不等式题型强化综合练习题

时间:2019-05-13 13:31:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《不等式题型强化综合练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《不等式题型强化综合练习题》。

第一篇:不等式题型强化综合练习题

一、解下列一元二次不等式:

1、x25x602、x25x603、x27x1204、x27x605、x2x1206、x23x507、x2

2x308、6x2

x209、x2

3x50

二、分式不等式解法练习

1、x5x402、2x3x203、x3

x21

14、2x33xx215、2x2

16、5x3

2x32

三、高次不等式的解法

1、(x+2)(x-1)(x-3)>02、(x+3)(x+1)(x-2)(x-4)≥03、(2x+1)(3x+2)2(x2+5x-24)>04、x4+x3-x-1<05、x3+2x2-x-2≥06.(x+3)(x+2)(x-5)≥0

7.(2-x)(2x+1)(x-4)≤08.(x+4)(x-2)2(x-7)≥0

四、基本不等式求最值

1:已知yx1x(x0),证明y22:若x>0,求f(x)4x9

x的最小值;

3、若x2,求yx-2

1x2的最小值

4、若x-1,求yx1

x1的最小值

5、求f(x)4x9x5(x>5)的最小值.6、已知yx1

x

(x0),证明y

27、求y12

x

3x(x0)的最大值.8、若x,yR,x+y=5,求xy的最值

9、若x,yR,2x+y=5,求xy的最值

10、求yx(14x)(0x1

4)的最大值。

11: 求函数ysinx

4sinx最小值

12、已知x0,y0,且x+y=1,求11

xy的最小值.

13、已知x0,y0,且

xy

1,求xy的最小值. 1

第二篇:一元二次不等式综合练习题

一元二次不等式综合练习题

解答题

1.已知集合Ax|x2x20,Bx|axa3,且AB,求实数a的取值范围是

2.若不等式ax2bxc0的解集为x|2x5,解不等式cx2bxa0

3.解关于x的不等式2x24ax2a0

4.已知函数fxk24k5x241kx3的图像在x轴上,求实数k的取值范围

x2

5.已知函数fx a,b为常数,且方程fxx120有两个实数axb

x13,x24.(1)求函数fx的解析式;(2)设k1,解关于x的不等式fx

k1xk 2x

第三篇:不等式典型题型

2011高三文科必修(5)不等式经典题型

1、比较a2+b2+c2与ab+bc+ca的大小(做差后配方)

+abba2、已知a、b∈R,且a≠b,证明:ab>ab(做比)

9(x>5)的最小值(利用均值不等式)x5

⑵设x>0,y>0,不等式xy≤axy恒成立,求a的最小值(利用均值不等式或两边同时平方)

14、⑴求g(x)=(3-x)·(2x-1)(x3)的最大值(利用均值不等式)2

x23x1⑵当x>-1时,求f(x)= 的值域(利用均值不等式)x1

45(利用均值不等式)

5、已知x>1,求证:x+x1

111+

6、已知:a、b∈R,且a+b+c=1,求证:9(利用均值不等式,将左边乘个a+b+c,然后打开括弧)abc117、已知a>0,b>0,a+b=1,求(21)(21)的最小值(利用均值不等式,采用1的代换)ab3、⑴求f(x)=4x+

aba2b28、求函数y=x3x的最大值(利用均值不等式:)229、若x,y∈R,x+y=5, 求3+3的最小值(利用均值不等式)10、11、12、已知锐角三角形ABC中,tanB+tanC=3.求证:∠A>已知x<xy(利用到两角和的正切公式和均值不等式)351,求函数y=4x-2+的最大值(利用均值不等式,注意先提个负号)44x52x1求不等式0的解集(注意x不能为0)x

若关于x的不等式13、14、15、(x-a)(xb)0的解集为[-1,2]∪[3,+∞),求a+b的值(待定系数,多项分式的解法)xc1

31},求a、c的值(待定系数)2

22若函数f(x)= kx6kx(k8)的定义域为R,求实数k的取值范围(恒成立问题)已知关于x的不等式ax+5x+c>0的解集为{x︱x

216、定义在(-3,3)上的奇函数f(x)在其定义域内递减且f(2-a)+f(1-a-a)>0,求实数a的取值范围 ≥017、求不等式组≥0表示的平面区域的面积

318、求(3,1)和(-4,6)在直线3x-2y+a=0的两侧,求a的取值范围

≥019、设x,y满足条件≥0

≤3

22⑴求p=2x-y+1和u= x+y的最大值和最小值

y的最大值和最小值(线性规划中的斜率问题,可以看成(5,0)点与(x,y)点连线的直线斜率)x520、求证:372(可用分析法证明)⑵求u=

21、若关于x的不等式ax-2x+2>0对于满足1<x<4的一切实数x恒成立,求a的范围(恒成立问题,图像分析法)

222、已知,当∣m∣≤2时,不等式2x-1>m(x-1)恒成立,求实数x的取值范围

第四篇:绝对值不等式题型五

典型例题五

例5 求证ab

1aba

1ab

1b.

