③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。
④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。
二、学生体会:课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。
第四篇:8下18.4《勾股定理的应用3》教学反思
教学反思:
在本节课的教学中主要要引导学生掌握两种数学思想方法:
1.数形结合的思想方法
我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.
在本节课的教学中,我们将探索直角三角形的三边之间的关系,并运用所得的结论解决问题,这里体现了“数形”结合的思想.
2.转化的思想方法
在分析解决问题的过程中,将实际问题转化为勾股定理及其逆定理这一模型,为分析问题和解决问题创造有利条件.
3.方程的思想方法
在求有关线段的长度时,利用直角三角形这一基本图形,运用勾股定理及其逆定理巧设未知数,建立方程达到解决问题的目的.
反思成功的原因:第一、教学方法有了创新,采取了互动式教学,对学生来说很新奇.第二、采用填空式方式,将难点分散降低.第三、鼓励每个学生,给每个学生展示自己的机会,调动中下等学生,给他们机会发言.
当然这节课也存在着不足,虽然尽量想把课堂交给学生,但不免有不放心,影响了课堂中学生的主动学习.针对学生刚刚接触勾股定理的证明题,对格式比较陌生,忽视看图,今后将培养学习的识图能力,分类计论的能力以及训练数形结合的思想.
第五篇:勾股定理教学反思
勾股定理教学反思
数学组 李杰
勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(两条直角边的平方和等于斜边的平方)勾股定理是一坛陈年佳酿,品之芬芳,余味无穷,堪称数形结合的典范,在理论上占有重要地位.。同时勾股定理的探索和证明蕴含着丰富的数学思想和研究方法,是培养学生思维品质的载体。它对数学发展具有重要作用。
本节课的基本教学思路:情境导入-探索结论-验证结论-初步应用结论-应用结论解决实际问题.具体而言:
利用愉快的拼图游戏、创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。让学生享受数学的有趣。
借助生活情境,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。让学生享受数学的有用。
让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,在教学中有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语。
教学重点
勾股定理的探索过程.
教学难点
将边不在格线上的图形转化为边在格线上的图形,为便于计算图形面积.采用拼接,割补,平移的方法突破难点。学生易于接受,体现转化划归解决问题的思想。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们的思绪带进特定的学习情境中,为激发学生浓厚的学习兴趣和强烈的求知欲,我创设了一个大树被台风吹断的情景。
在探究直角三角形三边关系时,通过网格中的直角边长为1的等腰直角三角形来分析,分析以边为边长的正方形面积之间的关系,因为图形特殊,学生容易从中得出关系。然后在将图形换为直角边长为3、4的情形,引导分析关系,再推广到一般的情形,最终得到结论。这里的做法由特殊到一般。步步推进,使学生易于接受。教学中我以教师为主导,以学生为主体,以知识为载体,以培养能力为重点。为学生创设“做数学、玩数学”的教学情境,让学生从“学会”到“会学”,从“会学”到“乐学”。、转变教学方式,让学生探索、研究、体会学习过程。
除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.
练习设计我立足巩固,着眼发展,兼顾差异,满足学生渴望发展要求。在教学应用勾股定理时,老是运用公式计算,学生感觉会比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道实际问题:即学校草地问题。同学们一看,兴趣来了。使数学教学变得生机勃勃,学生喜欢数学,热爱数学。即巩固了知识,又对学生进行了品德教育。一举两得。