第一篇:小学生应用题解题方法
小学生应用题解题方法
定理、公式都记住,勤思好问,多做几道题,不就行了。事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是
提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点: ①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方
式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。
掌握解题步骤是解答应用题的第一步,要想掌握解答应用题的技能技巧,还需要掌握解答应用题的基本方法。一般可以分为综合法、分析法、图解法、演示法、消元法、假定法、逆推法、列举法等。在这里介绍这些方法,主要是帮助同学掌握在遇到应用题时,如何去思考,怎样打开自己的智慧之门。这些方法都不是孤立的,在实际解题中,往往是两种或三种方法同时用到,而且有许多问题,可以用这种方法分析,也可以用那种方法分析。问题在于掌握了各种方法后,可以随着题目中的数量关系灵活运用,切不可死记硬背,机械地套用解题方法。
1.综合法 从已知条件出发,根据数量关系先选择两个已知数量,提出可以解答的问题,然
后把所求出的数量作为新的已知条件,与其它的已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出所要求的结果为止。这就是综合法。在运用综合法的过程中,把应用题的已知条件分解成可以依次解答的几个简单应用题。
第二篇:如何提高小学生数学应用题解题能力
如何提高小学生数学应用题解题能力(转载)
小学数学课程中,从开始解答应用题就跟四则运算的学习结合着进行。培养学生解答应用题的能力,是十分重要的。对于学生在应用题掌握较差的产生原因,归纳起来有:①审题不严,忽视了表明条件与条件、条件与问题的关系的词语;②对问题的要求不明确;③条件与条件之间的关系没有搞清楚;④条件与问题之间的关系没有搞清楚;⑤数量关系不明确;⑥根本不理解题意而乱做;⑦也有一些学生在教师的引导和帮助下勉强会演算,而让其独立解答就错误百出,或条件和问题稍有改变,就解答不出来。由此可见,学生在解答方面所犯的错误,主要是由于不会分析应用题或根本没有分析而造成的。在这种情况下,即使计算碰对了,也是知其然而不知其所以然,更谈不上触类旁通和灵活运用。当然,学生不会分析应用题,不会列式计算,证明他们还不能合乎逻辑地思维,还缺乏判断推理能力和综合能力,在这种情况下,也就无法有条理地把计算方法加以复述,更无法独立地进行自编或改编应用题。因此,我认为在教学应用题的过程中,不能只满足于学生会进行列式计算,必须要求学生在列式之前学会分析,在列式之后还要会复述讲解和编题。也就是说要求学生达到掌握“四步”即分析、列式计算、复述讲解、编题。才是自觉地掌握解答应用题的知识和技能的标志,才是提高应用题教学质量的根本。以下,我就应用题教学“四步”过程的要求和内容以及工作方法简要说明,以求教于同行。
一、掌握分析
(1)学会认真阅读应用题,理解题意,分清条件和问题;
(2)学会运用动作、图解、画图等方法表示应用题的条件和问题;
(3)学会运用综合法或分析法分析应用题。通过解析的实践找出题中的数量关系,从而进行判断、推理、选择算法。
学生不能正确地理解题意,不会逻辑地进行分析、推理,从而判断运算法则,在列式计算时就会发生种种错误。即使凭着个别词句的暗示碰对了,也是偶然的。因此学生会正确地分析应用题,能开列条件和问题,找出表明数量关系的词语,并由此而进行判断推理是列式计算的基础。分析应用题不仅有助于列式计算的理解,而且能够发展学生的逻辑思维,培养学生的唯物辩证观点。应用题来自实际生活,在数学实践中虽然仅仅是从数量关系方面来培养,实际上是在培养学生分析实际生活问题的能力。按辩证法即:具体地分析问题,具体地解决问题。教师培养学生学会分析,实际是培养学生分析问题产生的条件与解决问题的条件,学生越是善于具体地分析问题和解决问题,就越能增长辩证思维的能力。我们知道,任何一问题产生的条件与解决问题的条件都可有多有少,实际上就在分析一系列的矛盾。