第一篇:《列方程解一步计算的应用问题》教学设计
《列方程解一步计算的应用问题》教学设计
教学目标:
1、结合具体情境,经历列方程和应用等式的性质解方程的过程。
2、会应用等式的性质解一步计算的方程,会用方程解决“已知一个数的几倍是多少,求这个数”的简单问题。
3、积极参加数学活动,获得运用已有知识解决问题的成功体验,激发学习解方程的兴趣。
教学重点:应用等式性质列、解一步计算的方程。
教学难点:分析等量关系,列方程。
教学过程:
一、复习铺垫
设计应用等式性质填空的练习。(复习等式的性质,重点提问为什么等式两边同时“加减乘除“相同的数,为学习解方程奠定基础。)
二、创设情境,导入新课
通过创设:“星期日,妈妈去商场购物的情境”,激发学生的学习兴趣。
三、自主探索、学习新知
(一)自主学习例题1。(解方程)
1、观察情境图,了解图中的数学信息和要解决的问题。
2、本例题重点在“解方程”,通过学生观察情境图,发现数学信息及要解决的问题,自己列方程并试着解方程。
3、交流时重点通过提问“方程两边为什么都减去58”的问题,让学生自己学会解方程。
(1)重点通过“方程两边为什么都减去58”的问题,启发学生交流解方程的依据,学会解方程的思路和方法。
(2)教师指导书写格式:写上“解”字,各行等号要齐。
4、初步练习。教材28页练一练第1题的(1)(2)小题。
(二)教师指导,小组讨论,学习例2。(列方程解一步计算的应用题)
1、学生观察、发现情境图中数学信息及要解决的问题。
2、教师:从图中我们可以看出王叔叔每分钟用电脑打字的速度和手写速度有什么关系?
3、小组讨论:怎样用等式表示他们之间的关系?
三种可能:
每分钟用电脑打的字数÷3=每分钟手写的字数
(2)每分钟手写的字数×3=每分钟用电脑打的字数
(3)每分钟用电脑打的字数÷每分钟手写的字数=3
(找等量关系是列方程解应用题的关键和难点,小组讨论出现在新知的生长点、关键点和知识的难点,让学生通过讨论,发现题中存在的所有等量关系,从而达到强化重点,突破难点的目的。)
5、列方程
教师:如果用“X”表示巴每分钟手写的字数,可以列出怎样的方程? 列出方程如下:
(1)120÷3=X(2)3X=120(3)120÷X=86、试着解方程。(让学生任意选择一个方程试解)
7、再次小组讨论上面三个方程及解方程过程中遇到的问题:
第一个:与算术方法相同;
第三个:不会解或者解起来比较困难,(在小学阶段不要求解此类方程)。
得出结论:第二个是比较合适的方程。
8、规范书写:教师指导:列方程,首先要写出“解”和设哪个数“X”,再写出方程,并示范书写。
7、学生再次规范列、解“3X=120”。交流时重点问:为什么两边都除以“3”。
教师板书示范,规范解题步骤。
8、初步练习。
(1)教材28页第1题(3)。
(2)根据线段图列、解方程。
(3)教材27页例题2.(由实物图到线段图再到具体问题,让学生再次经历知识的形成过程,加深对知识的理解和掌握。)
四、运用知识,解决问题。
1、解方程。教材28页第2题。
2、列方程解应用题。教材28页第3题。
五、全课总结:
你学到了什么?
教学后记:
在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我能很顺利地就完成了本课的教学任务。
第二篇:《列方程解两步计算的应用问题》教学设计
《列方程解两步计算的应用问题》教学设计
教学目标:
经历猜数游戏、列方程解决问题以及认识方程的解和解方程的过程。知道什么叫方程的解和解方程,能根据数量关系列方程解决问题,并能检验方程的解是否正确。
3、在猜数、列方程解决问题的活动中,体验列方程解决问题的价值,增强学好数学的信心。
教学重难点:比较方程的解和解方程这两个概念的含义。
教学过程:
一、导入新课
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、猜数游戏
学生任意想好一个数,然后按照教师的要求进行运算:把想好的数加上2,乘上3,减去6,再减去原来所想的数.把最后的结果告诉教师,教师可以马上知道学生原来所想的数.
2、学生分小组探讨其中的秘密.
3、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=25就是方程2x+10=60的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求2x+10=60的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
4、练习
齐读题目要求。
么判断X=19是不是方程的解?检验一下
二、作业
独立完成练一练,强调书写格式。
三、小结
通过这节课学到了什么?还有什么问题?
