第一篇:《推理与证明》知识点
《推理与证明》
知识结构
一、推理
1.推理 :前提、结论
2.合情推理:
合情推理可分为
归纳推理和类比推理两类:
(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理.3.演绎推理:
从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。
重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明
题型1用归纳推理发现规律
1、;„.对于任意正实数a,b,成立的一个条件可以是____.点拨:前面所列式子的共同特征特征是被开方数之和为22,故ab222、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂
巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图.其中第一个图有1个蜂巢,第二个图
有7个蜂巢,第三个图有19个蜂巢,按此规律,以
f(n)表示第n幅图的蜂巢总数.则f(4)=_____;f(n)=___________.【解题思路】找出f(n)f(n1)的关系式
[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837
f(n)1612186(n1)3n23n
1【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系
题型2用类比推理猜想新的命题
[例]已知正三角形内切圆的半径是高的【解题思路】从方法的类比入手
[解析]原问题的解法为等面积法,即S1,把这个结论推广到空间正四面体,类似的结论是______.3111ah3arrh,类比问题的解法应为等体积法,22
31111VSh4Srrh即正四面体的内切球的半径是高 334
4【名师指引】(1)不仅要注意形式的类比,还要注意方法的类比
(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等
二、直接证明与间接证明
三种证明方法:
综合法、分析法、反证法
反证法:它是一种间接的证明方法.用这种方法证明一个命题的一般步骤:
(1)假设命题的结论不成立;
(2)根据假设进行推理,直到推理中导出矛盾为止
(3)断言假设不成立
(4)肯定原命题的结论成立
重难点:在函数、三角变换、不等式、立体几何、解析几何等不同的数学问题中,选择好证明方法并运用三种证明方法分析问题或证明数学命题
考点1综合法
在锐角三角形ABC中,求证:sinAsinBsinCcosAcosBcosC
[解析]ABC为锐角三角形,AB
2A
2B,ysinx在(0,)上是增函数,sinAsin(B)cosB 2
2同理可得sinBcosC,sinCcosA
sinAsinBsinCcosAcosBcosC
考点2分析法
已知ab0,求证abab
[解析]要证aab,只需证(ab)2(ab)2
即ab2abab,只需证bab,即证ba
显然ba成立,因此aab成立
【名师指引】注意分析法的“格式”是“要证---只需证---”,而不是“因为---所以---”
考点3反证法已知f(x)axx2(a1),证明方程f(x)0没有负数根 x
1【解题思路】“正难则反”,选择反证法,因涉及方程的根,可从范围方面寻找矛盾
[解析]假设x0是f(x)0的负数根,则x00且x01且ax0x02 x01
0ax0101x021,解得x02,这与x00矛盾,2x01
故方程f(x)0没有负数根
【名师指引】否定性命题从正面突破往往比较困难,故用反证法比较多
三、数学归纳法
一般地,当要证明一个命题对于不小于某正整数N的所有正整数n都成立时,可以用以下两个步骤:
(1)证明当n=n0时命题成立;
(2)假设当n=k(
第二篇:推理与证明知识点
第十二讲推理与证明
数学推理与证明知识点总结:
推理与证明:①推理是中学的主要内容,是重点考察的内容之一,题型为选择题、填空题或解答题,难度为中、低档题。利用归纳和类比等方法进行简单的推理的选择题或填空题在近几年的中考中都有所体现。②推理论证能力是中考考查的基本能力之一,它有机的渗透到初中课程的各个章节,对本节的学习,应先掌握其基本概念、基本原理,在此基础上通过其他章节的学习,逐步提高自己的推理论证能力。第一讲 推理与证明
一、考纲解读:
本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势。新课标考试大纲将抽象概括作为一种能力提出,进一步强化了合情推理与演绎推理的要求,因此在复习中要重视合情推理与演绎推理。高考对直接证明与间接证明的考查主要以直接证明中的综合法为主,结合不等式进行考查。
二、要点梳理:
1.归纳推理的一般步骤:(1)通过观察个别事物,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题。
2.类比推理的一般步骤:
(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
3.演绎推理
三段论及其一般模式:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出判断。
4.直接证明与间接证明
①综合法:利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论。
②分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。分析法的思维特点是:执果索因。
③反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的,即为反证法。一般地,结论中出现“至多”“至少”“唯一”等词语,或结论以否定语句出现,或要讨论的情况复杂时,常考虑使用反证法。
主要三步是:否定结论 → 推导出矛盾 → 结论成立。
实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。
④数学归纳法:一般地,证明一个与自然数n有关的命题P(n),有如下步骤:(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。/ 1
第三篇:初一数学知识点:推理与证明
数学题 http://dayi.dezhi.com/shuxue
初一数学知识点:推理与证明
按规律写数
[ 初一数学]题型:填空题
一列数:0,1,2,3,6,7,14,15,30,____, _____, ____,这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()
A.31,32,64B.31,62,63C.31,32,33D.31,45,46
问题症结:找不到突破口,请老师帮我理一下思路
考查知识点:
归纳与类比推理
难度:中
解析过程:
解:依题意得:接下来的三组数为31,62,63.