教师根据需要和可能有计划地培养学生的分析能力,不仅是解答数学应用题的基础,而且是进一步学习数学的基础,对于发展学生的逻辑思维和培养学生的唯物辩证观点,更有其深刻的意义。指导学生分析应用题,在刚开始教学某一类型应用题时,首先要运用直观教具(实物演示或图解表示)讲解这类简单应用题的基本概念,在理解概念的基础上使学生认识两个条件之间以及条件与问题之间的关系,从而掌握这类应用题的结构特征,以后在分析这类题目时,就要求学生在分清条件和问题的基础上,用动作或图解的形式来表明两个条件之间以及条件与问题之间的关系,然后判断确定这类题目是一个什么样的基本概念。到了最后就要求学生能够熟练地分清条件和问题,能够列表表明条件之间、条件和问题之间的关系,自主地判定是属于何种基本概念。
在开始分析两步计算的应用题时,可以通过两个连续的简单应用题引出两步计算的应用题的分析表,以后则是逐步从综合法过渡到分析法,使学生能运用分析表(或线段图)来分析条件与条件、条件与问题之间的关系。多步计算的应用题的分析,应该重视开列条件和问题的工作。开始可以根据出现的顺序来摘录,以后逐步过渡到数量关系来开列条件和问题,并在教师的帮助下进行分析推理。进一步就要求经过认真审题后直接按数量关系列出条件和问题。再根据数量关系进行分析推理,列出分析表(或线段图)然后确定列式步骤和算法。到最后阶段,应该使学生做到当确定题目反映的某一基本概念时,就能迅速地、正确地列出算式,熟练地算出结果。
二、列式计算
(1)口头或书面做解题计划;(2)先用分步列式后用综合算式;
(3)能根据算式正确、迅速、合理地演算;(4)正确使用单位名称;(5)根据问题写答数;(6)自觉进行验算或估算。
列式计算在解答应用题中是极其重要的一环,它不仅能培养学生运用基本知识和基本技能解答实际问题的能力;也有助于进一步发展学生的逻辑思维和培养学生的唯物辩证观点,儿童的思维具有动作、形象的特点,思维断断续续,而且不善于重新审查自己思维的结果。为此,在分析应用题的阶段,对于题意的理解,对于数量关系的推理与判断,就难免有不周密或片面性。但是在列式计算的过程中,要一面想一面写,这就使他们的思维有着书面依据,借助于知觉的支持,就便于进行审查,发现错误及时加以改正或补充。这样,学生会分析,当然为顺利列式计算打下了基础,但是还不能保证计算就不会发生错误。为了帮助学生进一步理解题意,达到计算的目的,教师也要重视这一环节,正确地加以掌握。
教学列式计算时,到两步计算的应用题的最后阶段,可以培养学生列综合算式的能力。在多步计算的应用题的计算过程中,应该进一步重视综合式的训练。开始要求对不需要使用括号列出综合式,最后在运用小括号的基础上学会中括号列出综合式。多步计算的应用题的验算与改编题目的工作有密切联系,因而验算也可以在学会复述以后进行,使两者有机地结合起来。
三、会复述讲解
(1)会把应用题中的主要内容讲述出来;
(2)会根据条件和问题叙述解题计划和列式计算的步骤;(3)会按照数量之间的相依关系,复述选择算法的依据;(4)会正确地读出算式、讲出算式中各部分的名称;(5)会从应用题的问题出发,叙述推理和列式;
让学生复述讲解分析的过程、列式的依据,不仅可以巩固某一类型的应用题的分析推理各解答方法,发展学生的逻辑思维和语言表达能力,而且是检验学生对题意是否理解得是否透彻的有效方法。对于启发学生自觉地把数量之间的相依关系,从具体的事例说明概括为一般的法则或特性,并且进一步加以巩固,更有其积极意义。因此,要求学生会复述讲解,即是促进应用题教学质量的提高的方法,同时可以主动地把自已获得知识的有关信息反馈给教师。
指导学生复述讲解,开始可以采用问答式进行,以后应该让学生根据教师的要求连贯地讲述题目的结构特征,计算方法和选择算法的依据。到了教学两步计算的应用题的阶段,在讲解列式过程和列式方法的依据时,开始可以根据分析表(线段图)来复述。以后要求学生根据算式来复述。最后逐渐放开分析表和算式而直接根据题目来复述。开始可以列式步骤、验算方法、列式依据分别进行复述,以后则要求三者有机地结合起来进行复述。
四、会编题
1、自编应用题;
(1)根据两个已知数提(或补足)问题;
(2)根据一个已知数和问题,补充缺少的已知数;(3)根据实物、图表、线段图或表演动作编应用题;(4)根据故事内容或某一件事实编应用题;(5)根据算式或算法编应用题;