分析:本题的证法很多,下面给出一种证法:比较要证明的不等式左右两边的形式完全相同,使我们联想利用构造函数的方法,再用单调性去证明.

证明:设f(x)x1x11. 11x1x1x

定义域为{xxR,且x1},f(x)分别在区间(,1),区间(1,)上是增函数. 又0abab,∴f(ab)f(ab)即ab

1abab

1aba

1abb

1aba

1ab

1b

∴原不等式成立.

说明:在利用放缩法时常常会产生如下错误: ∵abab,1ab0,∴abababab. 1ab1ab1ab1ab1a1b

错误在不能保证1ab1a,1ab1b.绝对值不等式abab在运用放缩法证明不等式时有非常重要的作用,其形式转化比较灵活.放缩要适度,要根据题目的要求,及时调整放缩的形式结构.

第五篇:不等式证明练习题

不等式证明练习题

(1/a+2/b+4/c)*1

=(1/a+2/b+4/c)*(a+b+c)

展开,得

=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4

=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b

基本不等式,得

>=19>=18用柯西不等式:(a+b+c)(1/a+2/b+4/c)≥(1+√2+2)^2=(3+√2)^2

=11+6√2≥18

楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z

则原不等式等价于:

x^2+y^2+z^2>=xy+yz+zx

<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)

<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0

<=>(x-y)^2+(y-z)^2+(z-x)^2>=0

含有绝对值的不等式练习。1.关于实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7,-1-7x-7,x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是,值域是,函数y=arccosx的定义域是,值域是,函数y=arctgx的定义域是R,值域是.,函数y=arcctgx的定义域是R,值域是(0,π).直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。函数公式模型。一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.(1/a+2/b+4/c)*1

=(1/a+2/b+4/c)*(a+b+c)

展开,得

=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4

=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b

基本不等式,得

>=19>=18用柯西不等式:(a+b+c)(1/a+2/b+4/c)≥(1+√2+2)^2=(3+√2)^2

=11+6√2≥18

楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z

则原不等式等价于:

x^2+y^2+z^2>=xy+yz+zx

<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)

<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0

<=>(x-y)^2+(y-z)^2+(z-x)^2>=0

含有绝对值的不等式练习。1.关于实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7,-1-7x-7,x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是,值域是,函数y=arccosx的定义域是,值域是,函数y=arctgx的定义域是R,值域是.,函数y=arcctgx的定义域是R,值域是(0,π).直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。函数公式模型。一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.

下载不等式题型强化综合练习题word格式文档
下载不等式题型强化综合练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一不等式练习题

    不等式综合练习题 一、选择题 1.若a,b,c为任意实数,且a>b,则下列不等式恒成立的是 (A)ac>bc(B)|a+c|>|b+c|(C)a2>b2(D)a+c>b+c 2.设a>1>b>-1,则下列不等式中恒成立的是 A. 1a1b B.1a1 bC.a>b2D......

    基本不等式练习题

    基本不等式练习题一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若aR,下列不等式恒成立的是A.a21aB121C.a296aD.lg(a1)lg|2a......

    不等式练习题一

    1、设a>1>b>-1,则下列不等式中恒成立的是 A.1111B.C.a>b2D.a2>2b abab 222、二次方程x+(a+1)x+a-2=0,有一个根比1大,另一个根比-1小,则a的取值范围是 A.-3<a<1B.-2<a<0C.-1<a<0D.0<a<2 3、若ab,则下列......

    不等式性质练习题

    ﹤不等式性质 一、选择题 1、已知ab0,下列不等式恒成立的是 A.a2 b2 B.ab1C.1111 abD.ab2、已知a0,b1,下列不等式恒成立的是 A.a ababB.aaaaaa 2 b2baC.bb2aD.bab 3、若a,b,c,d......

    基本不等式练习题

    3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. 经典......

    不等式练习题(精选5篇)

    不等式练习题(二) 1.已知两个正数a、b的等差中项是5,则a、b的等比中项的最大值为 A. 10B. 25C.50 2.若a>b>0,则下面不等式正确的是 A.D. 100 222ababab2ababB.ab ab22ab ab2ab2a......

    不等式练习题(文科)

    不等式练习题 1、设a,b,cR,且ab,则 A.acbc B. 1123ab C.ab2D.ab32、设a,b,cR,且ab,则 A.acbc B. 123a1b C.ab2D.ab33、下列选项中,使不等式x......

    均值不等式练习题

    均值不等式求最值及不等式证明2013/11/23题型一、均值不等式求最值例题:1、凑系数:当0x4时,求yx(82x)的最大值。2、凑项:已知x51,求函数f(x)4x2的最大值。 44x5x27x10(x≠1)的值......