选B
同学你好如有疑问可以讨论如我在线会及时回复。
祝你学习进步。
规律方法:
本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差
1.由此可解出接下来的3个数
找规律填数字
[ 初三数学]题型:填空题
知识点总结 http://www.xiexiebang.com/knowledge
加过程,在证明中添加的辅助线可作为已知条件参与证明。
常见考法
(1)灵活运用基础知识进行推理,运用综合法、分析法,从条件和结论两方面出发进行证明;(2)在中考中,考查类比推理,先设计一个条件、结论明确的问题,以此作为类比对象,然后再对其改造。比如,图形的变式,添加某些新的属性或改变某些属性,通过与原有问题的比较,推测新问题的结论与解 决方法。
误区提醒
(1)不能准确把握几何公理、定理的内容;(2)数学语言、符号语言、文字语言在相互转化中出现表述错误。
以上内容来自,转载请注明出处。
知识点总结 http://www.xiexiebang.com/knowledge
第四篇:推理与证明
第3讲 推理与证明
【知识要点】
1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理
2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。3.类比推理的一般步骤:
①找出两类事物之间的相似性或者一致性。
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)【典型例题】
1、(2011•江西)观察下列各式:7=49,7=343,7=2401,„,则7
34201
1的末两位数字为()
A、01 B、43 C、07 D、49
2、(2011•江西)观察下列各式:5=3125,5=15625,5=78125,„,则5A、3125 B、5625 C、0625 D、8125
3、(2010•临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到()A、空间中平行于同一平面的两个平面平行 B、空间中平行于同一条直线的两条直线平行 C、空间中平行于同一条平面的两条直线平行 D、空间中平行于同一条直线的两个平面平行
4、(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()
A、(a*b)*a=a B、[a*(b*a)]*(a*b)=a C、b*(b*b)=b D、(a*b)*[b*(a*b)]=b
5、(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()
A、15 B、16 C、17 D、18
6、(2006•陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A、4,6,1,7 B、7,6,1,4 C、6,4,1,7 D、1,6,4,7
7、(2006•山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()
A、0 B、6 C、12 D、18
7201
1的末四位数字为()
8、(2006•辽宁)设⊕是R上的一个运算,A是V的非空子集,若对任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A、自然数集 B、整数集 C、有理数集 D、无理数集
9、(2006•广东)对于任意的两个实数对(a,b)和(c,d),规定:(a,b)=(c,d),当且仅当a=c,b=d;运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d),设p,q∈R,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=()A、(4,0)B、(2,0)C、(0,2)D、(0,-4)
10、(2005•湖南)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),„,fn+1(x)=fn′(x),n∈N,则f2005(x)=()
A、sinx B、-sinx C、cosx D、-cosx
11、(2004•安徽)已知数列{an}满足a0=1,an=a0+a1+„+an-1,n≥
1、,则当n≥1时,an=()A、2 B、n
C、2 D、2-
1n-1n
12、若数列{an}满足a1=1,a2=2,an=(n≥3且n∈N*),则a17=()
A、1 B、2 C、D、2-987
13、如图所示的三角形数阵叫“莱布尼兹调和三角形”,有,则运用归纳推理得到第11 行第2个数(从左往右数)为()A、B、C、D、14、根据给出的数塔猜测1 234 567×9+8=()
1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111.