教学后记:
在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我能很顺利地就完成了本课的教学任务。
第三篇:《列方程解应用题》相遇问题 教学设计(范文)
教学内容:
教材p79例5及练习十七第5、11、13题。
教学目标:
知识与技能:结合具体事例,学生自主尝试列方程解决稍复杂的相遇问题。
过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
情感、态度与价值观:体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:
正确寻找数量间的等量关系式。
教学难点:
创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。
教学方法:
创设情境、知识迁移、自主探究、合作交流。
教学准备:
多媒体。
教学过程
一、复习导入
1.复习:我们学过有关路程的问题,谁来说一说路程、速度、时间之间的关系?
学生回答:路程=速度×时间。
2.引导:一般情况下,咱们算的路程问题都是向同一个方向走的。那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?(相遇)
3.揭题:今天我们就利用方程来研究相遇问题。
二、互动新授
1.出示教材第79页例5。
引导学生观察,并思考题中的已知条件和要求的问题是什么?
学生自主回答:已知:小林和小云家相距4.5千米,小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。问题:两人何时相遇?
2.质疑:求相遇的时间是什么意思?
引导学生明白:这里的路程已经不是一个人行驶了,而是两个人行驶的路之和。相遇的时间就是两个人共同行使全程用的时间。
3.活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。
出示线段图,教师讲解线段图:
先用一条线段表示全程,小林与小云分别从相对的方向出发,经过一段时间后相遇,也就是行完了全程。
追问:从线段图中,你知道了什么?
学生交流,汇报:小林骑的路程+小云骑的路程=总路程。
4.质疑:现在能不能求出小林骑的路程和小云的路程呢?
引导学生汇报:都不能求出,因为他们行驶的时间不知道。
再思考:他们两个行驶的时间一样吗?为什么?
学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该是一样的,可以把他们行驶的时间都设为x。
5.让学生根据分析,尝试列方程解答问题。
小组交流,汇报,教师根据学生的汇报板书(见板书设计):
引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。
引导小结:在相遇问题中有哪些等量关系?
板书:甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程
三、巩固拓展
出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?
<<<12&&&指名学生读题,找出已知所求,引导学生根据复习题的线段图画出线段图,并解答。
解:设甲车平均每小时行x 千米。
87×7+7x =1463
x =122
答:甲车平均每小时行122千米。
四、课堂小结
师:这节课你学会了什么知识?有哪些收获?
引导总结:
1.通过画线段图可以清楚地分析数量之间的相等关系。
2.解决相遇问题要用数量关系:甲速×相遇时间+乙速×相遇时间=路程;(甲速+乙速)×相遇时间=路程。
3.列方程解求速度、相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
作业:教材第82页练习十七第5、11、13题。
板书设计:
实际问题与方程(4)
小林骑的路程+小云骑的路程=总路程
解:设两人x 分钟后相遇。
方法一:
方法二:
0.25x +0.2x =4.5(0.25+0.2)x =4.5
0.45x =4.5 0.45x =4.5
0.45x ÷0.45=4.5÷0.45 0.45x ÷0.45=4.5÷0.45
x =10 x =10
答:两人10分钟后相遇。
教学反思: 列方程解应用题的关键是找出所给题目的等量关系,在学习这节课之前,学生已经学习了解方程,并且学习了列方程解简单的应用题。所谓简单,是指题目的等量关系比较简单,一目了然。学生能够很快的根据题目所描述的等量关系列出方程并求解。而相遇问题是上学期学习的内容,只不过让学生用列方程的方式进行解答。与前面学的列方程解应用题比较相对复杂一些。要求学生首先找出等量关系,在设未知数求解。然而许多学生不能用准确的语言描述等量关系,确切的说是不会找等量关系。于是我又用一节课的时间,去讲解怎样找相遇问题的等量关系。然而大部分学生在作业时还是不能正确写出等量关系式,但他们列出的方程有的还是正确的。如果让他们说相遇问题的几个关系式也能说出来,只是回到具体题目则一片茫然。究其根源,我认为可能是下面的两点原因造成的:
1、学生的语言表达能力差。虽然知道相等,但不会描述。
2、在前面的应用题教学中,没有向老教材那样强调学生用综合法或分析法
解题,新教材没有注重让学生平时就养成用语言描述解题过程的习惯,学生只停留在会解会算的层面上,而不知道为什么要这样列式。所以造成现在这种局面。
因此我认为,在低中年级教学两部计算的应用题时,教师有必要让学生说一说写一写解题思路,这样会对学习列方程解应用题有所帮助,减少弯路。<<<12&&&
第四篇:《列方程解相遇问题》教学设计
《列方程解相遇问题》教学设计
教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2、能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:正确地寻找数量之间的相等关系。
教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:
一、激趣导入
1.在相遇问题中有哪些等量关系? 板书:甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程
2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。北京到上海的路程是多少千米?