(6)根据要求,例如:用36和9编一道或几道不同计算方法应用题;(7)仿照课本上的应用题自编。
2、改编应用题:
(1)把某一种简单应用题改编为另一种类型的简单应用题;
(2)把几个有连续性的简单应用题组合成一个复合应用题,或把一个复合应用题改编为几个有连续性的简单应用题;
(3)把未知数改为已知数,把已知数改为未知数,编成一道或几道逆运算的应用题;(4)把应用题中的某一个已知条件,分解为两个已知条件,使计算增加一步,或把应用题中的某两个已知条件合并为一个已知条件,使计算减少一步。
编题是提高的过程,也是理论联系实际的过程。通过自编应用题,能使学生进一步理解加减乘除的意义,综合运用数学知识的能力得到锻炼。学生能正确地编出某一类型的应用题,证明学生对于已学过的数学法则是理解的,并且掌握了这一类型应用题的数学结构及其特点。通过自编应用题,学生的思想会变得更清楚、明确,叙述和判断会变得更有把握和更有根据。学习数学的积极性,兴趣和效果,也借着编题而获得增长。通过改编应用题可以使学生对应用题中的数量关系融合贯通,并且能深入地理解不同类型题目的内在联系,逐步认识各类应用题的来龙去脉,提高学生对新的应用题的分析能力。能使学生系统地掌握知识,灵活地应用知识,并且使学生进一步认识应用题之间联系和区别,从而发展学生的辩证思维能力、口头和书面表达能力。
指导学生编题,开始阶段可以进行补足问题或条件的练习,或者根据实物演示或图解的方法来自编题目。当学习了相当数量的简单应用题以后,可以要求学生根据算式或指定的数字、条件等进行编题。学到了几种有联系的不同类型的题目以后,应该要求学生能根据某一条件与问题调换,或只改变问题,或只改变某一条件的要求,改编成一道新的类型的题目,并能说出新的题目类型和解答方法。多步计算的应用题的编题练习主要是进行改编。
上述“四步”虽各有其任务,但是它们彼此之间有内在联系,而不是孤立的。分析是基础,列式计算是目的,复述讲解是巩固和反馈,编题是提高。总之为应用题的教学构成了一个完整的教学体系。在应用题教学实践中抓牢这“四步”,就可以防止学生解答问题时的主观性、表面性,培养学生的客观性、深刻性和全面性。“四步”的要求的贯彻可以达到:掌握数学知识和计算技能,增强分析实际生活问题的能力,培养辩证思维能力的目的。也是教学应用题的关键,使知识教学与世界观的培养结合起来,而且是一种内在系统的结合。
第三篇:小学数学应用题解题的十大方法
小学数学应用题解题的十大方法 1.观察法
观察法,是通过观察题目中数字的变化规律及位置特点、条件与结论之间的关系、题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
2.尝试法
解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫做“尝试探索法”。在尝试时可以提出假设、猜想,无论是假设还是猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结论是什么,从而减少尝试的次数,提高解题的效率。
3.列举法
解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举法也叫枚举法或穷举法。用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
4.综合法
从已知数量和未知数量的关系入手,逐步分析出已知数量和未知数量间的关系,一起到求出未知数量的解题方法叫做综合方法。
以综合法解应用题时,先选择两个已知数量,并通过这两个已知数量解出一个问题,然后将这个解出的问题作为一个新的已知条件,与其它已知条件配合,再解出一个问题„„一直到解出应用题所求解的未知数量。
运用综合法解应用题时,应明确通过两个已知条件可以解决什么问题,然后才能从已知逐步推到未知,使问题得到解决。这种思考方法适用于已知条件比较少,数量关系比较简单的应用题。
5.分析法
从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法,叫做分析法。用分析法解应用题时,如果解题所需要的两个条件(或其中一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。分析法适用于解答数量关系比较复杂的应用题。
