机器人的发展

时间:2019-05-13 15:00:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机器人的发展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机器人的发展》。

第一篇:机器人的发展

工业机器人的发展

一、机器人发展历程

1.国外机器人发展历史

美国是机器人的诞生地,早在1962年就研制出世界上第一台工业机器人,比起号称“机器人王国”的日本起步至少要早五六年。经过30多年的发展,美国现已成为世界上的机器人强国之一,基础雄厚,技术先进。

进入80年代之后,美国政府和企业界才对机器人真正重视起来,政策上也有所体现,一方面鼓励工业界发展和应用机器人,另一方面制订计划、提高投资,增加机器人的研究经费,使美国的机器人迅速发展。

80年代中后期,随着应用机器人的技术日臻成熟,第一代机器人的技术性能越来越满足不了实际需要,美国开始生产带有视觉、力觉的第二代机器人,并很快占领了美国60%的机器人市场。

美国的机器人技术在国际上仍一直处于领先地位。其技术全面、先进,适应性也很强。具体表现在:

(1)性能可靠,功能全面,精确度高;

(2)机器人语言研究发展较快,语言类型多、应用广,水平高居世界之首;

(3)智能技术发展快,其视觉、触觉等人工智能技术已在航天、汽车工业中广泛应用;

(4)高智能、高难度的军用机器人、太空机器人等发展迅速,主要用于扫雷、布雷、侦察、站岗及太空探测方面。

法国不仅在机器人拥有量上居于世界前列,而且在机器人应用水平和应用范围上处于世界先进水平。

法国机器人的发展比较顺利,主要原因是通过政府大力支持的研究计划,建立起一个完整的科学技术体系。即由政府组织一些机器人基础技术方面的研究项目,而由工业界支持开展应用和开发方面的工作,两者相辅相成,使机器人在法国企业界很快发展和普及.德国工业机器人的总数占世界第三位,仅次于日本和美国。这里所说的德国,主要指的是原联邦德国。它比英国和瑞典引进机器人大约晚了五六年。德国的社会环境是有利于机器人工业发展的。因为战争,导致劳动力短缺,以及国民技术水平高,都是实现使用机器人的有利条件。到了70年代中后期,政府采用行政手段为机器人的推广开辟道路;在“改善劳动条件计划”中规定,对于一些有危险、有毒、有害的工作岗位,必须以机器人来代替普通人的劳动。这个计划为机器人的应用开拓了广泛的市场,并推动了工业机器人技术的发展。

与此同时,德国看到了机器人等先进自动化技术对工业生产的作用,提出了1985年以后要向高级的、带感觉的智能型机器人转移的目标。经过近十年的努力,其智能机器人的研究和应用方面在世界上处于公认的领先地位。

在前苏联(主要是在俄罗斯),从理论和实践上探讨机器人技术是从50年代

后半期开始的。到了50年代后期开始了机器人样机的研究工作。1968年成功地试制出一台深水作业机器人。1971年研制出工厂用的万能机器人。早在前苏联第九个五年计划(1970年一1975年)开始时,就把发展机器人列入国家科学技术发展纲领之中。到1975年,已研制出30个型号的120台机器人,经过20年的努力,前苏联的机器人在数量、质量水乎上均处于世界前列地位。

日本在60年代末正处于经济高度发展时期,年增长率达11%。并于1968年试制出第一台川崎的“尤尼曼特”机器人。

正是由于日本当时劳动力显著不足,机器人在企业里受到了“救世主”般的欢迎。这样的环境,使日本机器人产业迅速发展起来,经过短短的十几年,到80年代中期,已一跃而为“机器人王国”,其机器人的产量和安装的台数在国际上跃居首位。

2.中国机器人发展历史

我国工业机器人起步于70年代初,其发展过程大致可分为三个阶段:70年代的萌芽期;80年代的开发期;90年代的实用化期。而今经过20多年的发展已经初具规模。目前我国已生产出部分机器人关键元器件,开发出弧焊、点焊、码垛、装配、搬运、注塑、冲压、喷漆等工业机器人。一批国产工业机器人已服务于国内诸多企业的生产线上;一批机器人技术的研究人才也涌现出来。一些相关科研机构和企业已掌握了工业机器人操作机的优化设计制造技术;工业机器人控制、驱动系统的硬件设计技术;机器人软件的设计和编程技术;运动学和轨迹规划技术;弧焊、点焊及大型机器人自动生产线与周边配套设备的开发和制备技术等。某些关键技术已达到或接近世界水平。

我国已在“七五”计划中把机器人列人国家重点科研规划内容,拨巨款在沈阳建立了全国第一个机器人研究示范工程,全面展开了机器人基础理论与基础元器件研究。十几年来,相继研制出示教再现型的搬运、点焊、弧焊、喷漆、装配等门类齐全的工业机器人及水下作业、军用和特种机器人。目前,示教再现型机器人技术已基本成熟,并在工厂中推广应用。我国自行生产的机器人喷漆流水线在长春第一汽车厂及东风汽车厂投入运行。1986年3月开始的国家863高科技发展规划已列入研究、开发智能机器人的内容。

我国的工业机器人研制虽然起步晚,但是有着广大的市场潜力,有着众多的人才和资源基础。在十一五规划纲要等国家政策的鼓励支持下,在市场经济和国际竞争愈演愈烈的未来,我们一定能够完全自主制造出自己的工业机器人,并且将工业机器人推广应用到制造与非制造等广大的行业中,提高我国劳动力成本,提高我国企业的生产效率和国际竞争力,从整体上提高我国社会生产的安全高效,为实现伟大祖国的复兴贡献力量。

二、机器人发展现状

据美国电气和电子工程师协会(IEEE)统计,至2008年底,世界各地已经

部署了100万台各种工业机器人。其中,日本机器人数量据世界首位。

他们的算法基于制造工人与机器人的比例,即每万名工人拥有多少台制造机器人。其中日本的工业机器人密度达到了世界平均水平的10倍,也比排在第二位的新加坡多出了一倍。其中日本每万名工人拥有295台工业机器人,新加坡169台,韩国164台,德国163台。虽然排在前三位的国家都在亚洲,不过欧洲却是世界上工业机器人密度最大的地区。欧洲国家工业机器人密度为每万名工人50台,美洲为平均31台,亚洲平均27台。

我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。其中最为突出的是水下机器人,6000米水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种;在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。

三、机器人发展未来前景

在发达国家中,工业机器人自动化生产线成套设备已成为自动化装备的主流及未来的发展方向。国外汽车行业、电子电器行业、工程机械等行业已经大量使用工业机器人自动化生产线,以保证产品质量,提高生产效率,同时避免了大量的工伤事故。全球诸多国家近半个世纪的工业机器人的使用实践表明,工业机器人的普及是实现自动化生产,提高社会生产效率,推动企业和社会生产力发展的有效手段。

机器人技术是具有前瞻性、战略性的高技术领域。国际电气电子工程师协会IEEE的科学家在对未来科技发展方向进行预测中提出了4个重点发展方向,机器人技术就是其中之一。

1990年10月,国际机器人工业人士在丹麦首都哥本哈根召开了一次工业机器人国际标准大会,并在这次大会上通过了一个文件,把工业机器人分为四类:⑴顺序型。这类机器人拥有规定的程序动作控制系统;⑵沿轨迹作业型。这类机器人执行某种移动作业,如焊接。喷漆等;⑶远距作业型。比如在月球上自动工作的机器人;⑷智能型。这类机器人具有感知、适应及思维和人机通信机能。

日本工业机器人产业早在上世纪90年代就已经普及了第一和第二类工业机器人,并达到了其工业机器人发展史的鼎盛时期。而今已在第发展三、四类工业机器人的路上取得了举世瞩目的成就。日本下一代机器人发展重点有:低成本技术、高速化技术、小型和轻量化技术、提高可靠性技术、计算机控制技术、网络化技术、高精度化技术、视觉和触觉等传感器技术等。

根据日本政府2007年指定的一份计划,日本2050年工业机器人产业规模将

达到1.4兆日元,拥有百万工业机器人。按照一个工业机器人等价于10个劳动力的标准,百万工业机器人相当于千万劳动力,是目前日本全部劳动人口的15%。

一个国家要引入高技术并将其转移为产业技术(产业化),必须具备5个要素即5M:Machine/Materials/Manpower/Management/Market。和有着“机器人王国”之称的日本相比,我国有着截然不同的基本国情,那就是人口多,劳动力过剩。刺激日本发展工业机器人的根本动力就在于要解决劳动力严重短缺的问题。所以,我国工业机器人起步晚发展缓。但是正如前所述,广泛使用机器人是实现工业自动化,提高社会生产效率的一种十分重要的途径。我国正在努力发展工业机器人产业,引进国外技术和设备,培养人才,打开市场。日本工业机器人产业的辉煌得益于本国政府的鼓励政策,我国在十一五纲要中也体现出了对发

参考文献:

[1]王握文.世界机器人发展历程[J].国防科技, 2001,(01)

[2]陈爱珍.日本工业机器人的发展历史及现状[J].机械工程师, 2008,(07)

[3]陈爱珍.国内外机器人的发展现状[J].机械工程师, 2008,(07)

[4]陈佩云.日本振兴工业机器人的政策[J].机器人技术与应用, 1994,(01)

[5]陈佩云.我国工业机器人技术发展的历史_现状与展望[J].机器人技术与应用, 1994,(02)

[6]李红.日本的工业机器人为什么发展特别快[J].机器人技术与应用, 1995,(02)

[7]吕学诗.工业机器人在生产和生活中的应用[J].机械制造, 1980,(07)

