第一篇:初一数学上册内容
第一章 有理数
1.1正数和负数
1.2有理数
1.3有理数的加减法
1.4有理数的乘除法
1.5有理数的乘方
第二章 整式的加减
2.1整式
2.2整式的加减
第三章 一元一次方程
3.1从算式到方程
3.2解一元一次方程
(一)——合并同类项与移项
3.3解一元一次方程
(二)——去括号与去分母
3.4 实际问题与一元一次方程
第四章 几何图形初步
4.1几何图形
4.2直线、射线、线段
4.3角
4.4课题学习设计制作长方体形状的包装纸盒
第二篇:初一数学上册
初一上册数学知识点总结
第一章 有理数
一、有理数:
1、定义:凡能写成理数,整数和分数统称有理数.形式的数,都是有注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一 定是正数;p不是有理数;
2、有理数的分类:
3、注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
4、自然数➩0和正整数;
a>0 ➩ a是正数;a<0 ➩ a是负数;
a≥0 ➩ a是正数或0➩ a是非负数;a≤0 ➩ a是负数或0 ➩ a是非正数.二、数轴
1、定义:数轴是规定了原点、正方向、单位长度的一条直线。
三、相反数
1、只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
2、注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
3、相反数的和为0 Û a+b=0 Û a、b互为相反数。
4、相反数的商为-1。
5、相反数的绝对值相等。
四、绝对值
1、正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它 的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
2、绝对值可表示为:
4、|a|是重要的非负数,即|a|≥0;
五、有理数比大小
1、正数永远比0大,负数永远比0小;
2、正数大于一切负数;
3、两个负数比较,绝对值大的反而小;
4、数轴上的两个数,右边的数总比左边的数大;
5、-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
六、倒数
1、定义:乘积为1的两个数互为倒数;
2、注意:
(1)0没有倒数;(2)若ab=1Û a、b互为倒数;(3)若ab=-1Û a、b互为负倒数.3、等于本身的数汇总:
(1)相反数等于本身的数:0
(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0
(4)平方等于本身的数:0,1
(5)立方等于本身的数:0,1,-1.七、有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加;
2、异号两数相加,取绝对值较大加数的符号,并用较大的绝 对值减去较小的绝对值;
3、一个数与0相加,仍得这个数.八、有理数加法的运算律
1、加法的交换律:a+b=b+a ;
2、加法的结合律:(a+b)+c=a+(b+c).九、有理数减法法则
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).十、有理数乘法法则
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同零相乘都得零;
3、几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
十一、有理数乘法的运算律
1、乘法的交换律:ab=ba;
2、乘法的结合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac.(简便运算)
十二、有理数除法法则
除以一个数等于乘以这个数的倒数;零不能做除数,十三、有理数乘方的法则
1、正数的任何次幂都是正数;
2、负数的奇次幂是负数;负数的偶次幂是正数;
十四、乘方的定义
1、求相同因式积的运算,叫做乘方;
2、乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
3、a2是重要的非负数,即a2≥0;若a2+|b|=0Û a=0,b=0;
十五、科学记数法
把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
十六、近似数的精确位
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
十七、混合运算法则
1、先乘方,后乘除,最后加减;
2、注意:不省过程,不跳步骤。
十八、特殊值法
是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。常用于填空,选择。第二章 整式的加减
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5.整式:①单项式 ②多项式
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”:(务必用+号开始合并);三合:(合并)。10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).第三章 一元一次方程
1.等式:用“=”号连接而成的式子叫等式.2.等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解; 注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质
