2014年数学建模培训安排[全文5篇]

时间:2019-05-13 11:45:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2014年数学建模培训安排》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2014年数学建模培训安排》。

第一篇:2014年数学建模培训安排

2014年数学建模培训安排

一、时间和地点安排:

1、上课时间:上午8:30——11:30

下午2:00——5:002、上课地点:现教第一会议室

7月13日上午:万诗敏7月13日下午:万诗敏

7月14日上午:马志宏7月14日下午:赖迪辉

7月15日上午:马志宏7月15日下午:赖迪辉

7月16日上午:王信松7月16日下午:王信松

7月17日上午:赖迪辉7月17日下午:赖迪辉

7月18日上午:赖迪辉7月18日上午:赖迪辉

7月19日上午:赖迪辉7月19日下午:赖迪辉

二、注意事项:

1、每天按时上课,遵守上课纪律;

2、上课前找负责人签到,超过三次不到者自动取消参赛资格;负责人联系方式:

王馨霆***

备注:以上内容如有变动,另行通知

第二篇:2014年数学建模暑假培训安排

2014年数学建模暑假培训安排

1、暑假集训时间:8月21日~~开学,8月20日下午3点在数学教研室报到;

2、今天公布第一次暑假实战训练题,要求每组的三人合作一起利用暑假完成,并于报到时交我们检查,各队需高度重视实战训练,这是我们去年取得优异成绩的成功经验;

3、学生必须参加暑假培训,如与实习冲突,应以数学建模为主,并于培训开始时及时与我们联系,我们将汇总冲突的实习报教务处,并用数学建模成绩冲抵实习成绩,对于无故不参加暑假培训的学生将取消其参赛资格。对于军训冲突则按原定的要求做好请假工作。

4、培训时间安排

上午上课:路北412#,8:30~11:30

下午上机:图书馆2楼机房,2:30~5:30

数学教研室

2014-7-2

第三篇:数学建模培训

数学建模培训开课通知 为准备06年《全国大学生数学建模与计算机应用》竞赛,暑假数学建模培训8月1日上午8:00于1教233室开课。望有兴趣同学互相转告准时参加。未报名者可现场报名。

培训完毕8月底举行校内《数学建模与计算机应用》竞赛,选拔优胜者参加全国竞赛!

教务处理学院

7月30日

五、暑期培训日程安排

8月1日:刘军凤:建模竞赛简介、往届优秀论文讲解。

8月2日:邹辉:概率方法建模:回归分析、方差分析。

8月3日:刘旭华:灰色系统。

8月4日:学生看论文,写出提纲、做出评论。(足球队排名问题(老师辅助讨论))

8月5日:对论文进行讲解。(老师质疑)

8月6日:刘军凤:计算机模拟。

8月7日:邹辉:概率方法建模:判别分析。

8月8日:刘旭华:聚类分析。

8月9日:学生看论文,写出提纲、做出评论。(DNA序列分类问题(老师辅助讨论))8月10日:对论文进行讲解。(老师质疑)

8月11日:刘军凤:线性规划、非线性规划。

8月12日:邹辉:层次分析,合作分红。

8月13日:刘旭华:、马氏链模型、随机过程(1)。

8月14、15、16日: 第一次模拟竞赛。(老师辅助讨论)

8月17日:论文答辩。(老师质疑)

8月18日:刘旭华:随机过程(2)。

8月19日:邹辉:神经网络、主成分分析。

8月20日:刘军凤:图论及网络流。

8月21、22、23日:第二次模拟竞赛。(老师辅助讨论)

8月24日:论文答辩。(老师质疑)

8月25日:学生自学常用算法并作提纲。

8月26日:学生讲解算法。(老师质疑、补充、总结)

8月27日:刘军凤:算法及软件编程。

8月28、29、30日:选拔竞赛。

九月份:确定参赛队员。根据暑期培训阶段各队队员的知识构成、合作情况,最终确定队员,每队3人,共10队,由这30名同学代表我校参加全国大学生数学建模竞赛。一直到竞赛开始期间,为各队分队培训阶段,由各参赛队师生自己安排时间学习,模拟参赛的方式撰写竞赛论文。