6.综合-分析法
综合法和分析法是解应用题时常用的两种基本方法。在解比较复杂的应用题时,由于单纯用综合法或分析法时,思维会出现障碍,所以要把综合法和分析法结合起来使用把这一方
法叫做综合-分析法。
7.归一法
先求出单位数量(如单价、工效、单位面积的产量等),再以单位数量为标准,计算出所求数量的解题方法叫做归一法。
8.归总法
已知单位数量和单位数量的个数,先求出总数量,再按另一个单位数量或单位数量的个数求未知数量的解题方法叫妆总法。
解答这类问题的基本原理是:
(1)总数量=单位数量×单位数量的个数;
(2)另一单位数量(或个数)=总数量÷单位数量的个数(或单位数量)。
9.分解法
“由整体到部分、由部分到整体”是认识事物的规律。一道多步复杂的应用题是由几道一步的基本应用题组成。在分析应用题时,可把一道复杂的应用题拆分成几道基本应用题,从中找到解题的线索。把这种解题的思考方法称作分解法。
10.假设法
当应用题用一般方法很难解答时,可假设题目中的情节发生了变化,假设题目中两个或几个数量相等、假设题目中某个数量增加了或减少了,然后在假设的基础上推理调整由于假设而引发的变化的数量的大小,题目中隐藏的数量关系就可能变得明显,从而找到解题方法。这种解题方法就叫做假设法。
当应用题中没有解题必须的具体数量,且已有数量间的关系很抽象,如果假设题中有个具体的数量,或假设题目中某个未知数的数量是单位1,题目数量之间的关系就会变得清晰明确,从而便于找到解决问题的方法,这种解题的方法叫做设数法。
在用设数法解答应用题设具体数量时,要注意两点:一是所设数量要尽量小一些;二是所设的数量要便于分析数量关系和计算。
解决问题的四大策略
1. 画图 2. 列表
3. 猜想与尝试
4. 从简单处入手寻找解决问题的规律
第四篇:小学数学应用题解题方法及例题:鸡兔问题
小学数学应用题解题方法及例题:鸡兔问题 所属专题:小升初数学复习资料 来源:互联网 要点:小学数学应用题 收藏
编辑点评:小学数学应用题一向是师生家长非常关注的一类题型,要做好应用题需要学生多思考多做练习。小编在这里为大家汇总了典型应用题的解题方法并附上例题,希望能助大家一臂之力。
鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”,又称鸡兔同笼问题。
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:
(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
【例题】 鸡兔同笼共 50 个头,170 条腿。问鸡兔各有多少只?
【分析】
兔子只数(170-2 × 50)÷ 2 =35(只)
鸡的只数 50-35=15(只)
第五篇:小学数学应用题解题方法及例题:平均数问题
小学数学应用题解题方法及例题:平均数问题
所属专题:小升初数学复习资料 来源:互联网 要点:小学数学应用题 收藏编辑点评:小学数学应用题一向是师生家长非常关注的一类题型,要做好应用题需要学生多思考多做练习。小编在这里为大家汇总了典型应用题的解题方法并附上例题,希望能助大家一臂之力。
平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。
【数量关系式】数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
【数量关系式】(部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
【数量关系式】
(大数-小数)÷2=小数应得数
最大数与各数之差的和÷总份数=最大数应给数
最大数与个数之差的和÷总份数=最小数应得数。
【例题】一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
【分析】求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100,所用的时间为1/100,汽车从乙地到甲地速度为 60 千米,所用的时间是1/60,汽车共行的时间为 1/100+1/60=2/75, 汽车的平均速度为 2÷2/75=75(千米/每小时)