去 分 母----------同乘(不漏乘)最简公分母 去 括 号----------注意符号变化 移 项----------变号(留下靠前)合并同类项--------合并后符号 系数化为1---------除前面 9.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”。
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.10.列方程解应用题的常用公式:
工程问题常用等量关系:先做的+后做的=完成量。(3)顺水逆水问题:
顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系:顺水路程=逆水路程。
利润问题常用等量关系:售价-进价=利润。第四章 几何图形初步
(一)多姿多彩的图形
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的图形也不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判 断和制作立体模型.4、点、线、面、体(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段
1、基本概念
图形
直线
射线
线段
端点个数
无
一个
两个
表示法
直线a AB(BA)
射线AB
线段a线段AB(BA)作法叙述
作直线AB;作直线a
作射线AB
作线段a;作线段AB;连接AB 延长叙述
不能延长
反向延长射线AB
延长线段AB;反向延长线段BA
2、直线的性质 经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点.图形:
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质
两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离
连接两点的线段长度叫做两点的距离.8、点与直线的位置关系(1)点在直线上;(2)点在直线外.(三)角
1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β
锐角
直角
钝角
平角
周角 范围
0<∠β<90°
∠β=90°
90°<∠β<180°
∠β=180°
∠β=360°
5、角的比较方法(1)度量法(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
第三篇:初一数学手抄报内容
一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算正确的是 A.(a3)2=a5 B.a3+a2=a5 C.(a3-a)÷a=a2 D.a3÷a3=1
2.下列各组长度的三条线段能组成三角形的是 A.1cm,2cm,3cm B.1cm,1cm,2cm C.1cm,2cm,2cm D.1cm,3cm,5cm
3.期中考试后,小明的试卷夹里放了8K大小的试卷纸共12页,其中语文4页、数学2页、英语6页,他随机从试卷夹中抽出1页,是数学卷的概率是 A.B.C.D.4.下列图形是生活中常见的道路标识,其中不是轴对称图形的是
5.缺题
6.A、B两地相距360km,甲车以100km/h的速度从A地驶往B地,乙车以80km/h的速度从B地驶往A 地,两车同时出发.设乙车行驶的时间为x(h),两车之间的距离为y(km),则y与x之间的函数关系的图象是
二、填空题(每小题3分,共24分)
7.由四舍五入得到近似数20.12万,这个近似数是精确到_______位,有_______个有效数字。8.计算:(-)-2-(2012-)0=_______。9.单项式- 的次数是_______;系数是_______。
10.室内墙壁上挂了一平面镜,小明在平面镜内看到他背后墙上的电子钟的示数如下图所示,则这时的实际时间应是_______。
11.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子_______枚(用含n的代数式表示)。
12.已知:2m=3,4n=8,则23m-2n+3的值是______ _。
13.如图,(甲)是四边形纸片ABCD,其中∠B=130°,∠D=50°.若将其右下角向内折出△PCR,恰使 CP∥AB,RC∥AD,如图(乙)所示,则∠C=_______。
14.如图,在下列条件①∠BAD=∠CAD,BD=DC;②∠ADB=∠ADC,BD=DC;③∠B=∠C,∠BAD=∠CAD;④BD=DC,AB=AC中.能得到△ABD △ACD的条件是_______。(填序号)
三、解答题(6+6+6+7+7+8+8+10=58分)
15.(6分)先化简(2x-1)2-(3x+1)(3x-1)+5x(x-1),再选取一个你喜欢的数代替x,并求原代数式的值。
16.(6分)如图,已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF。试说明:BE=CF。
17.(6分)下面是我区某养鸡场2006-2011年的养鸡统计图:
20.(8分)如图,△ABC中,AB=AC,若点D在AB上,点E在AC上,请你加上一个条件,使结论BE=CD成立,同时补全图形,并证明此结论。
21.(8 分)如图①,在底面积为100cm2、高为20cm的长方体水槽内放入一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯 本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变,水槽中水面上升的高度h与注水时间t之间的函数关系如图②所示。
(1)写出函数图象中点A、点B的实际意义;(2)求烧杯的底面积;
(3)若烧杯的高为9cm,求注水的速度及注满水槽所用的时间。(1)从图中你能得到什么信息(至少写2条)。(2)各年养鸡多少万只?
(3)所得(2)的数据都是准确数吗?(4)这张图与条形统计图比较,有什么优点?
