利用半正定二次型证明条件不等式

时间:2019-05-13 18:34:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《利用半正定二次型证明条件不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《利用半正定二次型证明条件不等式》。

第一篇:利用半正定二次型证明条件不等式

利用半正定二次型证明条件不等式

利用半正定二次型证明条件不等式的基本思路:首先构造二次型,然后利用二次型半正定性的定义或等价条件,判断该二次型为半正定,从而得出不等式.例:已知三角形三边为a,b,c,面积为S,证明:a2

证明:由余弦定理和面积公式将问题转化为

f(a,b)abab2abcosC23absinC2222bc43S22

2a2b2ab(cosC2a2b4absin(22223sinC)

6C)

2C)2其矩阵为A2sin(C)62sin(其一阶、二阶主子式分别为:

20,A4[1sin(2

6C)]4cos(2

6C)0,所以A半正定,从而二次型

故a2bc43S22f(a,b)半正定,即f(a,b)0成立.

第二篇:利用定积分证明数列和型不等式

利用定积分证明数列和型不等式

我们把形如(为常数)

或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)

已知正整数,求证

.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数

数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图

1即,因为,所以.所以

.例2求证

.证明构造函数而函数

在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和

小于曲边梯形的面积,图

2即,所以

.例3证明。

证明构造函数知,在区间

上,因,又其函数是凹函数,由图3可

个矩形的面积之和小于曲边梯形的面积,图

3即

.所以

.二、型

例4若,求证:.证明不等式链的左边是通项为前

项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前

列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间

上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两

个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图

4例5(2010年高考湖北卷理科第21题)已知函数

处的切线方程为的图象在点

.(Ⅰ)用表示出(Ⅱ)若;

在内恒成立,求的取值范围;

(Ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(Ⅲ)不等式

列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当

时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

积,即

.图5

故原不等式成立.,所以,

第三篇:利用定积分证明数列和型不等式

利用定积分证明数列和型不等式

我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)已知正整数,求证

.分析

这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数数图象可知,在区间

并作图象如图1所示.因函数在上是凹函数,由函

上的个矩形的面积之和小于曲边梯形的面积,图1 即,因为,所以.所以

.例2 求证

.证明 构造函数

而函数在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和小于曲边梯形的面积,图

2即,所以.例3 证明。

证明 构造函数可知,在区间 上,因,又其函数是凹函数,由图

3个矩形的面积之和小于曲边梯形的面积,图3

.所以

.二、型

例4 若,求证:.证明 不等式链的左边是通项为前项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图4

例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为

(Ⅰ)用表示出 ;

.的图象在点(Ⅱ)若 在内恒成立,求的取值范围;

(Ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(Ⅲ)不等式数列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的时,此式适合,故只要证当 时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面积,即

.图

5而,所以,故原不等式成立.点评 本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,

第四篇:二次不等式与不等式证明

班别_________姓名______________ 学号_________

1.不等式:x1

x40的解集为_________________.2.不等式

x12x21的解集是_________________.3.不等式2x1

1

的解集为_________________.4.已知函数f(x)x2,x0

x2,x0

则不等式f(x)x2的解集为_________________.5.关于x的不等式x-m

x+1<0的解集为M,若0∈M,则实数m的取值范围是________________.6.已知关于的不等式ax1x10的解集是(,1)(1,).则a________________.7.若函数y=kx-6kx+k+8的定义域为R,则k的取值范围是_________________.8.若关于x的不等式(a2-1)x2-(a-1)x-1<0的解集为R,则实数a的取值范围是 ________________.9.当x(1,2)时,不等式x2mx40恒成立,则的取值范围是________________.10.已知不等式①x2-4x+3<0和②x2-6x+8<0及③2x2-9x+m<0,若同时满足①②的x也满足 ③,则m的取值范围是________________.11.已知不等式ax2

+bx+c>0的解集为{x|2

+bx+a<0的解集为____________.

12.已知关于x的不等式ax-5

x-a的解集为M.若3∈M且5M,求实数a的取值范围

________________.13.函数y=loga(x+3)-1(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>012

m+n

________________.14.已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围;(2)若方程两根均在区间(0,1)内,求m的取值范围.

15.(1)若不等式(1-a)x2-4x+6>0的解集是{x|-30恒成立,求a的取值范围.

16.设a,b,c均为正数,且abc1,证明:(1)abbcac1a2b2c2

;(2)1.