选拔是残酷的,但是也是公正的,目的只有一个,挑选最优秀的队员,最适合的组合,以最佳的状态参加全国的比赛。

赛前一至两天进行装机、赛前等准备动员。

六.全国竞赛

全国大学生数学建模竞赛于 9月末举行,由网上发题,北京市评选后选送一部分优秀论文参加全国评选。

七.全国大学生电工数学建模竞赛

由中国电机工程学会电工数学专委会主办的面向全国大学生的科技活动。每年 11 月末举行,网上发题,电子文档发往邮箱交卷。竞赛组委会聘请专家组成评阅委员会评奖。

八.国际数学建模竞赛

由美国自然基金协会和美国数学应用协会共同主办,美国运筹学学会、工业与应用数学学会、数学学会等多家机构协办。每年2月份举行。网上发题,快递寄往美国参加评奖。学校选拔全国竞赛获奖者参加。

第四篇:数学建模培训心得

数学建模培训心得

大学的第二个暑假本来是打算充分利用,找份兼职来锻炼一下自己,但最后还是决定参加院系组织的暑期数学建模培训。

第一次接触“数学建模”要从参加数学建模培训开始说起。当时对数学建模的了解基本为零,只是从字面意思感到数学建模很神秘。后来老师邀请专家为我们初步讲解数学建模的相关知识,那时才对建模有所了解。原来数学建模是运用相关数学知识建立模型来解决实际问题,从而使问题得到最优解决。

对数学建模有了小小的初步了解后,觉得建模过程挺有趣的,于是暑假毫不犹豫的参加了为期一个月的数学建模培训。

然而在培训期间我深深体会到,要能坚持一个月的数模培训并非易事。不仅天气炎热,而且每天的学习也比较紧,比较枯燥,每天老师讲授的知识都比较多,也很难掌握。为此面对这些困难有好多参加培训的同学都中途而废了。现在想来,我很庆幸自己能够坚持到最后,并且从中收获了不少知识。

其实那个时候才是我真正开始接触数学建模。数学建模所要掌握的知识很多很广,建模的过程也相对比较难。培训期间,对于我来说学习过程有一定的难度,但还是要求自己尽量掌握一些知识。

在整个培训期间,我除了知识上的进步外,还有许多自己的真心体会和感受。

首先,我认为最大的收获是在困难面前自己能够坚持到最后。虽然是在假期,但仍坚持每天有规律的生活起居,坚持用心听好每一节

课,尽量吸收老师所授的知识,晚上勤加练习,勤向学长学习。

其次,我深刻体会到团队合作精神的重要性。建模过程不仅仅取决于队员个人的基础和努力,更依赖三名队员合作精神的发挥。既要见己之优点,更不可忽视自己的缺点和同伴的优势,尽管会感觉自己的想法是正确的,还是要听听其他队员的想法,并最终统一想法,这样才可能成功。

再者,在整个数学建模培训的学习过程中,我才真正体会到建模的乐趣,体会到数学的博大精深,真正认识到世界上形形色色的问题都可以通过数学知识去解决、分析和预测。

为期一个月的培训结束后,迎来了最后的全国数学建模大赛,并与老师、参赛队员一起体验了三天三夜的比赛过程,最终完成了比赛论文。

总之,一分耕耘,一分收获。这次假期的培训,对我而言意义非凡。我深感自己在软件的应用以及自学能力方面有了很大的提高,我想这些收获会对以后的学习有很大的帮助。想到这里,我很感谢老师陪我们走了为期一个月的培训和最终的比赛。为此在以后的学习中,我会保持这种学习的劲头,刻苦努力。

第五篇:数学建模培训心得体会

学习数学建模心得体会

这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。

数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案??这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。

通过学习数学建模训练,对我的收益不逊于以前所学的文化知识,使我终生难忘。而且,我觉得数学建模活动本身就是教学方法改革的一种探索,它打破常规的那种老师台上讲,学生听,一味钻研课本的传统模式,而采取提出问题,课堂讨论,带着问题去学习、不固定于基本教材,不拘泥于某种方法,激发学生的多种思维,增强其学习主动性,培养学生独立思

考,积极思维的特性,这样有利于学生根据自己的特点把握所学知识,形成自己的学习机制,逐步培养很强的自学能力和分析、解决新问题的能力。这对于我们以后所从事的教育工作也是一个很好的启发。总之,“一份耕耘,一份收获”。作为一名对数学有着浓厚兴趣的学生,我深刻地感到了自己在程序的编制和软件应用以及自学能力,有了很大的提高,并将对我今后的专业学习有很大的帮助。想到这里,我不由得被老师的良苦用心所感动,为我们创造了如此优越的学习条件,处处为学子着想。因此,在今后的学习中,我会保持这种学习的劲头,刻苦努力,争取以更优异的成绩。