[8]顾振宇.全球工业机器人产业现状与趋势[J].机电一体化, 2006,(02)

[9]刘进长.日本工业机器人协会[J].机器人技术与应用, 1994,(01)

[10]李湘洲等.机器人趣谈[M].北京:新时代出版社 2000.1

第二篇:机器人发展说明

机器人王国日本图片说明

1、有机器人情结的日本人一直在思索着如何更好地利用机器人帮助自己。在政府的支持下,日本研发制造了越来越人性化、智能化的仿人机器人。这些像人一样的服务、娱乐型机器人逐渐成为日本人生活的一部分。编辑/蔡捷文 2、1942年,美国科幻作家阿西莫夫提出“机器人三定律”之后,引发了人类对机器人的畅想。20世纪60年代,人们试着在机器人上安装各种传感器,机器人开始由工业机器人向仿人机器人发展。图为当地时间1964年2月29日,日本东京,一家玩具开发公司设计了一个五英尺高的机器人“五郎”,推着童车步行是他唯一的一个技能。在收音机辅助下,五郎也变得能够讲话。AP Photo

3、模仿人的形态和行为而设计制造的机器人即仿人机器人,一般分别或同时具有仿人的四肢和头部。图为当地时间1966年8月23日,日本东京,一支由九个机器人打造的乐队在百货公司进行表演,吸引了学校里放暑假的孩子前来观看。AP Photo/Mitsunori Chigita 4、1969年,日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的仿人机器人。加藤一郎也被誉为“仿人机器人之父”。以加藤一郎先生为首,日本正式开始了仿人机器人的研究。图为当地时间1966年12月13日,日本东京,一个有着奇怪形状的机器人在百货公司里扭动跳舞,唱歌说话吸引圣诞节前来扫货的顾客。Gamma-Keystone/Getty Images5、日本有关机器人题材的漫画打造了诸如阿童木、机器猫等善良正义的机器人形象,也影响了一代又一代的日本人,成为日本机器人发展的文化动力。图为当地时间1981年9月15日,日本东京,一名儿童在百货商场围观一个贩卖纪念品的机器人。这些机器人和工业机器人不同,有着或多或少人类的模样,被称为“仿人机器人”。AP Photo/Sadayuki Mikami6、有机器人情结的日本人一直在思索着如何开发利用机器人。和中国民间高手DIY机器人不同,日本的机器人从研发到制造形成了专业化产业链。当地时间1982年9月18日,日本筑波,英国首相撒切尔夫人微笑地和一个机器人握手。政府在东京东北部投建了科学城。AP Photo/S.Mikam7、计算机技术推动了仿人机器人的研究。当地时间1982年6月25日,日本筑波科学城,一名工程师在机械工程实验室内演示了一只机械手,可以拿起球、螺栓和握住铅笔。AP Photo/Y.J.Ishizaki8、当地时间1997年11月1日,日本东京,早稻田大学的实验,人形机器人“Hadaly 2”跟着一只10岁母猴所照的光移动。“Hadaly 2”是一只具有人类视觉识别功能的机器人,通过电脑传导,他能够自主辨别光线。该团队30年来一直致力于仿人机器人的研究,举办了世界上第一次关于机器人和猴子的实验。AP Photo/Katsumi Kasahara9、当地时间2009年3月31日,日本东京,本田汽车公司的一名员工戴上头盔进行实验,本田已经开发出一种技术来读取人类思考四个简单动作——移动右手、左手活动、小跑和吃时,头皮层的电流变化和脑血流量数据。本田成功地分析了人类的这种思维模式,然后将此当作它的人形机器人“阿西莫”的无线指令。AP Photo/Koji Sasahara10、日本机器人的发展离不开日本政府的支持。安倍晋三曾在2014年夏天接受采访时称,“要让机器人成为经济增长战略的重要支柱……我们计划成立专门的委员会,将机器人革命变成现实。”图为当地时间2008年4月21日,德国汉诺威,安倍晋三和默克尔在德国汉诺威工业博览会上观看一个仿人机器人HRP-2。此次工业博览会共有60个国家的参展商,合作方是日本。AP Photo/Joerg Sarbach11、日本政府希望更多的机器人进入老年护理服务业。据VICE杂志2015年报道,过去几年,日本政府投入超1亿美元研究新型老年服务机器人。政府官员相信,如果由机器人来照顾老年人,他们能在十年内节省210亿美元。图为当地时间2015年2月23日,日本名古屋,日本理化学研究所和住友公司的科学家研发出一款新的实验护理机器人“ROBEAR”,可以将病人从床上搬到轮椅上,或帮助病人站起来。AFP PHOTO / JIJI PRESS12、当地时间2015年1月26日,日本“婴儿机器人”Smiby的生产厂。Smiby,是由日本中京大学的机器人系和Togo Seisakusyo Corporation共同开发,面向老年人,已于1月21日上市。它类似一个人类婴儿,需要人去照顾它。如果长时间没有人理睬它,它会开始啼哭。它内置的感应器能够识别主人的动作。当它感觉高兴的时候,它会像个真的婴儿一样笑起来,并且脸上的LED灯发出粉色的光;而当它不高兴的时候,脸上的LED则会发出蓝色光,代表眼泪。CFP

13、由于日本生育率低,加上日本人的寿命越来越长,人口老龄化的问题日趋严重,医护型的仿人机器人可以缓解医护人员不足的问题。慰藉孤独老人、减轻老年痴呆症患者焦虑感的“海豹机器人”等安慰型机器人由此诞生。图为当地时间2011年7月28日,日本福岛,84岁的Satsuko Yatsuzaka拥有一只治疗机器人“Paro”。这款海豹型机器人“Paro”安慰了日本地震和海啸的老年幸存者。REUTERS/Kim14、当地时间2010年1月6日,日本京都,由日本机器人研究机构ATR开发的机器人“Robovie-II”在杂货店进行一个辅助购物的实验,基于无处不在的网络技术平台利用机器人。机器人在商店门口迎接购物者,之后跟随他道货架上拿篮子并提醒顾客购物清单。实验的目的是收集数据,以便日后使用机器人技术和网络技术为老年人提供生活支援。REUTERS/Yuriko Nakao15、巨大的老年护理市场需求促使企业竞相研发小型家用机器人。图为当地时间2007年11月28日,日本,仿人机器人Twendy-One从烤吐司机拿起面包,为早稻田大学学生藤井裕久准备早餐。这款高1.5米、111公斤、电池供电型的机器人由早稻田大学的机械工程系Shigeki Sugano教授研发。AP Photo/Koji Sasahara

16、日本很注重对外交流,通过举办国际机器人展展示最新的机器人技术与产品,向外开拓机器人产业市场,并提供商业洽谈与技术交流平台。这也使得他们一直走在机器人研发的前沿。图为当地时间2000年9月2日,日本东京,远航公司的工作人员访问日本,一个仿人机器人在展示它的功能。Thierry Esch/Paris Match via Getty Images17、日本的仿人机器人逐渐逐渐渗透到各行各业,成为一种相对平常的设备。图为当地时间2007年6月25日,日本会津若松,护士、医生,和一名“接待员机器人”在医院走廊行走。这家医院购买了三个“接待员机器人”,它们在等候室向病人慰问,对病人进行简单的测试,引导人们乘坐电梯以及提供娱乐表演。AP Photo/David Guttenfelder18、当地时间2012年8月1日,日本东京,东京塔开发出新的导游机器人名字叫“Tawabo”,是日本第一个室内导游机器人。它可以说日语,英语,汉语和韩语。身高160cm体重200kg。CFP

19、各种各样职能的机器人也随之出现。图为当地时间2010年5月16日,东京日比谷公园,一对日本新人在机器人牧师i-Fairy的见证下举行结婚典礼。REUTERS/Yuriko Nakao

20、当地时间2011年8月16日,日本东京,猫头机器人 “Mecha-Najavu” 在经营刨冰。这只机器人由日本安川电机生产,用以吸引日常游客。AFP PHOTO / Yoshikazu TSUNO

21、松下、丰田、本田……日本的大企业相继涉足看似和主营业务无关的仿人机器人开发。图为当地时间2007年12月11日,日本东京,日本汽车巨头本田的仿人机器人Asimo在为其员工服务。AFP PHOTO/JIJI PRESS

22、当地时间2006年3月6日,日本浦安,酒店大堂前,日本电子产品制造商日立公司的轮子机器人 EMIEW为顾客提行李,展示它作为一名酒店员工的工作技能。EMIEW 机器人可以避开障碍物、回应简单的语音要求和报读天气预告、表演和迎接客人。AP Photo/Katsumi Kasahara

23、日本仿人机器人一直充当着外交使者,向其他国家展示日本机器人的研发水平。图为当地时间2014年4月24日,日本东京,正在日本访问的奥巴马参观“新兴科学和创新国家博物馆(Miraikan)”并与本田机器人“阿西莫”(ASIMO)打招呼。REUTERS/Larry Downing

24、救灾类的仿人机器人备受看好。大地震之后,日本专门研发了可以前往福岛核辐射地区清理核废料的机器人。图为当地时间2005年6月23日,日本东京,日本崇光证券推出新的警卫机器人“Guardrobo D1”,配备干粉灭火器,能够对建筑物进行巡查预防火灾。该机器人由玻璃钢体制造,身高一米,体重90公斤,将于明年投入使用。AFP PHOTO/Yoshikazu TSUNO