生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。
北京 上海
甲每小时行122千米 乙每小时行87千米 ?千米
第一种解法:用两车的速度和×相遇时间:(122+87)×7
第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7
3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。(板书课题)
二、探究尝试
1.出示例题示意图。教师口述:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?
2.指名读题,你了解了哪些数学信息和要解决什么问题? 生汇报引导学生根据复习题的线段图画出线段图。北京 上海
甲每小时行?千米 乙每小时行87千米 1463千米 3.7小时相遇是什么意思?两车相遇时,一共行的路程和北京到上海的距离有什么关系?
汇报:⑴、7小时相遇就是7小时两车走完了全程。⑵、一共行的路程就是北京到上海的路程。4.根据线段图学生找出数量间的相等关系: 可能出现:
甲车7小时行的路程+乙车7小时行的路程=1463千米
甲车7小时行的路程=1463千米—乙车7小时行的路程甲乙的速度和×相遇时间=1463千米
5.设未知数列方程并解答。
解:设甲车平均每小时行x千米。87×7+7x=1463 609+7x=1463 7x=1463-609 7x=856 x=856÷7 x=122 答:甲车平均每小时行40千米。解:设甲车平均每小时行x千米。7x=1463—87×7或(x+87)=1463 6.汇报时启发学生用不同方法列方程,并说说方程所表示的数量间相等关系。表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。
三、应用实践
师:请同学们完成试一试
学生审题,试着列出三种方程,如: 32x+32×7=480 480-32x=32×7 32x=32×7-480
四、生活体验 练一练1、2题
学生读题理解题意,试着列方程解答。
订正时,重点让学生说一说数量间相等的关系式。练一练4题帮助学生理解题意,鼓励学生尝试解答。
五、全课总结
师:这节课你有哪些收获? 学生汇报
教师小结:相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
第五篇:《列方程解相遇问题》教学设计
《列方程解相遇问题》教学设计
教者:崔红梅
教学内容:本内容是五年级上册第79页,82页的相遇问题。
教学目标:
知识与技能
结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
过程与方法
能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
情感态度价值观
体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:
正确地寻找数量之间的相等关系。教学难点: 掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教具准备:
课件
教法与学法:
教法 演示引导
学法 观察,思考,尝试
教学过程:
一、课前测评 1.填空
(1)使方程左右两边相等的()解。
(2)求方程的解的过程叫做()(3)比x多5的数是10。列方程为()(4)8与x的和是56。列方程为()(5)比x少
1.06的数是()。2.填空
(1)长方形面积的字母公式是()(2)用字母来表示乘法分配率()21.5。叫做方程的。列方程为。
。(3)含有()的()叫做方程(4)2.4与x的积是56。列方程为()(5)X 里面包含有5个0.3。列方程为()(6)解方程的根据是()。
(7)等号的两边同时乘或除以()(0除外),结果仍然是一个()。
3.甲、乙两地的公路长285千米,客、货两车分别从甲、乙两地同时出发,相向而行,经过3小时两车相遇。已知客车每小时行45千米,货车每小时行多少千米?(用算术方法解答)
(在相遇问题中有哪些等量关系?)
板书:甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程
4.揭示课题:如果我们要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。(板书课题)
二、探究尝试 1.出示学习目标
学生齐读学习目标,明确学习任务 2.出示例5 例5:小林家和小云家相距4.5。小林每分钟骑250m,小云每分钟骑200m,周日早上9:00两人分别从家骑自行车相向而行,两人何时相遇?
1)指名读题,你了解了哪些数学信息和要解决什么问题? 2)生汇报引导学生根据复习题的线段图画出线段图。3)相向而行,两人何时相遇是什么意思?两车相遇时,各自走的路程和两家距离有什么关系? 汇报交流:
4)根据线段图学生找出数量间的相等关系: 5)设未知数列方程并解答。解:设两人x分钟后相遇。0.25x+0.2x=4.5(解略)
6)汇报时启发学生用不同方法列方程,并说说方程所表示的数量间相等关系。表示相遇时,两车的速度和与时间的积等于两家的距离。
三、应用实践
师:请同学们完成牛刀小试 学生审题,试着列出方程,四、生活体验
1.分组完成“挑战自我”,比比看谁算得又对又快。学生读题理解题意,试着列方程解答。
订正时,重点让学生说一说数量间相等的关系式。2.分组完成“超越自我”,比比看谁最棒? 帮助学生理解题意,鼓励学生尝试解答。
五、全课总结
师:这节课你有哪些收获? 学生汇报
教师小结:相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
六、作业
课本82页11、12、13、14.七、板书设计