随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识??数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术.在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革.这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,学生根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,而我国大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。激发学生学习数学的兴趣。现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。

数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。培养学生多方面的能力,培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高。数学建模就是当人们面对各种实际问题时,根据人们对问题的理解,完成对模型的假设,建立和确定求解问题的方法与途径,然后建立好方程组,然后再与计算机的软件相结合,最终得到该实际问题的最佳求解答案。

以前在高中时学过些简单的线形规划,但那时都是些简单的问题,在列解出方程后通常只有两个未知数,但这明显不符合现实生活中的问题,因为往往涉及到一些实际生产问题时通常都是比较麻烦的,列出方程后的未知数也不可能只有两个,因此就要用到数学模型与计算机相结合来处理了。

通过对数学建模的学习,使得我对数学有了全新的看法,也因此感觉到数学这门课程 对于生产的利益是密不可分的,开展数学建模的学习是提升我们综合能力的好机会,使得我们不再是纸上谈兵了,并且也使得我们又多了一门技能。数学建模所解决的问题不是一个单一的数学问题,它要求我们除了有扎实的数学功底外,还需要我们去不断的查阅资料,并且还要能熟练的应用计算机的软件。所以它能极大的拓宽我们的知识面,这些知识也能为我们将来的工作打下坚实的基础,也让我理会到学习是不断发现真理的过程,并且它给我们带来的知识面不是任何专业都能涉及到的.在学习数学建模的过程中,我充分的体会到了数学给人们带便利实在太大了,在涉及到现实的工业生产中,它能给企业的利益最大化,并且也能节省国内的能源,所以人类要是离开了数学建模,那后果真是不堪设想。其实数学建模对于我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念,而在学习数学建模以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道要这样做,却不知道为什么会这样做,现在我们这种陈旧的思考方式已经被数学建模转化成多层次,多角度的从问题的本质出发的 一种新颖的思维方式了,这种凝聚了多种优秀方法为一体的思考方式一旦被掌握了,它能转化成你自身的素质,并且能在你以后的生活和工作中继续发挥着作用的。数学建模是一种运用数学符号,数学式子,计算机程序等相结合的对实际问题做出规划而得出最佳的解决方法。不论是用数学方法解决在科技和生产领域解决哪类生产实际问题,还是与其他学科相结合形成交叉学科,首先和关键一步是建立研究对象的数学模型,并加以计算求解,我 就简单说明一下具体的操作方法:首先是模型的准备,了解问题的实际背景,明确其实际意义,掌握对像的各种信息,用数学语言来描述问题。第二步是模型的假设,根据实际问题的特征和建模的目的,对问题做出必要的简化,并用精准的语言做出恰当的假设。第三步是模型的建立,在假设的基础上,用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学架构。第四步是模型的求解,利用获取的数学资料,对模型所有参数做出计算。第五步是模型的分析,对所得的结果做出数学上的分析。第六步是模型检测,将模型的分析结果与实际情况进行比较,以此来确定模型的合理性,如果模型与实际比较吻合,则要对计算结果给出其实际含义,并做书解释。第七步是模型应用,应用的方式因问题的性质和建模的目的而异。

在一般的工程技术领域,数学建模仍然大有用武之地,因此数学建模的普遍性和重要性不言而喻,由于新工业和新技术的不断涌现,提出了许多需要用数学建模来解决的问题,因此使得许多的问题迎刃而解,建立数学建模和计算机的软件,大量的代替了以前的复杂的计算问题。随着数学向这储如经济了等领域进行渗透,人们在计算如何使得经济利益最大化 时,数学建模毫无疑问在这里面发挥出巨大的作用,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的。数学建模过程是一种创新过程,在思考方法和思维方式上与学习其他课程有着较大的区别,它需要我们在学习时能冷静的单独思考,并且要有一定的分析问题的能力。