25、仿人机器人也用于太空领域。太空机器人KIROBO高约34公分,重量约1千克,外形设计灵感来源于日本著名漫画家手冢治虫笔下的经典动画人物“铁臂阿童木”。Kirobo具有面部识别功能,并可与人类对话,用于在太空中陪伴宇航员。图为当地时间2014年5月13日,日本,宇航员Koichi Wakata和“机器航天员”KIROBO在国际空间站交流。AP Photo/KIBO ROBOT PROJECT

26、娱乐型机器人也是日本人的专长。图为当地时间2006年6月17日,日本东京,仿人机器人 “Wabot”穿着传统服饰进行舞蹈表演,高35厘米、重1.3公斤。AFP PHOTO/Yoshikazu TSUNO

27、这些能歌善舞的小型机器人受到日本民众的喜爱。图为当地时间2011年1月30日,日本东京,孩子在看猫型机器人“索马里”跳舞。AFP PHOTO / TOSHIFUMI KITAMURA

28、当地时间2007年10月20日,日本东京,秋叶原电子区举办机器人运动赛,日本工学院的仿人机器人“Karfe Lady” 在和人玩“剪刀石头布”游戏。REUTERS/Toru Hanai

29、当地时间2015年1月20日,日本东京,100个洛比(Robi)仿人机器人参加《洛比》周刊新系列杂志促销活动,集体同步舞蹈。CFP 30、当地时间2013年11月2日,日本东京,一名机器人吉他手正在演奏一只高科技电吉他;这名机器人共有78根“手指”。当天举行的“设计师东京展”中,这套人力机器人外衣格外显眼,它由超轻铝制材料做成,将用于电影拍摄。在东京举办的艺术及科技展上,机器人摇滚新组合“Z-Machines”闪亮登场。其中“吉它手”有78根手指和12块拨片,每分钟能够拨动琴弦1184下。REUTERS/Toru Hanai31、随着计算机的发展,仿人机器人也逐渐走向智能,具备了图像处理、甚至与人交流等高端技能。图为当地时间2006年5月2日,日本东京,东京工业大学研发了绘画机器人“Dot-cyan”,可以识别物体并用水彩进行复制。AFP PHOTO/YOSHIKAZU TSUNO

32、当地时间2014年3月22日,日本东京,“第三届日本将棋电王战”第二轮比赛举行,由日本Denso制造商打造的依靠YaneuraOu软件运行的机器人手臂同日本将棋选手Shinya Sato对阵。在15日举行的第一轮比赛中,机器人成功战胜了棋手Tatsuya Sugai。AFP PHOTO / Yoshikazu TSUNO 33、2014年6月7日,日本软银公司和法国阿德巴兰机器人公司联合研发了仿人机器人“Pepper”,称之为全世界第一台可以感知人类情绪、与人类交谈的机器人。图为当地时间2015年2月22日,日本东京,仿人机器人“Pepper”和一名男子合影。“pepper”搭载有感情引擎和高水平的人工智能系统,不仅可以学习人类的生活习惯,还可以“偷来”其他机器人的学习成果,上传到云端的人工智能系统,加速自身能力的提高。“pepper”售价为198000日元。AFP PHOTO / Toru YAMANAKA

34、日本的仿人机器人走向高仿真,打造外形和人类一样的机器人。图为当地时间2013年11月19日,日本东京新闻发布会上,日本演员Ken Matsudaira穿着机器人套装和他的双胞胎安卓机器人合影。AFP PHOTO / YOSHIKAZU TSUNO

35、机器人研发者不断探索人类的情感系统和交流模式,试图复制一个“真人”。这些高仿真的机器人或许将充当人类的忠实伴侣,解决孤独的问题。图为当地时间2010年10月17日,日本东京,日本先进工业科学和技术(AIST)研发的1.58米高仿人机器人“HRP-4C” 在数字内容博览会上表演跳舞。这是一款娱乐型高仿真机器人。AFP PHOTO / Yoshikazu TSUNO 36、2014年5月5日,北京,2014全球移动互联网大会,日本大阪大学智能机器人研究所所长石黑浩(左)示了新款智能机器人,外形逼真,能够完成点头、眨眼等动作,并可以进行简单的交谈。人工智能主要在机器人、语言图像识别、自然语言识别、智能运算和控制系统等领域对类人类行为和思维的计算机系统展开研发。麦田/CFP

37、当地时间2014年10月22日,日本东京,《超能陆战队》新闻发布会上,导演和“大白”出场。这只超大号充气机器人在剧中是个医疗伴侣。而现实中,日本也不断在研发类似的医护型机器人,机器人总动员正在日本上演。AP Photo/Eugene Hoshiko

第三篇:水下机器人发展概述

水下机器人发展概述

1水下机器人发展背景

在浩瀚的宇宙中,有一个蔚蓝色的星球,那是人类赖以生存的地方——地球。地球的表面积为5.1亿平方公里,而海洋的面积为3.6亿平方公里。地球表面积的71%被海洋所覆盖。在烟波浩渺的海洋深处,蕴藏着什么样的宝藏?是否存在着智慧生命?海底生物是怎样生活的?海底的地形地貌又是什么样的?所有这一切都使海洋充满了神秘的色彩,也吸引了无数科学家、探险家为之探索。从远古时代起,人们就泛舟于海上。从19世纪起,人们开始利用各种手段对海洋进行探察。20世纪,水下机器人技术作为人类探索海洋的最重要的手段,受到了人们普遍的关注。进入21世纪,海洋作为人类尚未开发的处女地,已成为国际上战略竞争的焦点,因而也成为高技术研究的重要领域。毫不夸张地说,本世纪是人类进军海洋的世纪。人类关注海洋,是因为陆上的资源有限,海洋中却蕴藏着丰富的矿产资源、生物资源和能源。另一个重要原因是,占地球表面积49%的海洋是国际海底区域,该区域内的资源不属于任何国家,而属于全人类。但是如果哪一个国家有技术实力,就可以独享这部分资源。因此争夺国际海底资源也是一项造福子孙后代的伟大事业。水下机器人作为一种高技术手段,在海底这块人类未来最现实的可发展空间中起着至关重要的作用,发展水下机器人的意义是显而易见的。

2水下机器人的定义与分类

2.1水下机器人的定义与概述

水下机器人也称作无人水下潜水器(unmanned underwater vehicles,UUV),它并不是一个人们通常想象的具有类人形状的机器,而是一种可以在水下代替人完成某种任务的装置。在外形上更像一艘微小型潜艇,水下机器人的自身形态是依据水下工作要求来设计的。生活在陆地上的人类经过自然进化,诸多的自身形态特点是为了满足陆地运动、感知和作业要求,所以大多数陆地机器人在外观上都有类人化趋势,这是符合仿生学原理的。水下环境是属于鱼类的“天下”,人类身体的形态特点与鱼类相比则完全处于劣势,所以水下运载体的仿生大多体现在对鱼类的仿生上。目前水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素。

2.2水下机器人的分类

水下潜水器根据是否载人分为载人潜水器和无人潜 水器两类。载人潜水器由人工输入信号操控各种机动与 动作,由潜水员和科学家通过观察窗直接观察外部环境,其优点是由人工亲自做出各种核心决策,便于处理各种 复杂问题,但是人生命安全的危险性增大。由于载人需 要足够的耐压空间、可靠的生命安全保障和生命维持系 统,这将为潜水器带来体积庞大、系统复杂、造

价高昂、工作环境受限等不利因素。无人水下潜水器就是人们常说 的水下机器人,由于没有载人的限制,它更适合长时间、大范围和大深度的水下作业。无人潜水器按照与水面支持系统间联系方式的不同可以分为下面两类。

(1)有缆水下机器人,或者称作遥控水下机器人(remotely operated vehicle,简称ROV),ROV需要由电缆 从母船接受动力,并且R0V不是完全自主的,它需要人 为的干预,人们通过电缆对R0V进行遥控操作,电缆对 RoV像“脐带”对于胎儿一样至关重要,但是南于细长 的电缆悬在海中成为ROV最脆弱的部分,大大限制了 机器人的活动范围和工作效率。

(2)无缆水下机器人,常称作自治水下机器人或智 能水下机器人(autonomous underwater vehicle,简称 AUV),AuV自身拥有动力能源和智能控制系统,它能 够依靠自身的智能控制系统进行决策与控制,完成人们 赋予的工作使命。AuV是新一代的水下机器人,由于 其在经济和军事应用上的远大前景,许多国家已经把智能水下机器人的研发提上日程。有缆水下机器人都是遥控式的,根据运动方式不同 可分为拖曳式、(海底)移动式和浮游(自航)式三种。无缆水下机器人都是自治式的,它能够依靠本身的自主决 策和控制能力高效率地完成预定任务,拥有广阔的应用前景,在一定程度上代表了目前水下机器人的发展趋势。

2.3自治水下机器人

自治水下机器人,又称智能水下机器人,是将人工智能、探测识别、信息融合、智能控制、系统集成等多方 面的技术集中应用于同一水下载体上,在没有人工实时控制的情况下,自主决策、控制完成复杂海洋环境中的 预定任务使命的机器人。俄罗斯科学家B.C.亚斯特列 鲍夫等人所著的《水下机器人》中指出第3代智能水下机器人是一种具有高度人工智能的系统,其特点是具有高度的学习能力和自主能力,能够学习并自主适应外界环境变化。执行任务过程中不需要人工干预,设定任务 使命给机器人后,由其自主决定行为方式和路径规划,军事领域中各种战术甚至战略任务都依靠其自主决策 来完成。智能水下机器人能够高效率地执行各种战略 战术任务,拥有广泛的应用空间,代表了水下机器人技术的发展方向。