22.(本题10分)在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中点,DG⊥AC交AB于点G。(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与CF,过点F作FH⊥FC,交直线AB于点H。①试说明:DG=DC;
②判断FH与FC的数量关系并加以证明。
(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(本小题直接 写出结论,不必证明)。
【试题答案】
一、1.D 2.C 3.C 4.B 5.B 6.C
二、7.百;4 8.8 9.4;- 10.21:05 11.(3n+1)12.27 13.90
14.②③④(说明:第14小题,填了①的,不得分;未填①的,②、③、④中每填一个得1分)
三、15.解:原式=4x2-4x+1-(9x2-1)+5x2-5x =4x2-4x+1-9x2+1+5x2-5x
=-9x+2 4分
任取一个x的值,如取x=0时,原式=2 6分 16.解:∵ AC∥DF ∴∠ACB=∠F 在△ABC与△DEF中
∴△ABC △DEF 4分 ∴BC=EF
∴BC-EC=EF-EC 5分 即BE=CF 6分
19.解:(1)因为P(小王获胜)=,P(小李获胜)=,所以游戏不公平。3分
(2)如果两个指针所指区域内的数的和不大于6,则小王获胜;否则小李获胜;(答案不唯一)5分
P(小王获胜)=,P(小李获胜)= 7分
20.解:附加的条件可以是:①BD=CE,②AD=AE,③∠EBC=∠DCB,④∠ABE=∠ACD,⑤BE、CD分别为∠ABC,∠ACB的平分线中任选一个(并补全图形)4分 利用△ABE △ACD或△BCD △CBE,得证BE=CD 8分 21.解:(1)点A:烧杯中刚好注满水 1分 点B:水槽中水面恰与烧杯中水面齐平2分
(2)由图可知:烧杯 放满需要18s,水槽水面与烧杯水面齐平,需要90s ∴可知,烧杯底面积:水槽底面积=1:5 4分 ∴烧杯的底面积为20cm2 5分(3)注水速度为10cm3/s 7分 注满水槽所需时间为200s 8分 22.解:(1)①∵AC=BC,∠ACB=90° ∴∠A=∠B=45° 又GD⊥AC ∴∠ADG=90° 在△ADG中
∠A+∠ADG+∠AGD=180° ∴∠AGD=45° ∴∠A=∠AGD ∴AD=DG 又D是A C中点 ∴AD=DC ∴DG=DC 3分 ②由① DG=DC 又∵DF=DE ∴DF-DG=DC-DE 即FG=CE 4分 由①∠AGD=45°
∴∠HGF=180°-45°=135° 又DE=DF,∠EDF=90° ∴∠DEF=45°
∴∠CEF=180°-45°=135° ∴∠HGF=∠FEC 5分 又HF⊥CF ∴∠HFC =90°
∴∠GFH+∠DFC=180°-90°=90° 又Rt△FDC中 ∠DFC+∠ECF=90° ∴∠GFH=∠ECF 6分 在△F GH和△CEF中
∴△FGH △CEF(ASA)∴FH=FC 7分
(2)图略(8分)△FHG △CFE 9分 不变,FH=FC 10分
第四篇:初一数学上册应用题
1、为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若某用电户四月份的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
2、某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
3、现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
4、甲、乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%,调价后两商品的单价和比原单价和提高2%,甲、乙两商品原单价各是多少?
5、甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间各多少人?
6、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时两人还相距36千米,到中午12时两人又相距36千米,求A、B两地间的路程?
7、甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒二车的速度不变,求甲、乙两车的速度?
8、两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时同时点燃两根蜡烛来电时同时吹灭,粗的是细的长度的2倍,求停电的时间?
9、某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
10、甲骑自行车从A地到B地,乙骑自行车从B地到A地两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?
11、跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?
12、已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品?
13、父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟儿子能追上父亲?
14、要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
15、一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度?
16、某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有工人28人,怎样分配工人数,才能使每天产量刚好配套?
17、在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个格中共有448粒糖?
18、有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语的有几人?
20、商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏?
21、一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?
23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?
24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?
25.一支队伍长450m,以90m/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2倍,此人往返共用多长时间?
26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?
27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分.(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?(2)两人同时同地同向跑,问几秒后两人第一次相遇时?
28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?
29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)
30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)
31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?
32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
33.某班有45人,会下象棋的人数是会下围棋的3.5倍2种都会或都不会的都是5人,求只会下围棋的人数。34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
35.某水果批发市场香蕉的价格如下购买香蕉数不超过20kg、20kg以上但不超过40kg、40kg以上每千克价格6RMB、5RMB、4RMB张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?
第五篇:初一数学上册应用题
初一数学上册应用题大全
1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间各多少人?
6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距
36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?
7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,二
车 的 速度不变,求甲、乙两车的速度。
8.两根同样长的蜡烛, 粗的可燃3小时,细的可燃8 / 3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间,设停电的时间是X
9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下 半 年减少15%,问今年下半年生产了多少台?。10.甲骑自行车从A地到B地,乙骑自行车从B地到A地两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?
11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?
12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。
13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度.16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?
17.在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个中共有448粒?
18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语 的有几人?
20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套 亏25%,两套合计盈还是亏21.一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?
23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?
24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?
25.一支队伍长450m,以90m/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2 倍,此人往返共用多长时间?
26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?
27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/ 分,乙的速度是240米/分.(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?(2)两人同时同地同向跑,问几秒后两人第一次相遇时?
28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?
29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)
31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?
32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
33.某班有45人,会下象棋的人数是会下围棋的3.5倍2种都会或都不会的都是5人,求只会下围棋的人数。
34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
35.某水果批发市场香蕉的价格如下购买香蕉数不超过20kg以上但不超过40kg以上每千克价格6RMB 5RMB 4RMB张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?