我相信随着科技的不断创新发展,数学建模在其中的地位会越来越高,所以对于一个大学生来说,学好数学建模固然是非常重要的。篇二:数学建模培训心得体会

数学建模培训的心得体会 9月12-15日三天三夜的数学建模竞赛结束了,然而数学建模留给我的记忆将永远烙在大二那个炎热而又短暂的暑假。

我想参加完数学建模的同学最难忘的应该是暑假40天的培训吧。暑期培训共分为三个阶段,三个阶段的工作在教练组组长陈老师的精心安排下,环环相扣,任务难度梯度增加。培训以培养学生创新性思维,主动探究能力为主,同时提高学生论文写作能力与lingo、matlab等数学软件的运用能力。

第一阶段(7月5日-7月14日):初训、选拔、组队。数学建模竞赛报名通知下达后,同学们积极报名,到7月5日登记时,包括数科院、国商院、物信院、生科院四个学院有150多人报名,而现实是学校计划派出25支队伍参赛,也就是假期培训将淘汰近一半的人,大家将面临的选拔是严酷的,每个人都绷紧了神经,绝对不能出岔子,尽最大努力留下来。第一次确定队里成员的时候,我们根据各自的优势做了初步的分工:吴珍(队长)主要负责编程兼攻建模,杨负责写作,我主要负责建模。经过第一阶段的培训我们有过分歧和不快,也经过了严肃的自我反思,并确定了最终的分工:我负责写作,杨负责建模,重新组队后我们重新出发,但在承诺书上我们仍然意志坚定地选择了我们三个紧紧抱成一团,进军建模竞赛。我们逐渐形成了一个固定模式:每次做完题后我们都会进行自我反思,并在分工上不断协调,从而不断进步。第二阶段(7月15日-7月29日):强化训练。我们是36队和35、37、38、39队被分在文津楼514教室培训。老师布置的题难度逐渐增大,主要包括数学建模中常用的方法和范例讲评,包括人口预测模型、灰色预测模型、运筹与优化模型、微分方程模型、层次分析法、数据拟合、主成分分析等。我主要负责查找资料与写作。我们5个队开始了第二阶段忙碌的培训并结下了深厚的友谊。这阶段老师会针对我们各自的论文单独地指正,注意论文中的每一个细小的格式问题,并加强培养我们的创新性思维,主动探究能力同时提高lingo、matlab等数学软件的运用能力。

第三阶段(8月13日-8月28日):冲刺阶段。这是暑期培训的最后一阶段,以模拟竞赛为主。先由教练老师先后编选两个数学模型题(a,b),各小队要在规定的三天内完成一个建模题,做题过程完全模拟真实建模大赛流程。每进行一次模拟竞赛都会进行一次学生集体评题。第三阶段共进行了两次模拟竞赛,每次竞赛完毕,教练老师们都会对每个队的建模论文细致地讲评,包括写作、建模思路、解题方法等。8月29日上午,暑期建模培训的最后一天,校领导及数科院各领导来看望参加培训的学生,并召开了动员大会,使学生以积极向上的心态参加9月12日-9月15日的竞赛。饱含泪水与汗水的暑期培训正式结束,收获了知识与友谊的我们514全体成员信心满满期待建模竞赛到来。暑假40天的培训,苦是必然的。每天的生活起居在炎炎烈日下变得非常规律,虽然放假了每天早上还是不能贪睡,每天7点老老实实的起床奔向阳光苑2楼,买一个荷叶饼夹菜,背着电脑啃着饼急匆匆赶往文津楼,爬5层,扑进教室,打开电脑,写永远都不能让人满意的论文,做着让自己头大的题,等着老师来点名。查资料的时候端着电脑到处找信号,趴在地上下载资料。电脑没电了,偷偷跑进空教室,跟楼管阿姨打游击,经常被阿姨无情赶出来。中午下课了,经常为了完成论文大家

轮流去买饭,午饭常是最简单的饼。没有午睡,我们像着魔一样整天整天坐在电脑前。炎炎烈日,白天还好,在教室有空调,晚上回宿舍还要熬夜赶论文,经常要赶到凌晨3、4点,汗水常常浸湿衣衫。还有做不出题时的无助与烦躁„„ 但一分付出一分耕耘,经过一个暑假的培训,我收获颇多。知识方面,知道了人口模型、雨中行走模型到城市污染问题、飞行计划等各式各样新奇、却又紧贴生活实际的模型和建立方法。还有具有丰富数模竞赛经验的老师们给我们讲解了数模论文格式及写作时应注意的问题。做了那么多建模题,它们教会了我们数学模型建立的思路,无形中让我们了解到了数学建模的精髓,那就是提出模型——验证模型——修改模型——再验证——再修改,真正的复杂问题是不可能只靠空想就能出结果的,否则也不叫复杂问题了。只有通过不懈的思考与尝试,发现有问题以后及时修改、琢磨新的思路和先前的瑕疵,才能完善模型。因此,在以后的建模过程中,我们学到了这种一步一步、不断修改的踏实的研究方法,而不再像以前只是懵懵懂懂的绞尽脑汁想个方案,然后就凑合了事,虽然明知有缺陷也不知该从何下手。