3水下机器人的发展现状

3.1 国外水下机器人发展现状

国外水下机器人技术的发展,主要以美国、日本以及西方发达国家为代表,他们的发展技术几乎可以代表了全世界水下机器人技术的发展水平。著名的一些研究机构有美国麻省理工学院MIT Sea Grant’s AUV实验室、美国海军研究生院智能水下运载研究中心、美国伍慈侯海洋学院、美国佛罗里达大西洋高级海洋系统实验室、美国缅因州大学海洋系统工程实验室、美国夏威夷大学自动化系统实验室、日本东京大学机器人应用实验室、英国还是技术中心等。

美国是最先发展水下机器人的国家,他们掌握着水下机器人较高的技术水平。由美国海军研究生院的Phoenix AUV 和性能更优越的 Aries AUV ,主要用于研究智能控制、规划与导航、目标识别等技术;麻省理工学院的智能机器人 Odyssey II 主要用于海冰下的检测和标图;斯坦福大学的 OTTER 的研究目的是使其成为科学和工业界在开发海洋的一种常用工具;美国的新罕布什尔州自主水下系统研发所与俄罗斯远东科学院水下技术研究所联合开发出太阳能自主水下机器人 ,其计划的

最终目的是开发一艘具有超过一年续航力的太阳能自主水下机器人。美国麻省理工学院(MIT)的布鲁克斯(RodneyA.Brooks)模拟人类大脑物理结构的基于连接主义的反射性 ,以移动式机器人研究为背景 ,提出以一种依据行为来划分层次和构造模块的思路。它的特点基本与分层递阶体系相反。

日本凭借其在智能机器人先进技术的优势,在水下机器人方面也不甘落后,取得了突跃式的进步,并且成为这个领域的佼佼者。智能水下机器人是将人工智能、自动控制、模式识别、信息融合与理解、系统集成等技术应用于传统的载体上 ,在无人驾驶的情况下自主地完成复杂海洋环境中预定任务的机器人。日本对于无人有缆潜水器的研制比较重视,不仅有近期的研究项目,而且还有较大型的长远计划。目前,日本正在实施一项包括开发先进无人遥控潜水器的大型规划。这种无人有缆潜水器系统在遥控作业、声学影像、水下遥测全向推力器、海水传动系统、陶瓷应用技术水下航行定位和控制等方面都要有新的开拓与突破。这项工作的直接目标是有效地服务于200米以内水深的油气开采业,完全取代目前由潜水人员去完成的危险水下作业。

欧洲方面,根据欧洲尤里卡计划,英国、意大利将联合研制无人遥控潜水器。这种潜水器性能优良,能在6000米水深持续工作250小时,比现在正在使用的只能在水下4000米深度连续工作只有l2小时的潜水器性能优良的多。按照尤里卡EU-191计划还将建造两艘无人遥控潜水器,一艘为有缆式潜水器,主要用于水下检查维修;另一艘为无人无缆潜水器,主要用于水下测量。这项潜水工程计划将由英国;意大利、丹麦等国家的l7个机构参加。

法国方面,1980年法国国家海洋开发中心建造了“逆戟鲸”号无人无缆潜水器,最大潜深为6000米。1987年,法国国家海弹开发中心又与一家公司合作,共同建造“埃里特”声学遥控潜水器。用于水下钻井机检查、海底油机设备安装、油管辅设、锚缆加固等复杂作业。这种声学遥控潜水器的智能程度要比“逆戟鲸”号高许多。1688年,美国国防部的国防高级研究计划局与一家研究机构合作,投资2360万美元研制两艘无人无缆潜水器。1990年,无人无缆潜水器研制成功,定名为“UUV”号。这种潜水器重量为6.8吨,性能特别好,最大航速10节,能在44秒内由0加速到10节,当航速大于3节时,航行深度控制在土1米,导航精度约0.2节/小时,潜水器动力采用银锌电池。这些技术条件有助于高水平的深海研究。

3.2 国内水下机器人的发展现状

我国从上世纪70年代开始较大规模地开展潜水器研制工作,起步较其他发达国家晚了很多,但是在过去的几十年内,我国水下机器人技术的发展还是取得了很大的进步,并且取得了一些重要的成果。我国先后研制成功以援潜救生为主的7103 艇(有缆有人)、I型救生钟(有缆有人)、QSZ 单人常压潜水器(有缆有人)、8A4 水下机器人ROV(有缆无人)和军民两用的HR—01 ROV,RECON IV ROV 及CR-01A 6000m 水下机器人AUV(无人无缆)等, 使我国潜水器研制达到了国际先进水平。2011年7月26日上午,中国载人潜水器“蛟龙”号在第二次下潜试验中成功突破5000米水深大关,最大下潜深度达到5057米,创造了中国载人深潜新的历史,“蛟龙号”载人潜水器5000米深潜成功,意味着中国载人深潜水平已位居世界前列。标志着中国具备了到达全球70%以上海洋深处进行作业的能力,极大增强了中国科技工作者进军深海大洋、探索海洋奥秘的信心和决心。

4.水下机器人关键技术

4.1总体技术

水下机器人是一种技术密集性高、系统性强的工程,涉及到的专业学科多达几十种,各学科之间彼此互相牵制,单纯地追求单项技术指标,就会顾此失彼。解决这些矛盾除有很强的系统概念外,还需加强协调。在满足总体技术要求的前提下,各单项技术指标的确定要相互兼顾。为适应较大范围的航行,从流体动力学角度来看,水下机器人的外形采用低阻的流线型体。结构尽可能采用重量轻、浮力大、强度高、耐腐蚀、降噪的轻质复合材料。

4.2仿真技术

水下机器人工作在复杂的海洋环境中,由智能控制完成任务。由于工作区域的不可接近性,使得对真实硬件与软件体系的研究和测试比较困难。为此在水下机器人的方案设计阶段,要进行仿真技术研究,内容为两部分:

4.2.1平台运动仿真

按给定的技术指标和水下机器人的工作方式,设计机器人平台外形并进行流体动力试验,获得仿真用的水动力参数。在建立运动数学模型、确定边界条件后,用水动力参数和工况进行运动仿真,解算各种工况下平台的动态响应,根据技术指标评估平台的运动状态,如有差异,则通过调整平台尺寸、重心浮心等技术参数后再次仿真,„„,直至满足要求为止。

4.2.2控制硬、软件的仿真

在水中对控制系统的调试和检测具有很大的风险,因此有必要在控制硬、软件装入平台前,在实验室内先对单机性能进行检测,再对集成后的系统在仿真器上做陆地模拟仿真试验,并评估仿真后的性能。内容包括动密封、抗干扰、机电匹配、软件调试。根据结果,进行修改和完善。因而需研究和开发一套用于控制系统仿真的仿真器。仿真器主要由模拟平台、等效载荷、模拟通讯接口、仿真工作站等组成。在仿真器上对控制系统的仿真,可以减少湖海试时的调试工作量,避免由海中不确定因素带来的麻烦。

4.3水下目标探测与识别技术

目前,水下机器人用于水下目标探测与识别的设备仅限于合成孔径声纳、前视声纳和三维成像声纳等水声设备。

4.3.1合成孔径声纳

用时间换空间的方法、以小孔径获取大孔径声基阵的合成孔径声纳,非常适合尺度不大的水下机器人,可用于侦察、探测、高分辨率成像,大面积地形地貌测量等,为水下机器人提供一种性能很好的探测手段。

4.3.2前视声纳组成的自主探测系统

前视声纳的图像采集和处理系统,在水下计算机网络管理下自主采集和识别目标图像信息,实现对目标的跟踪和对水下机器人的引导。可以通过实验,找出用于水下目标图像特征提取和匹配的方法,建立数个目标数据库,在目标图像像素点较少的情况下,较好的解决数个目标的分类和识别。系统对目标的探测结果,能提供目标与机器人的距离和方位,为水下机器人避碰与作业提供依据。

4.3.3三维成像声纳

用于水下目标的识别的三维成像声纳,是一个全数字化、可编程、具有灵活性和易修改的模块化系统。可以获得水下目标的形状信息,为水下目标识别提供了有利的工具。

4.4智能控制技术

智能控制技术是提高水下机器人的自主性,在复杂的海洋环境中完成各种任务,因此研究水下机器人控制系统的软件体系、硬件体系和控制技术十分重要。智能控制技术的体系结构是人工智能技术、各种控制技术在内的集成,相当于人的大脑和神经系统。软件体系是水下机器人总体集成和系统调度,直接影响智能水平,它涉及到基础模块的选取、模块之间的关系、数据(信息)与控制流、通讯接口协议、全局性信息资源的管理及总体调度机构。体系结构的目标与水下机器人的研究任务应是一致的,也是提高智能水平(自主性和适应性)的关键技术之一。不断改进和完善体系结构,加强对未来的预报预测能力,使系统更具有前瞻性和自主学习能力。

4.5规划与决策技术

规划与决策是指对自主式水下机器人在有海流区域工作时姿态和路径的规划与决策,主要确保水下机器人工作时艏向严格顶流。有两种路径规划方法,一种是坐标系旋转法,基本思想是将坐标系绕着Z轴旋转,直到X正半轴方向指向来流方向,在工作中保证机器人的姿态始终与X正半轴方向一致。另一种是基于栅格的位形空间激活值传播法。该方法能方便地实现各种优化条件,并适用于各种复杂的环境,具有较佳的控制生成路径能力和可扩展性,而且算法本身具有内在的并行性,很好地满足了机器人艏向尽量顶流的要求。