第五篇:利用导数证明不等式

利用导数证明不等式

例1.已知x>0,求证:x>ln(1+x)分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0,要证不等式变为:x>0时,f(x)>f(0),这只要证明:

f(x)在区间[0,)是增函数。

证明:令:f(x)=x-lnx,容易看出,f(x)在区间[0,)上可导。

且limf(x)0f(0)x0 由f'(x)11x 可得:当x(0,)时,f'(x)f(0)0 x1x1 即x-lnx>0,所以:x>0时,x>lnx 评注:要证明一个一元函数组成的不等式成立,首先根据题意构造出一个

函数(可以移项,使右边为零,将移项后的左式设为函数),并利 用导数判断所设函数的单调性,再根据函数单调性的定义,证明要 证的不等式。

例2:当x0,时,证明不等式sinxx成立。证明:设f(x)sinxx,则f'(x)cosx1.∵x(0,),∴f'(x)0.∴f(x)sinxx在x(0,)内单调递减,而f(0)0.∴f(x)sinxxf(0)0, 故当x(0,)时,sinxx成立。

点评:一般地,证明f(x)g(x),x(a,b),可以构造函数F(x)f(x)g(x),如果F'(x)0,,则F(x)在(a,b)上是减函数,同时若F(a)0,由减函数的定义可知,x(a,b)时,有F(x)0,即证明了f(x)g(x)。

x练习:1.当x0时,证明不等式e1x12x成立。2证明:设fxe1xx12x,则f'xex1x.2xxx令g(x)e1x,则g'(x)e1.当x0时,g'xe10.g(x)在0,上单调递增,而g(0)0.gxg(0)0,g(x)0在0,上恒成立,f(x)在即f'(x)0在0,恒成立。0,上单调递增,又f(0)0,ex1x1x20,即x0时,ex222.证明:当x1时,有ln(x1)lnxln(x2).1x12x成立。2分析 只要把要证的不等式变形为

ln(x1)ln(x2),然后把x相对固定看作常数,并选取辅助函

lnxln(x1)数f(x)ln(x1).则只要证明f(x)在(0,)是单调减函数即可.lnx证明: 作辅助函数f(x)ln(x1)(x1)lnxlnxln(x1)xlnx(x1)ln(x1)于是有f(x)x12x

lnxx(x1)ln2x因为 1xx1, 故0lnxln(x1)所以 xlnx(x1)ln(x1)

(1,)因而在内恒有f'(x)0,所以f(x)在区间(1,)内严格递减.又因为1x1x,可知f(x)f(x1)即 ln(x1)ln(x2)lnxln(x1)所以 ln2(x1)lnxln(x2).利用导数知识证明不等式是导数应用的一个重要方面,也成为高考的一个新热点,其关键是构造适当的函数,判断区间端点函数值与0的关系,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式。

x2例3.证明不等式xln(1x)x,其中x0.2x2分析 因为例6中不等式的不等号两边形式不一样,对它作差ln(1x)(x),则发现作差以后

21x)求导得不容易化简.如果对ln(1,这样就能对它进行比较.1xx2证明: 先证 xln(1x)

2x2设 f(x)ln(1x)(x)(x0)

21x210)00 f(x)则 f(0)ln(1x1x1x' x0 即 1x0 x20

x2 f(x)0 ,即在(0,)上f(x)单调递增

1xx2 f(x)f(0)0  ln(1x)x

21x)x;令 g(x)ln(1x)x 再证 ln(则 g(0)0 g(x)11 1x1ln(1x)x  x0  1  g(x)0 1xx2 xln(1x)x 练习:3(2001年全国卷理20)已知i,m,n是正整数,且1imn

证明:(1m)n(1n)m

分析:要证(1m)n(1n)m成立,只要证

ln(1m)nln(1n)m

即要证11ln(1m)ln(1n)成立。因为m

11ln(1m)ln(1n); mn从而:(1m)n(1n)m。

评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题。难点在于找这个一元函数式,这就是“构造函数法”,通过这类数学方法的练习,对培养分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的。

下载利用半正定二次型证明条件不等式word格式文档
下载利用半正定二次型证明条件不等式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    利用二重积分证明不等式

    利用二重积分证明不等式. 设 f(x),g(x)是[a,b]单调增加的连续函数. 证明 b af(x)dxg(x)dx(ba)f(x)g(x)dx aabb 证明 由于f(x),g(x)是[a,b]单调增加的函数,于是 (f(x)f(y))(g......

    利用导数证明不等式

    利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个......

    高中数学_利用定积分证明数列和型不等式(定稿)

    利用定积分证明数列和型不等式湖北省阳新县高级中学 邹生书我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较......

    利用定积分证明数列和型不等式剖析[大全]

    利用定积分证明数列和型不等式 我们把形如(为常数或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些......

    利用方所发证明数列型不等式压轴题

    思想方法一、函数与方程思想姓名:方法1构造函数关系,利用函数性质解题班别:根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构......

    谈利用导数证明不等式.

    谈利用导数证明不等式 数学组邹黎华 在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维......

    利用导数证明不等式(全文5篇)

    克维教育(82974566)中考、高考培训专家铸就孩子辉煌的未来函数与导数(三)核心考点五、利用导数证明不等式一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式f(x)g(......

    利用柯西不等式证明不等式[范文模版]

    最值 1.求函数yx24 x ,(xR)的最小值。2.求函数yx4x 2,(xR )的最小值。 xR且x2y3.设2 1,求xy2的最大值 4.设x,y,z为正实数,且x+y+z=10,求4x19 yz 的最小值。 已知:x2 5.4 y21......