除了建模本身的无数宝贵经验,在这段学习和比赛过程中,我还渐渐积累了涉及各方面、玲琅满目的知识。它们几乎全部不是我的专业知识,甚至可以说几乎全部是我在学校的专业课上不可能学到的知识。在平时看数模的有关书籍、例题、赛题时,我接触到了来自经济学、社会学、管理学、生物学、建筑学、热学、光学、数学等等专业的知识,它们有的浅显易懂,让我这个门外汉如今也对它们有了一些简单的认识,有的则甚至在其学科自身都是极其前沿的未解难题。诚然,这些知识对我的专业发展并没有什么太多帮助,但是它们却极大的丰富了我的阅历,让我的眼界不再局限于本专业的象牙塔,而是朝着通才、全识教育的方向发展,我相信这会让我在日后的道路上更好的前进。

以上说的更多的是知识本身,然而,我认为更重要的是数模让我了解到团队合作的重要意义和种种挑战。建模过程中我们队有过大大小小的摩擦,有过争吵,但最后我们仍然不离不弃一起完成每一个建模题,那是因为我们都以团队利益为主,能够站在对方的角度上思考问题,在适当的时候会忍让,40天的培训教会了我许多团队合作与处理摩擦的技巧。更让我明白了,面对困难,只有我们三个拧成一股绳,发挥各自的优势,全力以赴的投入进去才能攻克各种难题,三个人单打独斗是出不了好成绩的。同时建模培训也让我有幸结识了许多来自不同学科、专业的朋友,我们互相学习,互相借鉴,共同进步。以上就是我暑期数模培训的心得体会,数模,教会了我很多很多,而我要做的,就是在未来的人生路上以建模不怕苦、不怕累、刻苦专研的精神勇敢迎接未知的挑战!篇三:数学建模 个人认识和心得体会

数学建模的体会思考

经过这段时间的学习,了解了更多的关于这门学科的知识,可以说是见识了很多很多,作为一个数学系的学生,一直都有一个疑问,数学的应用在那里。对了,就在这里,在这里,我看到了很多,也学到了很多,关于各个学科,各个领域,都少不了数学,都是用建模的思想,来解决实际问题,很神奇。

数学建模给了我很多的感触:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。

数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案??这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来看,我们都是直接受益者。就拿数学建模比赛写的论文来说。原本以为这是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决问题,凭我们现有的知识根本不够。于是,自己必须要充分利用图书馆和网络的作用,查阅各种有关资料,以尽量获得比较全面的知识和信息。在这过程中,对自己眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。毫不夸张的说,建模过程挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发出了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,数学建模也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,紧紧抓住问题的本质方面,使问题尽可能简单化,这样才能解决问题。其实,在我们做论文之前,考虑到的因素有很多,如果把这一系列因数都考虑的话,将会花费更多的时间和精神。因此,在我们考虑一些因素并不是本质问题的时候,我就将这些因数做了假设以及在模型的推广时才考虑。这就使模型更加合理和理想。数学建模还能增强我们的抽象能力以及想象力。对实际问题再进行“翻译”,即进行抽象,要用我们熟悉的数学语言、数学符号和数学公式将它 们准确的表达出来。

下面用一个具体的实例,来介绍建模的具体应用:

传染病问题的研究 一﹑模型假设 1.在疾病传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。总人口数n(t)不变,人口始终保持一个常数n。人群分为以下三类:易感染者(susceptibles),其数量比例记为s(t),表示t时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(infectives),其数量比例记为i(t),表示t时刻已被感染成为病人而且具有传染力的人数占总人数的比例;恢复者(recovered),其数量比例记为r(t),表示t时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传染系统。)占总人数的比例。2.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。

二﹑模型构成

在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:

在假设1 s(t)+ i(t)+ r(t)= 1 对于病愈免疫的移出者的数量应为 ndr??ni dt 不妨设初始时刻的易感染者,染病者,恢复者的比例分别为s0(s0>0),i0(i0>0),r0=0.sir基础模型用微分方程组表示如下: ?di?dt??si??i ??dssi ?dt ?dr?dt??i? s(t),i(t)的求解极度困难,在此我们先做数值计算来预估计s(t),i(t)的一般变化规律。

三﹑数值计算

在方程(3)中设λ=1,μ=0.3,i(0)= 0.02,s(0)=0.98,用matlab软件编程: function y=ill(t,x)a=1;b=0.3;y=[a*x(1)*x(2)-b*x(1);-a*x(1)*x(2)];ts=0:50;x0=[0.20,0.98];[t,x]=ode45(ill,ts,x0);四﹑相轨线分析

我们在数值计算和图形观察的基础上,利用相轨线讨论解i(t),s(t)的性质。d = {(s,i)| s≥0,i≥0,s + i ≤1}

在方程(3)中消去dt并注意到σ的定义,可得 di?11? i|s?s0?i0(5)ds?sσ? 所以:di??is?1?1???1?ds ??di1?ds(6)i0s0sσ?sσ??? 利用积分特性容易求出方程(5)的解为:i?(s0?i0)?s?1 ?lns(7)s0 在定义域d内,(6)式表示的曲线即为相轨线,如图3所示.其中箭头表示了随着时间t的增加 s(t)和i(t)的变化趋向

下面根据(3),(17)式和图9分析s(t),i(t)和r(t)的变化情况(t→∞时它们的极限值分别记作s?, i?和r?).1.不论初始条件s0,i0如何,病人消失将消失,即:i0?0 2.最终未被感染的健康者的比例是 ,在(7)式中令i=0得到, 是方程 s0?i0?s??1 ?lns??0 s0 在(0,1/σ)内的根.在图形上 是相轨线与s轴在(0,1/σ)内交点的横坐标 3.若s0>1/σ,则开始有di?1d?1?1??o,i(t)先增加, 令i???1?=0,可得当ds?sσ?ds?sσ? s=1/σ时,i(t)达到最大值: 1im?s0?i0?1?ln?s0)? 然后s<1/σ时,有di?11??o,所以i(t)减小且趋于零,s(t)则单调减小至s?,ds?sσ? 如图3中由p1(s0,i0)出发的轨线 4.若s0 ?1/σ,则恒有di?11??0,i(t)单调减小至零,s(t)单调减小至s?,如图3ds?sσ? 中由p2(s0,i0)出发的轨线

可以看出,如果仅当病人比例i(t)有一段增长的时期才认为传染病在蔓延,那么1/σ是一个阈值,当s0>1/σ(即σ>1/s0)时传染病就会蔓延.而减小传染期接触数σ,即提高阈值1/σ使得s0≤1/σ(即σ ≤1/s0),传染病就不会蔓延(健康者比例的初始值s0是一定的,通常可

认为s0接近1)。

并且,即使s0>1/σ,从(19),(20)式可以看出, σ减小时, s?增加(通过作图分析), im降低,也控制了蔓延的程度.我们注意到在σ=λμ中,人们的卫生水平越高,日接触率λ越小;医疗水平越高,日治愈率μ越大,于是σ越小,所以提高卫生水平和医疗水平有助于控制传染病的蔓延.从另一方面看, ?s??s?1/?是传染期内一个病人传染的健康者的平均数,称为交换数,其含义是一病人被?s个健康者交换.所以当 s0?1/? 即?s0?1时必有.既然交换数不超过1,病人比例i(t)绝不会增加,传染病不会蔓延。

五﹑群体免疫和预防

根据对sir模型的分析,当s0?1/? 时传染病不会蔓延.所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/σ变大以外,另一个途径是降低s0 ,这可以通过比如预防接种使群体免疫的办法做到.忽略病人比例的初始值i0有s0?1?r0,于是传染病不会蔓延的条件s0?1/? 可以表为 r0?1?1 ? 这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫比例)满足(11)式,就可以制止传染病的蔓延。

这种办法生效的前提条件是免疫者要均匀分布在全体人口中,实际上这是很难做到的。据估计当时印度等国天花传染病的接触数 σ=5,由(11)式至少要有80%的人接受免疫才行。据世界卫生组织报告,即使花费大量资金提高r0,也因很难做到免疫者的均匀分布,使得天花直到1977年才在全世界根除。而有些传染病的σ更高,根除就更加困难。