4.6水下导航(定位)技术

用于自主式水下机器人的导航系统有多种,如惯性导航系统、重力导航系统、海底地形导航系统、地磁场导航系统、引力导航系统、长基线、短基线和光纤陀螺与多普勒计程仪组成推算系统等,由于价格和技术等原因,目前被普遍看好的是光纤陀螺与多普勒计程仪组成推算系统,该系统无论从价格上、尺度上和精度上都能满足水下机器人的使用要求,国内外都在加大力度研制。

4.7通讯技术

为了有效的监测、传输数据﹑协调和回收等,水下机器人需要通讯。目前的通讯方式主要有光纤通讯、水声通讯。

4.7.1光纤通讯

由光端机(水面)﹑水下光端机﹑光缆组成。其优点是数据率高(100Mbit/s),很好的抗干扰能力。缺点,限制了水下机器人的工作距离和可操纵性,一般用于带缆的水下机器人TUV、ROV。

4.7.2水声通讯

由于声波在水中的哀减慢,对于需要中远距离通讯的水下机器人,水声通讯是唯一的、比较理想的一种方式。实现水声通讯最主要的障碍是随机多途干扰,要满足较大范围和高数据率传输要求,需解决多项技术难关。要达到实用程度,仍然有大量的工作要做。

4.8能源系统技术

水下机器人、特别是续航力大的自主航行水下机器人,需要具有体积小、重量轻、能量密度高、多次反复使用、安全和低成本的能源系统。

4.8.1热系统

热系统是将能源转换成水下机器人的热能和机械能,包括封闭式循环、化学和核系统。其中由化学反应(铅酸电池、银锌电池、锂电池)给水下机器人提供能源是现今一种比较实用的方法。

4.8.2电-化能源系统

质子交换膜燃料电池具有水下机器人的动力装置所需的性能。该电池的特点是能量密度大、高效产生电能,工作时热量少,能快速启动和关闭。该电池技术难点是合适的安静泵、气体管路布置、散热、固态电解液以及燃料和氧化剂的有效存储。21世纪燃料电池将极大地改变人们的生活和企业环境。随着生产成本、稳定性等课题得到解决,燃料电池可望成为水下机器人的主导性能源系统。

5水下机器人的发展趋势

纵观水下机器人的发展历史,无论是载人潜器还是ROV或AUV,都代表了一定历史时期潜水器技术发展的状况及市场的需求。现阶段水下机器人的发展趋势体现在以下几个方面:

(1)AUV代表了未来水下机器人研究的方向

当前在各类水下机器人研究中,AUV是一个热点,我们可以通过大量的国际会议了解到当前国际上水下机器人研究发展的这种趋势。另外,各国对AUV研究的投资也比其它类型机器人的投资要多得多。对AUV的研究范围比较广泛,既包括当前的应用研究也着眼于未来进行基础研究,从经济型到复杂型,有军用的也有民用的,几乎覆盖了AUV的各种类型。

事实上,AUV是一种非常适合于海底搜索、调查、识别和打捞作业的既经济又安全的工具。在军事上,AUV亦是一种有效的水中兵器。与载人潜水器相比较,它具有安全(无人)、结构简单、重量轻、尺寸小、造价低等优点。而与ROV相比,它具有活动范围大、潜水深度深、不怕电缆缠绕、可进入复杂结构中、不需要庞大水面支持、占用甲板面积小和成本低等优点。AUV代表了未来水下机器人技术的发展方向,是当前世界各国研究工作的热点。当前AUV的发展趋势为更深、更远、功能更强大,特别是未来海上作战等军事需求的增加,给AUV的发展带来了无限生机,也预示着AUV开始走向应用阶段。

更深——向深海发展

地球上97%的海洋深度在6000米以上,称之为深海。研制6000米的潜水器是许多国家的目标。美国、俄罗斯、法国、中国等都拥有自己的6000米级的AUV。尽管ROV和载人潜器也能达到这个深度,但发展AUV比其它潜器的造价要低得多,更经济。图7为我国第一台6000米自治水下机器人“CR-01”,它主要用于太平洋洋底多金属结核的调查。

更远——向远程发展

AUV的分类方法有几种,其中一种是按照航程的远近分为远程和近程两类。所谓远程是指AUV一次补充能源连续航行超过100海里以上,而小于100海里称为近程。远程AUV涉及的关键技术包括能源技术、远程导航技术和实时通信技术。因此,许多研究机构都在开展上述关键技术的研究工作,以期获得突破性的进展。也只有在上述关键技术解决后,才能保证远程AUV计划的实施。

功能更强大——向作业型及智能化方向发展

现阶段的AUV只能用于观察和测量,没有作业能力,而且智能水平也不高。将来的AUV将引入人的智能,更多地依赖传感器和人的智能。还要在AUV上安装水下机械手,使AUV具有作业能力,这是一个长远的目标。

(2)ROV广泛应用于水下作业中

从1953年世界上出现第一艘遥控潜水器,在近五十年的时间里,ROV从诞生到走向实用化。

目前全世界ROV的数量超过1000台,是其他各类潜水器总和的数十倍,这主要是由于ROV具有以下特点:

1>通过与水面相联的电缆向无人遥控潜器提供能源,作业时间不受能源的限制;2> 操作者直接在水面控制和操作ROV,人的介入使得许多复杂的控制问题变得简单;3> 可以用于水下作业,这一点是现阶段AUV无法达到的。例如ROV与载人潜器可以协同作业,完成对各种失事飞机、潜艇等的打捞任务。

6水下机器人的应用前景

随着人类开发海洋的步伐不断加快,水下机器人行业也逐渐火热起来,各种用途的水下机器人的身影活跃在海洋开发的最前线。自从20世纪50年代末美国华盛顿大学建造了主要用于水文调查的第一艘无缆水下机器人„„“SPURV”之后,人们便对无缆水下机器人产生浓厚的兴趣,但由于各个配套系统技术上的限制,致使智能水下机器人技术的发展多年徘徊不前。随着 材料、电子、计算机等新技术的飞速发展及海洋研究、开发和军事领域的迫切需求,智能水下机器人再次引起海洋开发领域和各国军方的关注。20世纪9O年代后,智能水下机器人各项技术开始逐步走向成熟,由于智能水下机器人在海洋研究和海洋开发中具有远大的应用前景,在未来的水下信息获取、深水资源开发、精确打击和“非对称情报对抗战”中也会有广泛的应用,因此智能水下机器人技术对世界各国来说都是一个重要的、值得积极研发的领域。

第四篇:机器人产业发展概况

机器人产业概况

一、发展前景

近年来,不少国家将机器人发展纳入国家计划,美国《先进制造业国家战略计划》、欧盟SPARC民用机器人研发计划、“中国制造2025”、日本《机器人新战略》、韩国《机器人未来战略2022》等,纷纷将机器人纳入国家科技创新和产业发展的重点领域。机器人已成为新一轮科技革命与产业变革背景下世界各国产业竞争的焦点。

《中国制造2025》将机器人列为中国十大重点推动领域之一,而智慧型机器人更跃升为未来10年中国制造业发展转型升级的方针。2016 年3 月21 日,工业和信息化部、发改委、财政部等三部委联合印发了《机器人产业发展规划(2016-2020 年)》。规划提出了五年我国机器人产业的“两突破”、“三提升”;五年总体目标、具体目标;以及五项主要任务。

根据中国机器人产业联盟发布的数据,我国从2013年起连续两年成为全球第一大机器人消费市场,机器人使用量约占全球销量的1/4。目前,我国工业机器人使用密度仍然偏低。韩国是世界上使用工业机器人密度最高的国家,每一万名工人使用机器人437台,而我国仅有35台,远低于国际平均水平,潜力巨大。按照预测,2017年,我国将成为使用工业机器人数量最多的国家之一。到2020年,我国工业机器人年销量将达到15万台,保有量达到80万台;到2025年,工业机器人年销量将达26万台,保有量达180万台。到“十三五”末,我国机器人产业集群产值有望突破千亿元。

2015年全球服务机器人市场规模为85亿美元,工业机器人为123亿美元。2011-2015年,全球工业机器人年复合增速仅为8%,服务机器人为13%。服务机器人的市场规模最终将超越工业机器人,已成为业内共识,且大多预计赶超时间仅需三至五年。

据国外媒体报道,市场研究公司IDC在《全球商用机器人消费指南》(Worldwide Commercial Robotics Spending Guide)上发布预测报告称全球机器人行业及相关服务市场规模年复合增长率达17%,2019年行业规模将达到1354亿美元。而2015年机器人行业规模为710亿美元。新兴的机器人消费市场囊括了机器人系统采购、系统硬件支持、软件支持,机器人相关服务以及后期硬件维护等13个关键行业和52个细分市场。

二、发展现状

(一)全球机器人产业发展现状

全球机器人发展格局是一个美日欧三分天下,韩后发奋起直追的格局。机器人产业的发展需要深厚的工业基础和科技底蕴,日欧美先发优势明显。自20世纪80年代将机器人产业作为国家发展战略以来,日本一直将机器人作为优先发展方向,其所积累的经验和技术优势,为该产业的长远发展打下了良好基础。如今世界四大机器人企业巨头中,日本独占其二,发那科和安川电机在世界机器人市场的地位难以撼动。

欧洲工业基础雄厚,德国库卡、瑞士ABB在世界机器人四大企业中各占一席。为巩固领先地位,欧盟不仅在“第七个框架计划”和“地平线2020”项目中投入巨资用于机器人技术研发,还于2014年6月推出了全球最大的民用机器人研发计划“SPARC”。同时,德国以“智能工厂”为重心的“工业4.0计划”、英国首个官方机器人战略“RAS2020”以及法国“机器人发展计划”,皆彰显了占领机器人产业制高点的决心。