A、11111110 B、11111111 C、11111112 D、11111113
15、将n个连续自然数按规律排成右表,根据规律,从2008到2010,箭头方向依次是()
A、B、C、D、16、下列推理过程利用的推理方法分别是()(1)通过大量试验得出抛硬币出现正面的概率为0.5;(2)函数f(x)=x2-|x|为偶函数;
(3)科学家通过研究老鹰的眼睛发明了电子鹰眼. A、演绎推理,归纳推理,类比推理 B、类比推理,演绎推理,类比推理 C、归纳推理,合情推理,类比推理 D、归纳推理,演绎推理,类比推理
17、下列表述正确的是()①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A、①②③ B、②③④ C、②④⑤ D、①③⑤
18、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,„这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为()A、n B、1、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 照此规律,第五个等式应为 5+6+7+8+9+10+11+12+13=81.
2、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 „
照此规律,第n个等式为 n+(n+1)+(n+2)+„+(3n-2)=(2n-1)2 .
C、n-1 D、2
第五篇:推理与证明
推理与证明
学生推理与证明的建立,是一个漫长的过程,这个过程的开始可以追溯到小孩牙牙学语时候起,小孩在爸爸妈妈跟前不停的问为什么,可以看做推理的雏形。接着到幼儿园、小学,教材里也有简单的说理,小学教材里有简单地说理题,意在培养学生的逻辑思维。
初中新教材对推理与证明的渗透,也是从说理开始的,但内容比较少,也就是教材中的直观几何内容。很快便转向推理,也就是证明。刚开始推理的步骤,是简单的两三步,接着到四五步,后面还一定要求学生写清楚为什么。在学习这一部分内容的时候,好多学生在后面的括号里不写为什么,我便给他们举例小孩子学走路的过程,一个小孩刚开始学走路的时候,需要大人或其他可依附的东西,渐渐地,她会脱离工具自己走。学习证明的过程亦如此,起先在括号里写清为什么,并且只是简单的几步,然后证明比较难一点的,步骤比较多的。
随着社会的进步,中学教材加强了解析几何、向量几何,传统的欧式几何受到冲击,并且教材对这一部分的编排分散在初中各个年级,直观几何分量多了还加入了变换如平移变换、旋转变换、对称变换,投影等内容。老师们对内容的编排不太理解,看了专家的讲座,渐渐明白了:这样编排不是降低了推理能力,而是加强了推理能力的培养,体现了逐步发展的过程,把变换放到中学,加强了中学和大学教材的统一,但一个不争的事实是,对演绎推理确实弱了。
关于开展课题学习的实践与认识
新课程教材编排了课题学习这部分内容,对授课的老师,还是学生的学习都是一个全新的内容,怎样上好这部分内容,对老师、对学生而言,都是一个创新的机会。至于课题学习的评价方式,到现在为止,大多数省份还是一个空白,考不考?怎样考?学习它吧,学习的东西不能在试卷上体现出来,于是,好多老师对这部分采取漠视的处理方法;不学习吧,课本上安排了这部分内容。还有一部分老师觉得,课题学习是对某一个问题专门研究,很深!老师不知讲到什么程度才合理,学生不知掌握到什么程度。
经过几年的实践与这次培训的认识,我觉得课题学习是“实践与综合应用”在新课课程中的主要呈现形式,是一种区别于传统的、全新的,具有挑战性的学习,课本的编写者安排的主要目的是:
1.希望为学生提供更多的实践与探索的机会。
2.让学生通过对有挑战性和综合性问题的解决,经历数学化的过程。
3.让学生获得研究问题地方法和经验,使学生的思维能力、自主探索与合作交流的意识和能力得到发展。
4.让学生体验数学知识的内在联系,以及解决问题的成功喜悦,增进学生学习数学的信心。
5.使数学学习活动成为生动活泼的、主动的和富有个性的过程。
课题学习首先提出一个主问题(问题是一个载体),然后给出资料,利用资料挖掘知识。在这个过程中,多关注知识的价值,淡化数学术语,让学生充分经历数学化的过程,激发学生参与的热情,使其体会到学习数学的乐趣,始终以学生为主体,明白课题学习是为学习服务的。