六﹑模型验证

上世纪初在印度孟买发生的一次瘟疫中几乎所有病人都死亡了。死亡相当于移出传染系统,有关部门记录了每天移出者的人数,即有了

模型作了验证。

首先,由方程(2),(3)可以得到dr的实际数据,kermack等人用这组数据对sirdtdsd???sisi???sr dtdt 1上式两边同时乘以dt可?ds???dr,两边积分得 s r1s??rs???d??e ?lns|???rsrs?s0s?r0?00s0s 所以: s(t)?s0e??r(t)(12)篇四:学习数学建模体会

学习建模体会

到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为,随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。

具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。

现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。

这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。在课本第二章的时候我们开始接触实际问题,在第二章片头我们看到的就是某城市供水量的预测问题,在这一章里,老师通过城市供水量的预测问题介绍了求函数近似表达式的插值法和拟合法、城市供水量预测的简单方法、供水量增长率估与数值微分,其中插值法主要介绍lagrange法、newton法、分段低次插值和三次样条插值。至此我们才真正体会了数学建模对实际生产的帮助。

但同时,我们也发现,要学好数学建模这一门学科,或者说应用数学建模的知识去解决其他问题,不仅仅只要求我们有扎实的数学知识,还需要我们学习更多的数学分支学科,例如有时候我们还需要其他的数学软件来帮我们解决问题,同时还要考察实际情况学会从实际问题中提炼数学问题。

总的来说,学习数学建模这一门学科对我们的帮助很大,因为它不仅增强了我的知识面,我们可以在学习这一门学科的过程中锻炼我们学习积极性,逐步培养很强的自学能力和分析、解决问题的能力,这对于我们师范生以后走上教育工作岗位也是很有帮助的。09数本5班 朱正丽 2009224239 序号07篇五:数学模型心得体会

数学建模的心得体会

姓名:张秋月 专业:数学与应用数学

班级:1102班 学号:2011254010223 这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。

本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还

是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。

数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。

(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。(5)模型分析:对所得的结果进行数学上的分析。

(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一 学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二 学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。

在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方

法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。

下载2014年数学建模培训安排[全文5篇]word格式文档
下载2014年数学建模培训安排[全文5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学建模培训心得体会

    数学建模培训的心得体会 9月12-15日三天三夜的数学建模竞赛结束了,然而数学建模留给我的记忆将永远烙在大二那个炎热而又短暂的暑假。 我想参加完数学建模的同学最难忘的应该......

    数学建模培训感想

    数学建模培训感想 我想参加完数学建模的同学最难忘的应该是暑假的建模培训吧。暑期培训共分为三个阶段,第一阶段:初训、选拔、组队;第二阶段:强化训练;第三阶段:冲刺阶段。三个阶......

    暑期数学建模培训心得体会

    免费分享创新 暑期数学建模培训心得体会 说起心得最想说的一句话就是:“年年岁岁花相似,岁岁年年人不同”,去年的时候我也参加了建模培训,以为今年老师和去年讲的差不多,觉得自己......

    暑期数学建模培训心得(★)

    暑期数学建模培训心得 我在大二暑期参加了数学建模培训,培训的这段日子过得很充实,很有意义;经历了很多,也收获了很多。 以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的......

    数学建模暑期培训心得

    培训心得 这已经是我进大学以来第二次参加数学建模暑期培训了,还记得去年那个炎热的暑假,我们四十多个大一的孩子顶着炎炎酷暑,在老师的帮助下学到了数学建模知识,也是第一次真......

    2014年数学建模培训心得体会

    2014年数学建模培训心得体会 2014年9月12日上午8点,同学们都在303机房开始了为期3天共72小时的数模比赛。9月15日上午8点,大家都匆匆上交了自己的作品。那一刻,我想,大家都是如......

    数学建模2011

    2011高教社杯全国大学生数学建模竞赛B题评阅要点 [说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 针对这个题目,评阅时请注意“数学模型......

    数学建模

    第一篇 我的大学职业生涯规划作为当代大学生,若是带着一脸茫然,踏入这个拥挤的社会怎能满足社会的需要,使自己占有一席之地?每当人类经过一次重大变革,总是新的机会在产生,有的机......