作为科技强国,美国虽有造出世界第一台工业机器人的荣耀,但由于当时对机器人前景看淡而没能持续发展,终被日欧赶超。知耻后勇的美国在2011年6月推出的“先进制造伙伴计划”中,明确指出要通过发展机器人重振制造业。依靠强大的工业基础和科技底蕴,近些年美国开始在机器人产业领域发力,百特、Adept等企业已有资本向传统四大机器人企业发起挑战。

韩国机器人产业近几年发展迅速。在2009年发布第一个机器人产业发展五年规划后,韩政府于2014年8月宣布了第二个智能机器人开发五年规划,希望通过技术与其他产业的融合实现机器人产业的扩张。韩国已成为世界机器人产业领域一股不可忽视的新生力量。

2014年世界前五大机器人供应国中,我国的机器人密度显著低于韩国、日本、德国、美国等国家,机器人的渗透率还处于较低水平,该比例也低于机器人密度的全球平均值62台/万人。

就汽车工业来看,日本和意大利分别达到1436和1299,德国为1130,法国1120台,西班牙950台,美国770台,瑞典630台,英国610台,我国仅141台(2011年我国汽车从业工人约为370万),发展空间相当巨大。而2010年日本电子电器行业机器人密度则可以达到300台/万人左右。按照重庆市“十二五”产业发展规划,到2015年,重庆汽车产量将从现在占全国的12%增长到15%,电子方面也将达到年产1亿台笔记本的产能,产业工人达到100万人,预计未来重庆两大支柱产业工业机器人整机需求在4.5万台左右,市场规模将超过200亿元。同时,化工、装备制造、采矿等行业市场对数控机床和工业机器人组成的工业自动化生产线的需求越来越高,此类需求也将带动工业机器人需求的不断增多。

机器人及智能装备产业作为重庆市重点发展的十大战略性新兴产业之一,根据目前披露的信息来看,重庆作为中国最大的汽车生产地,最大的摩托车生产地,最大的笔记本电脑生产地,机器人市场潜力巨大。预计到2016年,重庆市重点行业装备智能化率将达到65%,智能制造装备产业规模达到250亿元,到2018年智能化率达到75%,产业规模达到400亿元,最终形成“整机+配套”、“研发+制造+服务”全产业链的智能制造装备产业集群。

(二)中国机器人产业发展现状

中国机器人产业已经形成四大区域集群。北部的环渤海地区、南部的珠三角、东部的长三角和中西部,均呈现出比较迅猛的发展势头。其中,环渤海科研机构扎堆,研发能力强;长三角、珠三角地区产业基础雄厚、市场空间大。

环渤海地区以北京、哈尔滨、沈阳为代表,科研实力较强,研究机构有中科院沈阳自动化研究所、哈工大、北航等,在机器人方面取得显著科研成果,具有人才培养优势。长三角地区的优势在于电子信息技术产业基础雄厚,这是发展机器人产业的必要条件。珠三角地区有规模庞大的制造业,生产线升级需求使得机器人应用有广阔的空间。而以武汉、长沙、重庆为代表中西部集聚区,则依托外部的科技资源,衍生出众多行业龙头企业。

2015年深圳市机器人企业435家,机器人产业产值约630亿元,同比增长31%。

目前,工业机器人主要服务于集成组装,应用最广泛的领域是汽车制造。2014年,全球工业机器人总销量为23万台,其中10万台应用于汽车行业。其他广泛使用机器人的行业还包括电子、金属、橡胶、食品、制药、化妆品等。

国内工业机器人大多集中于相对简单的搬运、码垛及家电、金属制造领域,在高精尖的多关节机器人仅占有10%、焊接机器人仅占有16%、汽车组装仅占有10%的市场份额,在产业链中偏低端且并未进入主流市场。

有超过六成的国内产工业机器人应用在搬运与上下料领域,其中用于塑料成型件的搬运与上下料机器人最多,其次是金属铸造的搬运与上下料和码垛的搬运与上下料。焊接和钎焊是国内产机器人应用的第二大领域,约占总销量的17%,其中主要以钎焊机器人为主。用于激光切割、机械切割、磨削、抛光等领域的加工类工业机器人销量增长较快,同比增速超过90%。

国内主要的工业机器人企业包括新松、广州数控、启帆、埃斯顿、新时达及遨博等。

据公开数据显示,目前工业机器人自动化的全球领导者为韩国。在此情况下,韩国的机器人密度超过全球平均值的7倍(478台),紧随其后的是日本(314台)和德国(292台)。美国目前的机器人密度是164台,居全球第七的位置。

仅达到全球均值的一半,居世界28位。在整体的全球统计中,这大致与葡萄牙(42台)或印度尼西亚(39台)相当。但在大约五年前,中国开始进行史无前例的追赶游戏以改变现状,现已成为世界上最大的工业机器人销售和增长市场。相关数据显示,中国2014年一年的机器人销售量为57100台,而此前从未达到这个数字。这种爆发式增长将在预测期内继续:2018年中国的机器人安装量的占比将超过世界的1/3。

第五篇:天津机器人产业发展

天津市机器人产业发展 三年行动方案(2018-2020年)

机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的自动化装备,代表着未来智能装备的发展方向。推进机器人的应用和发展,对于改善劳动条件,提高产品质量和劳动生产率,带动相关学科发展和技术创新能力提升,促进产业结构调整、发展方式转变和工业转型升级具有重要意义。为贯彻落实好《中国制造2025》将机器人作为重点发展领域的总体部署,推进我国机器人产业快速健康可持续发展,特制定本行动方案,期限为2018-2020年。

一、发展现状

按国际机器人联合会(IFR)描述,机器人是自动执行工作的机器装置,包括控制、感知、执行三大模块,缺一不可。机器人分为工业机器人、服务机器人和特种机器人。工业机器人服务于工业生产过程,如焊接机器人、打磨机器人、装配机器人等;服务机器人服务个人或家庭,如助老助残机器人、康复机器人、清洁机器人、护理机器人、教育娱乐机器人;特种机器人服务于特殊环境,如核工业机器人、反恐机器人、军用机器人、救援机器人、医疗机器人。

机器人产业链包括核心零部件生产、机器人本体制造、系统集成以及行业应用四大环节。其中,核心零部件又包括减速器、控制器、驱动器、伺服电机和传感器。

机器人作为现代工业发展的重要基础,已经成为衡量一个国家制造水平和科技水平的重要标志。同时,随着机器人需求快速增长,机器人产业发展也成为科技研发和经济增长的新亮点。

(一)我国机器人产业发展情况

由于机器人涉及学科门类较多,是现代科学综合水平体现,所以机器人是衡量国家创新能力和产业竞争力的重要标志之一。同时,机器人作为智能装备制造代表,大力发展有助于推动整个国家制造业提质增效,促进国家整体装备制造业产业升级,为经济发展注入强劲动力。我国大力发展机器人产业的意义重大。一是机器人技术的创新应用有利于推动我国智能产业的兴起;二是机器人产业应用促进我国工业制造业从人力密集型向自动化生产转型,提高生产效率,降低人口红利对产业发展的影响;三是机器人产业能够有效弥补我国逐步淘汰的高能耗、高污染产业带来的财政冲击。

在国家一系列政策的引导和支持下,我国机器人得到了一定发展。根据国际工业机器人联合会(IFR)的数据显示,2016年,全球工业机器人销量达到25.9万台,同比增长4.4%,增长速度有所放缓。其中,中国市场机器人年销量达到8.5万台,同比增长23.5%,占全球总销量的32.8%。2017年我国工业机器人产量首次突破10万台。预计到2019年,全球机器人销量将达到41.4万台,中国市场机器人销量可达28.5万台。全球制造业机器人密度(每万名工人使用工业机器人数量)平均值由5年前的50提高到66(工业发达国家机器人密度普遍超过200),我国机器人密度由5年前的11增加到36,预计到2020年,将升至150台/万人,挤进世界前十。

与此同时,服务机器人发展迅速,应用范围日趋广泛,以手术机器人为代表的医疗康复机器人形成了较大产业规模,空间机器人、仿生机器人和反恐防暴机器人等特种作业机器人实现了应用。

(二)天津市机器人产业发展现状 1.产业基础

天津装备制造业传承了近150年的历史积淀,特别是建国后历经半个多世纪发展,形成了具有一定规模和水平的制造业体系。2016年,我市装备制造业规模以上工业产值总计10978.8亿元,同比增长6.9%,占全市工业总产值37.3%。2017年我市机器人产业年产值达57亿元,较上一年增加近40%。我市装备工业逐步呈现出设计信息化、装备智能化、流程自动化、管理现代化的态势,为机器人产业发展提供良好生态环境。

目前,我市以机器人作为主营业务企业百余家,产品门类齐全,包括工业机器人、服务机器人、特种机器人,形成整机规模约30亿元,考虑相关软件、零部件及系统集成应用整体产业规模约100亿元。

2.技术条件和创新平台

我市现有机器人专家百余名,技术处全国领先水平。天津大学、南开大学、河北工业大学、中国民航大学、天津职业技术师范大学、天津中德应用技术大学等高校均建有机器人研究所,在机器人领域有较为深入的研究。

天津大学机器人与自主系统研究所(电气与自动化工程学院)和机械学院分别在视觉测控、医疗机器人、并联机器人等领域有深入研究,在国内保持领先地位。攻克复合想象动作信息解析与处理等技术,开发全球首台适用于全肢体中风康复的“纯意念控制”人工神经机器人系统;研发了具有中国完全自主知识产权的高速并联机器人关键技术,2016年获国家科技发明二等奖;自主研发微创手术机器人系统“妙手S”,已在湖南实现临床试验,部分指标已超越最高水平,填补了国内领域的空白。南开大学机器人与信息自动化研究所,下设机器人微纳级操作研究室等8个专业研究室,现有教授、海归等高级专业研发人员30余人,拥有 “智能机器人控制理论与方法网点开放实验室”,在机器人控制领域处国内领先地位。天津中德应用技术大学成立智能制造学院,设有机器人研究所,数控加工工艺研究所,与西安交通大学建设国家智能装备协同创新中心天津中德基地,联合固高科技有限公司着力研发工业机器人关键技术。

在国家京津冀一体化协同发展战略、天津建设全国先进制造研发基地大背景下,清华大学天津高端装备研究院、天津中科智能技术研究院有限公司、天津中科智能识别产业研究院、浙江大学滨海产业研究院等各地创新资源集聚天津,已经成为天津在高端装备领域的最重要研发机构。

3.应用环境 天津作为北方工业超大城市,工业基础雄厚。在汽车制造、电子信息、能源装备等工业机器人主要应用行业中,形成了全覆盖。

——汽车制造。目前天津拥有一汽丰田、一汽夏利、长城汽车、清源汽车等23家具有生产资质的整车企业,大众变速器、爱达变速器、天海同步、天汽模等二百多家零部件配套企业,形成从外资到内资、从加工制造到销售,从国际品牌到自主品牌的完整汽车链条,形成包括天津经济开发区、天津西青工业园区、天津武清汽车零部件产业园、天津专用汽车产业园在内的四大汽车制造产业聚集区。预计在十三五末期天津汽车产业将超过三千亿元,整车产量达到150万辆以上。

——电子信息产业。电子信息产业是天津支柱产业,作为国家首批电子信息产业基地,天津电子信息产业基地和产业园建设成效显著,移动通信、片式元件、集成电路、化学与物理电源四大产业被信息产业部授予首批国家级信息产业园,华苑软件出口基地成为六个国家级软件出口基地之一。

——新能源装备。我市拥有大型水力发电机组、特高压输变电设备、新能源整车、光伏发电设备等新能源装备制造企业,产业体系完整、门类齐全。截至目前,天津拥有新能源企业百余家,产业初步形成了滨海高新区、开发区、西青区、宝坻区和北辰区5个聚集趋势明显的科技园区,成为全国新能源产业重要基地。——传统制造业。我市金属品加工机械行业有一机床、天重、天锻等大型企业,以及一重天津、太重天津、天锻压力机、中重科技等行业骨干企业;医药行业有天士力、天津医药集团、达仁堂等;化妆品行业有宝洁、郁美净等;食品行业有康师傅、鼎新、可口可乐、雀巢等;物流行业有东疆港保税区、菜鸟物流等。另外航空航天、高铁及轨道车轨道交通、新能源装备、石油化工等都是天津的支柱产业,这些都是未来机器人重要的应用领域。

4.存在的问题

我市机器人产业取得发展的同时,也存在一定的不足。(1)技术壁垒。工业机器人及自动化成套装备涉及多项学科领域,产品系统结构复杂、技术含量高,从事本行业的产品供应商需要掌握扎实的理论基础,将多学科的先进技术集合为一体,熟练掌握上游行业所提供的各类关键零部件性能,并对下游行业用户所提出的需求进行引导,高度综合相关技术并对系统进行集成后,才能设计出符合要求的成套装备及产品。而从新区工业机器人产业基础来看,主要为高等院校开展的基础研究,相关企业的生产规模较小,产品比较单一,在支撑机器人发展的关键零部件的研究与制造、工业机器人的集成与成套技术、对工业机器人应用对象的深入分析与流程再造等技术方面存在较大障碍。

(2)人才壁垒。工业机器人产业发展需要大批工业机器人系统设计、制造人才,掌握先进系统控制软件、装备机械、工业自动化系统工程集成等领域的高素质、高技能以及多学科性的专业人才。也需要对客户需求、生产工艺以及产品特征深入了解,具备丰富经验的项目管理和市场营销人才。滨海新区虽然拥有一定的设计、制造、控制、软件、市场营销等基础人才,但缺少在工业机器人行业的工作经验,对工业机器人产业缺乏了解。

(3)资金壁垒。工业机器人及自动化成套装备是一项综合高新技术,需要大量的研发资金投入和持续不断的创新,因此,需要雄厚的资金支持。国内由于主要依靠科技部门研究开发计划的支持,从资金到产业的支持力度不足,在关键部件、产品产业化以及基础研究方面的差距还在拉大。滨海新区的工业机器人生产企业主要为中小型企业,拥有自主知识产权的产品较少,研发投入不足,缺少融资渠道。

(4)政策壁垒。国内工业机器人产业发展整体规划不清晰,政府支持力度不够,产学研各自为战。从国外经验看,美、日、德、韩等国在发展机器人初期都有政策扶持,有力地推动了机器人产业化的发展。

二、总体思路

基于中国机器人发展现状及未来趋势,结合天津市机器人现状和发展趋势,提出天津市发展机器人技术与产业的总体思路:技术引领产业、应用推动行业;项目重点突出、“换人”以点带面;政策顶层设计、规划持续统一;龙头引培结合、平台功能齐全。

三、总体目标

利用三年时间,规划筹建包含技术研究、高层次人才培养、产品检验检测、信息咨询等多功能的天津市机器人产业技术研究院;健全天津市机器人联盟、协会、学会三位一体行业组织机制;打造全国规模和影响力最大的国际机器人博览会(展会);完成机器人各方面服务人才培训3000-5000人次;培育以机器人及机器人零部件为主业的上市企业3-5家、全市机器人产业规模达到200亿;取得重大科技成果(省部级及以上)3-5项;实现机器人换人、智能工厂项目30-50项。

四、重点任务

积极贯彻落实国家《机器人产业发展规划(2016-2020年)》,结合我市产品特色,重点推动十大标志性产品率先形成突破。

(一)大力发展机器人关键零部件 1.工业机器人RV减速器研制

全面突破摆线磨齿、小偏心曲轴磨削、整机装配测试、寿命试验等高精密减速器关键核心技术,研制具有自主知识产权的、系列化机器人高精密减速器产品,在国内主流机器人配套应用,替代进口,提升我国先进制造技术和装备水平。

2.高性能的伺服驱动系统

通过电机的数学模型,研究伺服控制的带宽拓展和控制参数的优化,研究实时系统参数辨识和观测器的配合以提高系统的鲁棒性;通过实时的FFT分析和双惯量系统模型的建立以提高系统的自动抑振能力;开发高速总线通讯和机械特性分析软件工具,实现伺服驱动系统与工业机器人本体之间的互联,形成产品并进行小批量的试制。

(二)推进重大标志性产品率先突破 1.混联机器人成套装备及示范应用

TriMule机器人具有工作空间大、刚度重量比高、可重构能力强、且可实现全闭环控制;以该混联机器人为主体构成的可重构混联加工装备因其大范围移动能力、良好的工作空间和动力学性能、末端工具的更换能力灵活等优点,加快开发由一个3自由度并联机构与一个2自由度串联手腕组成的5自由度混联机器人,并实现在航空结构件的高速铣削加工、螺旋铣孔加工,汽车覆盖件模具加工、打磨和抛光工艺的产业化应用。

2.轻型协作机器人关键技术及产业化

针对智能制造过程中订单的多样性要求,以及产品小批量、定制化、短周期为特征,以轻量型模块化中空串联协作机器人为研究对象,研究模块化关节设计、机器人构型综合、基于EtherCAT通讯的具备拖动示教和碰撞检测等功能的控制系统开发、快速标定等关键技术。设计和开发一种轻量型、模块化、便携式、负载/自重比大的串联协作机器人,不仅能替代人,还可与人协同工作,以适应工业发展自动化和多样性的要求。

3.高压水射流除锈、喷漆机器人关键技术及产业化 针对石化、船舶等行业对储罐、大型船体等装置的除锈、防腐自动化作业及环保需求,研制高压水射流除锈机器人系统、喷漆机器人系统。突破适应多壁厚、多变摩擦系数壁面的机器人磁吸附行走、防爆、防水等关键技术,研制多类型复杂工况下除锈、喷漆作业执行模块,研究机器人除锈、喷漆作业工艺,实现代替人工无脚手架完全作业目标,形成定型产品并实现产业化。

4.白酒行业用机器人关键技术及产业化

采用机器人技术解决白酒酿造过程中的上甄及后装工序中带盖装箱装盒操作,研制用于上述操作的机器人成套装备并开发相应辅助配套设施,完成生产线集成,实现自动化生产与车间级生产调度管理。

5.自动化柔性高铁车身焊缝打磨系统

针对高铁铝合金车体焊缝的打磨处理的自动化需求,开发融合工业机器人、焊缝打磨组合工具系统、渗透探伤系统、吸尘及铝屑回收装置、在线及离线编程软件、激光视觉定位跟踪及检测系统的自动化柔性车身焊缝打磨系统,用于高铁车身铝合金侧墙焊缝的自动打磨作业和焊缝自动渗透探伤作业。

6.飞行机器人关键技术及产业化

针对近年来对于飞行机器人农田施药、物流运输、巡查巡检、公共安全应急处置等应用需求,以制约飞行机器人研发及产业化推广的瓶颈问题为对象,研究飞行机器人优化设计、飞行机器人自主导航、复杂环境智能感知、任务作业网络化管理等关键技术。设计和开发2-3种面向典型应用的飞行机器人系统,并完成农田施药、物流运输、巡查巡检等不少于3种场景的规模化应用。7.水下滑翔机关键技术研究及产业化

针对海域的温跃层的温度、盐度、水质等海洋环境数据收集的需求,研究开发搭载水听器、CTD等各类科学传感器,以获得全方位的海洋环境数据为目标的水下滑翔机,并完成海洋场景的规模化应用。

8.智能家庭服务机器人成套装备及示范应用

针对养老助残等家庭服务需求,开发采用非特定人(SI)的语音识别技术,识别各类语音,具有吸尘、人脸识别、血压监测、老人跌倒报警等功能,可连接整个家庭的电子设备,通过红外系统,学习各类遥控器功能,控制整体家电的智能家庭服务型机器人。

9.系列教育机器人及其仿真系统

针对机器人教育需求,开发采用串联/并联机器人、AGV、立体仓库等,基于虚拟现实技术、虚机实电技术、全软件仿真技术,开发机器人3D虚拟装配系统、模拟操作系统半及实物仿真系统,研制系列机器人实训及竞赛平台,形成机器人可展示机器人抓放、装配、搬运、入库、检测等多种教学/实训/竞赛生产线,开展机器人服务人才培训,在国家级机器人大赛中实现整体或部分应用。

10.手术机器人开发及产业化

针对外科微创手术自动化需求,开发基于视觉识别、虚拟力触觉反馈能力、三维成像技术、计算机精确遥控技术等,开发机械手臂可以360度自由转动胆囊、心脏微创手术机器人,进行临床实验。

(三)推动重点基础能力建设 1.机器人服务人才培养工程

鼓励高校、职业院校开设工业机器人技术相关专业,促进工业机器人相关专业学科建设,培养工业机器人技术应用型人才;鼓励工业机器人教育装备开发、机器人应用技术培训等相关企业发展,为工业机器人技术专业人才培养提供实训设备及骨干师资培训;培育工业机器人应用技术领军人才,培养具备工业机器人应用技术传帮接代能力的师范人才;建设一批职工继续教育品牌职业学校和职业培训机构,开展工业机器人紧缺人才培训和转岗职工培训;利用网络的便易性,整合、开发优质在线课程,普及工业机器人基础知识。

2.机器人检测平台建设

建设天津市机器人检测公共服务平台,开展机器人整机、本体和关键零部件的检测、标准制订与修订、系统评定与认证、机器人质量体系建设、机器人产业的研究开发与应用、专业检测设备研发、技术咨询、机器人专业技术培训与人才培养等工作。为天津市市场和质量监督管理委员会、天津市科学技术委员会等政府部门提供行业咨询服务,全面提升我市机器人产业的检验检测能力和水平,增强检验检测及科研综合实力,促进我市智能制造发展提供坚实的技术保障。

3.机器人产业技术研究院建设

建设机器人产业技术研究院,打造机器人科技重大成果产业化转化平台。研究院建设科技成果转化的小试、中间试验、工业性试验和工程化开发平台,促进其提升共性技术的研究开发和服务能力;制定机器人技术转化、服务综合考评制度,择优按合同科研规模给予一定比例的经费支持,促进科研院所提升为企业服务的质量;引导我市科研机构更多开展从科学技术到产品的研发和服务,解决成果转化最后一公里问题。

(四)创建机器人推广应用示范工程

坚持市场牵引、政府引导和企业主导相结合,充分挖掘我市相关高校、科研院所在机器人领域内的智力资源,面向钢铁、汽车、机械、船舶、石化、医药、电子、食品饮料等领域,实施“机器换人”工程。推动传统产业转型升级,培育重点领域机器人应用系统集成商及综合解决方案服务商。

以技术服务队模式开展产学研协同创新。以“机器换人工”“自动换机械”“成套换单台”不同层次的进行技术改造与提升,提高企业劳动生产率和技术贡献率,培育新的经济增长点,加快传统制造业实现产业转型升级,形成特色鲜明、优势突出的产业集群,建设100家智能制造推广企业,提升我市智能制造产业整体竞争力。

——工业机器人。结合我市产业结构,在工业机器人用量大的汽车、电子、金属制品行业,在劳动强度大的轻工、纺织、铸造等行业,在生产环境洁净度要求高的医药、半导体、食品等行业,推进工业机器人的广泛应用。通过双创平台整合资源,在焊接机器人方面实现多个行业应用拓展,完成焊接机器人在京津冀地区的快速量产。

——服务机器人。鼓励我市有基础有条件的社区,养老、医院、教育机构,开展陪护与康复训练机器人在失能与认知障碍人群中的试点示范,开展智能假肢与外骨骼机器人在行动障碍人群中的试点示范,开展教育机器人在辅助教育的试点示范,大力推进服务机器人在医疗、助老助残、康复、教育等领域的推广应用。

——特种机器人。在救灾救援领域,推进专业服务机器人在自然灾害、火灾、核事故、危险品爆炸现场的示范应用等。

五、保障措施

(一)加大机器人产业政策支持力度

将机器人项目上升为市重点发展计划,加大财政支持力度。选择重点项目持续稳定支持,点面结合,以点为主。设立机器人发展专项科研基金、设立本地机器人应用专项补贴基金、创立科技金融模式。畅通多委、办、局信息交流途径,促进机器人技术突破和本土机器人的典型应用;合理引导和推进机器人企业兼并重组,打造大型机器人龙头企业。

(二)设立机器人及智能制造专家委员会

依托机器人协会专家委,联合天津市自动化和信息化技术创新战略联盟、高端精密加工联盟等行业组织力量,面向国内产业重大需求,立足支撑我市机器人及智能制造业发展,组建天津市机器人及智能制造专家委员会,分别设政策服务和技术咨询两机构,主要完成全市有关机器人和智能制造发展中,长期、全局性和战略性的重大问题,组织专家进行重点调查研究,提出建设性意见和决策预案等。

(三)建立人才引进制度

建立充分体现不拘一格引人才的制度,对象涵盖技能型人才、杰出人才、高层次人才以及海外人才等,以企业为主体,以产业为基础,以市场为导向,围绕优先发展的重点产业、重点项目和重大工程,实施全方位、多层次的人才引进措施。如支持柔性引才引智,探索建立高层次人才租赁制度,建立产教融合、校企合作的人才培养模式等。

(四)积极发挥行业组织作用

积极发挥行业协会(联盟)的组织优势,创建区域创新创业生态系统,激发创新热情和创业潜能;组织制定行业标准及技术发展线路图,保障行业发展的标准化和规范化;推进产业供给侧改革与产业结构转型升级,改善供给体系的供给效率和质量;聚集行业高端创新人才以及搭建联合攻关平台,促进天津市机器人产业快速发展。

(五)推进重点项目建设

由市工业和信息化委牵头,做好机器人领域的重大项目的组织、论证和推动实施,协调解决项目实施进程中的共性问题和特殊需求,确保项目按计划推动实施。针对自主创新、技术领先、产业带动性强、行业影响力大的重大项目,加大支持力度。统筹全市相关领域的财政资金,吸引金融机构和社会资本的投入,撬动重点项目建设。未来三年,在机器人产品的研发、产业化、行业应用,人才培养和基地建设等领域,将推进重点项目的建设。

(六)加强合作交流和招商引资

围绕滨海新区、华苑、武清区等机器人产业基地建设,加强与知名品牌企业的合作交流,寻求项目落地的可能,打造我市机器人产业集聚区。重点企业包括机器人产业四大家族:德国库卡、瑞士ABB、日本的安川和发那科,中国机器人两大巨头:广州数控、沈阳新松。充分利用机器人学国家重点实验室的技术优势,建立针对机器人领域的产业基金,大幅提高我市机器人产业的规模,使我市机器人产业达到国内领先水平。

下载机器人的发展word格式文档
下载机器人的发展.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    工业机器人的发展

    工业机器人的发展 班级:07机械2班 姓名:陈明洁 学号:200730861235 摘要:工业机器人在现在制造技术中起着举足轻重的作用。本文介绍了国内工业机器人的发展现状,指出了我国工业机......

    中国工业机器人发展现状

    3中国工业机器人发展现状 我国工业机器人从二十世纪 80 年代“七五”科技攻关开始起步,在国家的支持下,863 机器人技术主题对机器人技术发展作了重要战略调整,从单纯的研发机器......

    工业机器人的发展外文翻译

    The development of industrial robots Industrial robot is a robot, it consists of a CaoZuoJi. Controller. Servo drive system and detection sensor device compos......

    辽宁机器人产业发展战略研究(精选5篇)

    关键词:辽宁机器人产业 技术创新 市场培育 中图分类号:tp391 文献标识码:b 文章编号:1003-9082(2015)10-0012-02 在全球经济一体化的大背景下,制造业发展呈现出信息化、智能化、柔......

    加快我市机器人产业发展研究报告

    大力发展“机器人” 助力经济“升级版” ——关于加快我市机器人产业发展的研究报告 机器人产业作为智能制造业的核心代表,已成为后金融危机时代、引领世界新一轮制造业革命......

    服务机器人的发展现状及趋势

    服务机器人的发展现状及趋势 【摘要】服务机器人是机器人家族中的一个年轻成员,是一种半自主或全自主工作的机器人,它能完成有益于人类健康的服务工作。进入二十一世纪,人们已......

    深圳机器人产业创新发展路径分析

    深圳机器人产业创新发展路径分析 当前,我国包括深圳制造业发展都处于亟须从制造转向智造的发展时期。机器人作为集机械、电子、控制、计算机、传感器、人工智能等多学科先进......

    果树采摘机器人发展概况及特点

    果树采摘机器人发展概况及特点 机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现f3l。机器人集成了计算机、控制论、机构学、信息和传感技术、人工智......